Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Introduction

Chronic inflammation may result in mucosal damage, presenting as pain, edema, convulsions, and fever symptoms. This study investigated the anti-inflammatory characteristics of isorhamnetin (ISO) and its potential as a medicinal agent.

Method

In this study, tests were performed in which macrophages were activated with lipopolysaccharide (LPS) to evaluate the effect of ISO on inflammation. We concentrated on quantifying the synthesis of pro-inflammatory cytokines, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF-α), as well as mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), in LPS-stimulated RAW 264.7 cells.

Results

The findings indicated that ISO significantly decreased levels of NO and PGE2 while maintaining cellular integrity. ISO reduced the synthesis of pro-inflammatory cytokines in a dose-dependent manner. Moreover, ISO treatment decreased mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which were enhanced following LPS exposure. Mechanistic investigations revealed that the anti-inflammatory properties of ISO were facilitated by the inhibition of phosphorylation in the mitogen-activated protein kinase (MAPK) family and the downregulation of nuclear factor-kappa B inhibitor (IκB-α) within both the MAPK and nuclear factor-kappa B (NF-κB) pathways.

Conclusion

These findings establish ISO as a viable alternative for treating inflammatory diseases by specifically inhibiting essential inflammatory pathways.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429385248250409060550
2024-01-01
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429385248.html?itemId=/content/journals/cmp/10.2174/0118761429385248250409060550&mimeType=html&fmt=ahah

References

  1. MediatorsPPD Acute and chronic inflammation.Robbins and Cotran Pathologic Basis of Disease, Professional Edition E-BookAmsterdamElsevier200918
    [Google Scholar]
  2. ChenX-W ZhouS-F Inflammation, cytokines, the IL-17/IL-6/STAT3/NF-κB axis, and tumorigenesis.Drug Des. Devel. Ther.201592941294610.2147/DDDT.S86396
    [Google Scholar]
  3. YangJ.H. KimS.C. ShinB.Y. JinS.H. JoM.J. JegalK.H. KimY.W. LeeJ.R. KuS.K. ChoI.J. KiS.H. O-Methylated flavonol isorhamnetin prevents acute inflammation through blocking of NF-κB activation.Food Chem. Toxicol.20135936237223774260
    [Google Scholar]
  4. MarcariniC.J. TsuboyF.M.S. LuizC.R. RibeiroR.L. CampoB.H.C. MantovaniS.M. Investigation of cytotoxic, apoptosis-inducing, genotoxic and protective effects of the flavonoid rutin in HTC hepatic cells.Exp. Toxicol. Pathol.201163545946520399630
    [Google Scholar]
  5. ZhaoZ. LiuY. Cardiovascular protective effect of isorhamnetin.Med. Recapit.2008142321232310.1109/SOLI.2008.4682923
    [Google Scholar]
  6. ChiG. ZhongW. LiuY. LuG. LüH. WangD. SunF. Isorhamnetin protects mice from lipopolysaccharide-induced acute lung injury via the inhibition of inflammatory responses.Inflamm. Res.2016651334126525359
    [Google Scholar]
  7. YangB. LiX.P. NiY.F. DuH.Y. WangR. LiM.J. WangW.C. LiM.M. WangX.H. LiL. ZhangW.D. JiangT. Protective effect of isorhamnetin on lipopolysaccharide-induced acute lung injury in mice.Inflammation201639112913710.1007/s10753‑015‑0231‑026276127
    [Google Scholar]
  8. DouW. ZhangJ. LiH. KortagereS. SunK. DingL. RenG. WangZ. ManiS. Plant flavonol isorhamnetin attenuates chemically induced inflammatory bowel disease via a PXR-dependent pathway.J. Nutr. Biochem.201425992393310.1016/j.jnutbio.2014.04.00624913217
    [Google Scholar]
  9. LiJ. WangG. DuS. Research progress on antitumor effect and mechanism of isorhamnetin.Shanxi Med.20114012151217
    [Google Scholar]
  10. JiangC. XiangY. ZhongY. Effects of isorhamnetin on the proliferous cycle and apoptosis of human hepatoma HepG-2 cells: an experimental study.J Milit Surg Southwest China201214432435
    [Google Scholar]
  11. HuS. HuangL. MengL. SunH. ZhangW. XuY. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen-activated protein kinase kinase signaling pathways.Mol. Med. Rep.20151256745675110.3892/mmr.2015.426926502751
    [Google Scholar]
  12. IsholaI.O. OseleM.O. ChijiokeM.C. AdeyemiO.O. Isorhamnetin enhanced cortico-hippocampal learning and memory capability in mice with scopolamine-induced amnesia: Role of antioxidant defense, cholinergic and BDNF signaling.Brain Res.2019171218819610.1016/j.brainres.2019.02.01730772273
    [Google Scholar]
  13. JiangZ. WangX. WangJ. ChenX. WangJ. PanJ. Effect of sedi herba total flavanones and isorhamnetin on APAP-induced injured L02 cells.Zhongguo Shiyan Fangjixue Zazhi20182412112510.13422/j.cnki.Syfjx.20180631
    [Google Scholar]
  14. JiangL. LiH. WangL. SongZ. ShiL. LiW. DengX. WangJ. Isorhamnetin attenuates staphylococcus aureus-induced lung cell injury by inhibiting alpha-hemolysin expression.J. Microbiol. Biotechnol.201626359660210.4014/jmb.1507.0709126643966
    [Google Scholar]
  15. TengD. LuanX. Research progress of isorhamnetin in pharma codynamics.J. Tradit. Chin. Med. Sci.201628593596
    [Google Scholar]
  16. DayemA.A. ChoiH.Y. KimY.B. ChoS.G. Antiviral effect of methylated flavonol isorhamnetin against influenza.PLoS One2015103e012161010.1371/journal.pone.012161025806943
    [Google Scholar]
  17. Boesch-SaadatmandiC. LobodaA. WagnerA.E. StachurskaA. JozkowiczA. DulakJ. DöringF. WolfframS. RimbachG. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155.J. Nutr. Biochem.201122329329910.1016/j.jnutbio.2010.02.00820579867
    [Google Scholar]
  18. ZhengQ. TongM. OuB. LiuC. HuC. YangY. Isorhamnetin protects against bleomycin-induced pulmonary fibrosis by inhibiting endoplasmic reticulum stress and epithelial-mesenchymal transition.Int. J. Mol. Med.201943111712630387812
    [Google Scholar]
  19. JnawaliH.N. JeonD. JeongM.C. LeeE. JinB. RyooS. YooJ. JungI.D. LeeS.J. ParkY.M. KimY. Antituberculosis activity of a naturally occurring flavonoid, isorhamnetin.J. Nat. Prod.201679496196910.1021/acs.jnatprod.5b0103326974691
    [Google Scholar]
  20. LimH. ParkJ.Y. AbekuraF. ChoiH. KimH.D. MagaeJ. ChangY.C. LeeY.C. KimC.H. 4-O-methylascochlorin attenuates inflammatory responses induced by lipopolysaccharide in RAW 264.7 macrophages.Int. Immunopharmacol.20219010718410.1016/j.intimp.2020.10718433316741
    [Google Scholar]
  21. TianC. LiuX. ChangY. WangR. LvT. CuiC. LiuM. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin.S. Afr. J. Bot.202113725726410.1016/j.sajb.2020.10.022
    [Google Scholar]
  22. ZhangH. ShanY. WuY. XuC. YuX. ZhaoJ. YanJ. ShangW. Berberine suppresses LPS-induced inflammation through modulating Sirt1/NF-κB signaling pathway in RAW264.7 cells.Int. Immunopharmacol.2017529310010.1016/j.intimp.2017.08.03228888780
    [Google Scholar]
  23. ZhuT. ZhangW. FengS. YuH. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARγ-dependent pathway.Int. Immunopharmacol.201634162410.1016/j.intimp.2016.02.01426910236
    [Google Scholar]
  24. XuX. YinP. WanC. ChongX. LiuM. ChengP. ChenJ. LiuF. XuJ. Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation.Inflammation201437395696510.1007/s10753‑014‑9816‑224473904
    [Google Scholar]
  25. KangJ.K. ChungY.C. HyunC.G. Anti-inflammatory effects of 6-methylcoumarin in lps-stimulated raw 264.7 macrophages via regulation of MAPK and NF-ΚB signaling pathways.Molecules20212617535110.3390/molecules2617535134500784
    [Google Scholar]
  26. ChenL. FanX. LinX. QianL. ZenginG. DelmasD. PaoliP. TengH. XiaoJ. Phenolic extract from Sonchus oleraceus L. protects diabetes‐related liver injury in rats through TLR4/NF‐κB signaling pathway.eFood202011778410.2991/efood.k.191018.002
    [Google Scholar]
  27. BuchananM.M. HutchinsonM. WatkinsL.R. YinH. Toll‐like receptor 4 in CNS pathologies.J. Neurochem.20101141132710.1111/j.1471‑4159.2010.06736.x20402965
    [Google Scholar]
  28. HuangG.J. HuangS.S. DengJ.S. Anti-inflammatory activities of inotilone from Phellinus linteus through the inhibition of MMP-9, NF-κB, and MAPK activation in vitro and in vivo.PLoS One201275e3592210.1371/journal.pone.003592222590514
    [Google Scholar]
  29. LivakKJ SchmittgenTD Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta C(T)) method.Methods200125440240810.1006/meth.2001.1262
    [Google Scholar]
  30. HammadA.M. AlzaghariL.F. AlfarajM. Al-QeremW. TalibW.H. AlasmariF. AmawiH. HallF.S. Acetylsalicylic acid reduces cigarette smoke withdrawal-induced anxiety in rats via modulating the expression of NFĸB, GLT-1, and xCT.Front. Pharmacol.202313104723610.3389/fphar.2022.104723636699078
    [Google Scholar]
  31. AlqudahA. QnaisE. GammohO. BseisoY. WedyanM. AlqudahM. OqalM. AbudaloR. AbdallaS.S. Exploring the therapeutic potential of Anastatica hierochuntica essential oil in DSS-induced colitis.Inflammopharmacology20243232035204810.1007/s10787‑024‑01449‑438520575
    [Google Scholar]
  32. JaeschkeH. Reactive oxygen and mechanisms of inflammatory liver injury.J. Gastroenterol. Hepatol.200015771872410.1046/j.1440‑1746.2000.02207.x10937675
    [Google Scholar]
  33. ParkH.S. JungH.Y. ParkE.Y. KimJ. LeeW.J. BaeY.S. Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-κ B.J. Immunol.200417363589359310.4049/jimmunol.173.6.358915356101
    [Google Scholar]
  34. RenX. HanL. LiY. ZhaoH. ZhangZ. ZhuangY. ZhongM. WangQ. MaW. WangY. Isorhamnetin attenuates TNF-α-induced inflammation, proliferation, and migration in human bronchial epithelial cells via MAPK and NF-κB pathways.Anat. Rec.2021304490191332865318
    [Google Scholar]
  35. HwangJ.H. MaJ.N. ParkJ.H. JungH.W. ParkY-K. Anti-inflammatory and antioxidant effects of MOK, a polyherbal extract, on lipopolysaccharide‑stimulated RAW 264.7 macrophages.Int. J. Mol. Med.2019431263610.3892/ijmm.2018.393730365058
    [Google Scholar]
  36. MalayilD. HouseN.C. PuthenparambilD. JobJ.T. NarayanankuttyA. Borassus flabellifer haustorium extract prevents pro-oxidant mediated cell death and LPS-induced inflammation.Drug Chem. Toxicol.20224541716172210.1080/01480545.2020.185885433307839
    [Google Scholar]
  37. ZhangC. LiC. JiaX. WangK. TuY. WangR. LiuK. LuT. HeC. In vitro and in vivo anti-inflammatory effects of polyphyllin VII through downregulating MAPK and NF-κB pathways.Molecules201924587510.3390/molecules2405087530832224
    [Google Scholar]
  38. KarinM. Ben-NeriahY. Phosphorylation meets ubiquitination: the control of NF-(κ)B activity.Annu. Rev. Immunol.200018162166310.1146/annurev.immunol.18.1.62110837071
    [Google Scholar]
  39. HuangG. ShiL.Z. ChiH. Regulation of JNK and p38 MAPK in the immune system: signal integration, propagation and termination.Cytokine200948316116910.1016/j.cyto.2009.08.00219740675
    [Google Scholar]
  40. BarakatM. SyedN.K. HasenE. The effect of natural products on inflammatory cytokines production and secretion.Phytomed. Plus20233410048810.1016/j.phyplu.2023.100488
    [Google Scholar]
  41. KiS.H. ChoiM.J. LeeC.H. KimS.G. Galpha12 specifically regulates COX-2 induction by sphingosine 1-phosphate. Role for JNK-dependent ubiquitination and degradation of IkappaBalpha.J. Biol. Chem.200728231938194710.1074/jbc.M60608020017098744
    [Google Scholar]
  42. WangH. GaoJ. KouJ. ZhuD. YuB. Anti-inflammatory activities of triterpenoid saponins from Polygala japonica.Phytomedicine200815532132617951039
    [Google Scholar]
  43. OzesO.N. MayoL.D. GustinJ.A. PfefferS.R. PfefferL.M. DonnerD.B. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase.Nature19994016748828510.1038/4346610485710
    [Google Scholar]
  44. ChenY. JiN. PanS. ZhangZ. WangR. QiuY. JinM. KongD. Roburic acid suppresses NO and IL-6 production via targeting NF-κB and MAPK pathway in RAW264. 7 cells.Inflammation20174061959196610.1007/s10753‑017‑0636‑z28761990
    [Google Scholar]
  45. WuX. SchaussA.G. Mitigation of inflammation with foods.J. Agric. Food Chem.201260276703671710.1021/jf300700822468569
    [Google Scholar]
  46. LiuS.F. MalikA.B. NF-κ B activation as a pathological mechanism of septic shock and inflammation.Am. J. Physiol. Lung Cell. Mol. Physiol.20062904L622L64510.1152/ajplung.00477.200516531564
    [Google Scholar]
  47. ParkH-J. KimI-T. WonJ-H. JeongS.H. ParkE.Y. NamJ.H. ChoiJ. LeeK.T. Anti-inflammatory activities of ent-16alphaH,17-hydroxy-kauran-19-oic acid isolated from the roots of Siegesbeckia pubescens are due to the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-kappaB inactivation.Eur. J. Pharmacol.20075581-318519310.1016/j.ejphar.2006.11.03617207792
    [Google Scholar]
  48. PhamT.H. KimM.S. LeM.Q. SongY.S. BakY. RyuH.W. OhS.R. YoonD.Y. Fargesin exerts anti-inflammatory effects in THP-1 monocytes by suppressing PKC-dependent AP-1 and NF-ĸB signaling.Phytomedicine2017249610310.1016/j.phymed.2016.11.01428160867
    [Google Scholar]
  49. SeoK. YangJ.H. KimS.C. KuS.K. KiS.H. ShinS.M. The antioxidant effects of isorhamnetin contribute to inhibit COX-2 expression in response to inflammation: a potential role of HO-1.Inflammation201437371272210.1007/s10753‑013‑9789‑624337631
    [Google Scholar]
  50. YangJ.H. ShinB.Y. HanJ.Y. KimM.G. WiJ.E. KimY.W. ChoI.J. KimS.C. ShinS.M. KiS.H. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes.Toxicol. Appl. Pharmacol.2014274229330110.1016/j.taap.2013.10.02624211276
    [Google Scholar]
  51. LiuW. LiuS. YaoP. LiuL.G. QinH. (Potential molecular mechanisms of quercetin-induced heme oxygenase-1 in rat primary hepatocytes).Zhonghua Gan Zang Bing Za Zhi2013211186586810.3760/cma.j.issn.1007‑3418.2013.11.01524331699
    [Google Scholar]
  52. FuC. ChenJ. LuJ. YiL. TongX. KangL. PeiS. OuyangY. JiangL. DingY. ZhaoX. LiS. YangY. HuangJ. ZengQ. Roles of inflammation factors in melanogenesis (Review).Mol. Med. Rep.20202131421143010.3892/mmr.2020.1095032016458
    [Google Scholar]
  53. HossainM.R. AnsaryT.M. KomineM. OhtsukiM. Diversified stimuli-induced inflammatory pathways cause skin pigmentation.Int. J. Mol. Sci.2021228397010.3390/ijms2208397033921371
    [Google Scholar]
  54. AbdallahL OmarG Ecballium elaterium aqoueus extract total phenol content, antioxidant and anticancer activities against skin melanoma (B16–F1) cell line.Jordan J. Appl. Sci.2024182710.35192/jjoas‑n.v18i1.1916
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429385248250409060550
Loading
/content/journals/cmp/10.2174/0118761429385248250409060550
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Inflammation; Isorhamnetin; Macrophage; MAPK; Medicinal agent; NF-κB
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test