Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702
side by side viewer icon HTML

Abstract

Background

Post-traumatic osteoarthritis (PTOA) constitutes a distinct subtype of osteoarthritis (OA). Despite extensive research, no effective pharmacological intervention has been established to prevent or halt the progression of PTOA. Current therapeutic approaches are primarily limited to symptomatic management and pain relief. SkQ1, a novel mitochondria-targeted antioxidant, has emerged as a promising therapeutic agent due to its dual capacity to scavenge excessive intracellular reactive oxygen species (ROS) and modulate inflammatory responses.

Objective

This study aimed to investigate the therapeutic potential of SkQ1 in the early stages of PTOA and elucidate its underlying molecular mechanisms.

Methods

Chondrocytes were cultured under varying concentrations of SkQ1 to evaluate its cytotoxicity. Additionally, an oxidative stress model was established to assess the antioxidant effects of SkQ1 across different concentration levels, from which the optimal concentration for PTOA treatment was determined. The rat PTOA model was established through medial meniscal tear (MMT) surgery, followed by intra-articular administration of SkQ1 postoperatively. The gait characteristics of rats in each group were assessed biweekly following surgery. Outcome measures were evaluated at 2 and 6 weeks postoperatively, including pathological evaluation of knee cartilage, ROS levels, markers of oxidative damage, such as malondialdehyde (MDA) and 8-hydroxy-deoxyguanosine (8-OHdG), mitochondrial membrane potential, mitochondrial DNA copy number, and apoptosis-related cytokines.

Results

, lower concentrations of SkQ1 (500 nM) exhibited superior antioxidant efficacy while minimizing cytotoxicity. The results indicated that SkQ1 administration significantly enhanced knee joint functionality and mitigated articular cartilage degeneration in both the acute and subacute phases of PTOA by inhibiting oxidative stress pathways. In a rat model of PTOA, SkQ1 not only alleviated gait abnormalities, but also substantially reduced levels of oxidative stress biomarkers, including ROS, MDA, and 8-OHdG. Furthermore, SkQ1 effectively preserved mitochondrial membrane potential and increased mitochondrial DNA copy number. Mechanistically, SkQ1 inhibited the release of cytochrome C (Cyt-C) and apoptosis-inducing factor (AIF) and downregulated key components of the mitochondria-mediated apoptotic pathway, such as Bax, Bak, cleaved caspase-3, and cleaved caspase-9.

Conclusion

The findings suggested that SkQ1 exerts its therapeutic effects multiple mechanisms, including the reduction of ROS accumulation, mitigation of oxidative damage, preservation of mitochondrial function, and inhibition of apoptotic pathways. These diverse actions position SkQ1 as a promising disease-modifying agent for PTOA treatment, potentially offering benefits that extend beyond those provided by current symptom-focused therapies.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429383749250312082958
2024-01-01
2025-09-16
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429383749.html?itemId=/content/journals/cmp/10.2174/0118761429383749250312082958&mimeType=html&fmt=ahah

References

  1. BrownT.D. JohnstonR.C. SaltzmanC.L. MarshJ.L. BuckwalterJ.A. Posttraumatic osteoarthritis: A first estimate of incidence, prevalence, and burden of disease.J. Orthop. Trauma2006201073974410.1097/01.bot.0000246468.80635.ef17106388
    [Google Scholar]
  2. SalmanL.A. AhmedG. DakinS.G. KendrickB. PriceA. Osteoarthritis: A narrative review of molecular approaches to disease management.Arthritis Res. Ther.20232512710.1186/s13075‑023‑03006‑w36800974
    [Google Scholar]
  3. DilleyJ.E. BelloM.A. RomanN. McKinleyT. SankarU. Post-traumatic osteoarthritis: A review of pathogenic mechanisms and novel targets for mitigation.Bone Rep.20231810165810.1016/j.bonr.2023.10165837425196
    [Google Scholar]
  4. MaiaC.R. AnnichinoR.F. de Azevedo e Souza MunhozM. MachadoE.G. MarchiE. Castano-BetancourtM.C. Post-traumatic osteoarthritis: The worst associated injuries and differences in patients’ profile when compared with primary osteoarthritis.BMC Musculoskelet. Disord.202324156810.1186/s12891‑023‑06663‑937438788
    [Google Scholar]
  5. BedingfieldS.K. ColazoJ.M. Di FrancescoM. YuF. LiuD.D. Di FrancescoV. HimmelL.E. GuptaM.K. ChoH. HastyK.A. DecuzziP. DuvallC.L. Top-down fabricated microPlates for prolonged, intra-articular matrix metalloproteinase 13 siRNA nanocarrier delivery to reduce post-traumatic osteoarthritis.ACS Nano2021159144751449110.1021/acsnano.1c0400534409835
    [Google Scholar]
  6. ZhouD. WeiY. ShengS. WangM. LvJ. ZhaoB. ChenX. XuK. BaiL. WuY. SongP. CaoL. ZhouF. ZhangH. ShiZ. SuJ. MMP13-targeted siRNA-loaded micelles for diagnosis and treatment of posttraumatic osteoarthritis.Bioact. Mater.20243737839210.1016/j.bioactmat.2024.04.01038689658
    [Google Scholar]
  7. BrockmanB.S. MaupinJ.J. ThompsonS.F. HollabaughK.M. ThakralR. Complication rates in total knee arthroplasty performed for osteoarthritis and post-traumatic arthritis: A comparison study.J. Arthroplasty202035237137410.1016/j.arth.2019.09.02231606293
    [Google Scholar]
  8. LiuY. ZhaoX.D. ZouC. Lingering risk: A meta-analysis of outcomes following primary total knee arthroplasty for patients with post-traumatic arthritis.Int. J. Surg.20207716317210.1016/j.ijsu.2020.03.05332247846
    [Google Scholar]
  9. KoikeM. NojiriH. OzawaY. WatanabeK. MuramatsuY. KanekoH. MorikawaD. KobayashiK. SaitaY. SashoT. ShirasawaT. YokoteK. KanekoK. ShimizuT. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration.Sci. Rep.2015511172210.1038/srep1172226108578
    [Google Scholar]
  10. ColemanM.C. RamakrishnanP.S. BrouilletteM.J. MartinJ.A. Injurious loading of articular cartilage compromises chondrocyte respiratory function.Arthritis Rheumatol.201668366267110.1002/art.3946026473613
    [Google Scholar]
  11. RiggsK.C. SankarU. Inflammatory mechanisms in post-traumatic osteoarthritis: A role for CaMKK2.Immunometabolism (Cobham)202354e0003110.1097/IN9.000000000000003137849987
    [Google Scholar]
  12. RieggerJ. SchoppaA. RuthsL. Haffner-LuntzerM. IgnatiusA. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: A narrative review.Cell. Mol. Biol. Lett.20232817610.1186/s11658‑023‑00489‑y37777764
    [Google Scholar]
  13. ColemanM.C. GoetzJ.E. BrouilletteM.J. SeolD. WilleyM.C. PetersenE.B. AndersonH.D. HendricksonN.R. ComptonJ. KhorsandB. MorrisA.S. SalemA.K. FredericksD.C. McKinleyT.O. MartinJ.A. Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis.Sci. Transl. Med.201810427eaan537210.1126/scitranslmed.aan537229437147
    [Google Scholar]
  14. ColemanM. BrouilletteM. AndresenN. Oberley-DeeganR. MartinJ. Differential effects of superoxide dismutase mimetics after mechanical overload of articular cartilage.Antioxidants2017649810.3390/antiox604009829189731
    [Google Scholar]
  15. ChenY. LeY. YangJ. YangY. FengX. CaiJ. ShangY. SugiartoS. WeiQ. KaiD. ZhengL. ZhaoJ. 3D bioprinted Xanthan hydrogels with dual antioxidant and chondrogenic functions for post-traumatic cartilage regeneration.ACS Biomater. Sci. Eng.20241031661167510.1021/acsbiomaterials.3c0163638364815
    [Google Scholar]
  16. ChenB. HeQ. ChenC. Lin Y. Xiao J. PanZ. Combination of curcumin and catalase protects against chondrocyte injury and knee osteoarthritis progression by suppressing oxidative stress.Biomed Pharmacother.202316811575110.1016/j.biopha.2023.115751
    [Google Scholar]
  17. SkulachevV.P. Cationic antioxidants as a powerful tool against mitochondrial oxidative stress.Biochem. Biophys. Res. Commun.2013441227527910.1016/j.bbrc.2013.10.06324161394
    [Google Scholar]
  18. HuangB. ZhangN. QiuX. Mitochondria-targeted SkQ1 nanoparticles for dry eye disease: Inhibiting NLRP3 inflammasome activation by preventing mitochondrial DNA oxidation.J Control Release.202436511510.1016/j.jconrel.2023.11.021
    [Google Scholar]
  19. BattogtokhG. ChoiY.S. KangD.S. ParkS.J. ShimM.S. HuhK.M. ChoY.Y. LeeJ.Y. LeeH.S. KangH.C. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives.Acta Pharm. Sin. B20188686288010.1016/j.apsb.2018.05.00630505656
    [Google Scholar]
  20. KezicA. SpasojevicI. LezaicV. BajceticM. Mitochondria‐targeted antioxidants: Future perspectives in kidney ischemia reperfusion injury.Oxid. Med. Cell. Longev.201620161295050310.1155/2016/295050327313826
    [Google Scholar]
  21. JiaB. YeJ. GanL. LiR. ZhangM. SunD. WengL. XiongY. XuJ. ZhangP. HuangW. ZhengM. WangT. Mitochondrial antioxidant SkQ1 decreases inflammation following hemorrhagic shock by protecting myocardial mitochondria.Front. Physiol.202213104790910.3389/fphys.2022.104790936467681
    [Google Scholar]
  22. SongJ. ShengJ. LeiJ. GanW. YangY. Mitochondrial targeted antioxidant SKQ1 ameliorates acute kidney injury by inhibiting ferroptosis.Oxid. Med. Cell. Longev.2022202211910.1155/2022/222395736193064
    [Google Scholar]
  23. LyamzaevK.G. HuanH. PanteleevaA.A. SimonyanR.A. AvetisyanA.V. ChernyakB.V. Exogenous iron induces mitochondrial lipid peroxidation, lipofuscin accumulation, and ferroptosis in H9c2 cardiomyocytes.Biomolecules202414673010.3390/biom1406073038927133
    [Google Scholar]
  24. Wan MohammadW.M.Z. ZahiruddinW.M. Sample size calculation in animal studies using resource equation approach.Malays. J. Med. Sci.201724510110510.21315/mjms2017.24.5.1129386977
    [Google Scholar]
  25. RenG. GengL. RenD. HouH. YaoS. ShiZ. WangP. Chronic intermittent hypobaric hypoxia alleviates early-stage posttraumatic osteoarthritis via NF-κB/Nrf2 pathway in mice.J. Orthop. Surg. Res.202419187810.1186/s13018‑024‑05376‑639726016
    [Google Scholar]
  26. GerwinN. BendeleA.M. GlassonS. CarlsonC.S. The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat.Osteoarthritis Cartilage201018Suppl. 3S24S3410.1016/j.joca.2010.05.03020864021
    [Google Scholar]
  27. MishraJ.S. BlessonC.S. KumarS. Testosterone decreases placental mitochondrial content and cellular bioenergetics.Biology 20209717610.3390/biology907017632698476
    [Google Scholar]
  28. AyalaS. DelcoM.L. FortierL.A. Cohen I. Bonassar L.J. Cartilage articulation exacerbates chondrocyte damage and death after impact injury. J Orthop Res.202139102130214010.1002/jor.24936
    [Google Scholar]
  29. JiangQ. YinJ. ChenJ. MaX. WuM. LiuG. YaoK. TanB. YinY. Mitochondria-targeted antioxidants: A step towards disease treatment.Oxid. Med. Cell. Longev.2020202011810.1155/2020/883789333354280
    [Google Scholar]
  30. RokitskayaT.I. KlishinS.S. SeverinaI.I. SkulachevV.P. AntonenkoY.N. Kinetic analysis of permeation of mitochondria-targeted antioxidants across bilayer lipid membranes.J. Membr. Biol.20082241-391910.1007/s00232‑008‑9124‑618807085
    [Google Scholar]
  31. AntonenkoY.N. RoginskyV.A. PashkovskayaA.A. RokitskayaT.I. KotovaE.A. ZaspaA.A. ChernyakB.V. SkulachevV.P. Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments.J. Membr. Biol.2008222314114910.1007/s00232‑008‑9108‑618493812
    [Google Scholar]
  32. ZinovkinR.A. ZamyatninA.A. Mitochondria-targeted drugs.Curr. Mol. Pharmacol.201912320221410.2174/187446721266618112715105930479224
    [Google Scholar]
  33. SomayajuluM. McClellanS.A. WrightR. PitchaikannuA. CronigerB. ZhangK. HazlettL.D. Airborne exposure of the cornea to PM10 induces oxidative stress and disrupts Nrf2 mediated anti-oxidant defenses.Int. J. Mol. Sci.2023244391110.3390/ijms2404391136835320
    [Google Scholar]
  34. AntonenkoY.N. AvetisyanA.V. BakeevaL.E. ChernyakB.V. ChertkovV.A. DomninaL.V. IvanovaO.Y. IzyumovD.S. KhailovaL.S. KlishinS.S. KorshunovaG.A. LyamzaevK.G. MuntyanM.S. NepryakhinaO.K. PashkovskayaA.A. PletjushkinaO.Y. PustovidkoA.V. RoginskyV.A. RokitskayaT.I. RuugeE.K. SaprunovaV.B. SeverinaI.I. SimonyanR.A. SkulachevI.V. SkulachevM.V. SumbatyanN.V. SviryaevaI.V. TashlitskyV.N. VassilievJ.M. VyssokikhM.Y. YaguzhinskyL.S. ZamyatninA.A.Jr SkulachevV.P. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: Synthesis and in vitro studies.Biochemistry (Mosc.)200873121273128710.1134/S000629790812001819120014
    [Google Scholar]
  35. SacksB. OnalH. MartoranaR. SehgalA. HarveyA. WastellaC. AhmadH. RossE. PjetergjokaA. PrasadS. BarsottiR. YoungL.H. ChenQ. Mitochondrial targeted antioxidants, mitoquinone and SKQ1, not vitamin C, mitigate doxorubicin-induced damage in H9c2 myoblast: Pretreatment vs. co-treatment.BMC Pharmacol. Toxicol.20212214910.1186/s40360‑021‑00518‑634530934
    [Google Scholar]
  36. NazarovP.A. ZinovkinaL.A. BrezgunovaA.A. LyamzaevK.G. GolovinA.V. KarakozovaM.V. KotovaE.A. PlotnikovE.Y. ZinovkinR.A. SkulachevM.V. AntonenkoY.N. Relationship of cytotoxic and antimicrobial effects of triphenylphosphonium conjugates with various quinone derivatives.Biochemistry (Mosc.)202489221222210.1134/S000629792402003238622091
    [Google Scholar]
  37. ValipourF. ValioğluF. RahbarghaziR. NavaliA.M. RashidiM.R. DavaranS. Thermosensitive and biodegradable PCL-based hydrogels: Potential scaffolds for cartilage tissue engineering.J. Biomater. Sci. Polym. Ed.202334569571410.1080/09205063.2022.208853036745508
    [Google Scholar]
  38. HodgkinsonT. KellyD.C. CurtinC.M. O’BrienF.J. Mechanosignalling in cartilage: An emerging target for the treatment of osteoarthritis.Nat. Rev. Rheumatol.2022182678410.1038/s41584‑021‑00724‑w34934171
    [Google Scholar]
  39. IlariS. NuceraS. PassacatiniL.C. CaminitiR. MazzaV. MacrìR. SerraM. ScaranoF. MalafogliaV. PalmaE. OppedisanoF. MaiuoloJ. TominoC. MollaceV. MuscoliC. SIRT1: A likely key for future therapeutic strategies for pain management.Pharmacol. Res.202521310767010.1016/j.phrs.2025.10767039983332
    [Google Scholar]
  40. HeX.D. ZhangF. HuangY. HaoJ.J. ZhangM. HeJ.B. PuX.M. LiY.J. ZiL. YuJ. YangX.X. Potential indicators of mitochondrial structure and function.Curr. Pharm. Des.202228211738174410.2174/138161282866622052016120035619320
    [Google Scholar]
  41. BolducJ.A. CollinsJ.A. LoeserR.F. Reactive oxygen species, aging and articular cartilage homeostasis.Free Radic. Biol. Med.2019132738210.1016/j.freeradbiomed.2018.08.03830176344
    [Google Scholar]
  42. ArraM. SwarnkarG. KeK. OteroJ.E. YingJ. DuanX. MaruyamaT. RaiM.F. O’KeefeR.J. MbalavieleG. ShenJ. Abu-AmerY. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis.Nat. Commun.2020111342710.1038/s41467‑020‑17242‑032647171
    [Google Scholar]
  43. ZhangW. WuJ. ZhangF. DouX. MaA. ZhangX. ShaoH. ZhaoS. LingP. LiuF. HanG. Lower range of molecular weight of xanthan gum inhibits apoptosis of chondrocytes through MAPK signaling pathways.Int. J. Biol. Macromol.2019130798710.1016/j.ijbiomac.2019.01.07130659877
    [Google Scholar]
  44. YuH. HuangT. LuW.W. TongL. ChenD. Osteoarthritis Pain.Int. J. Mol. Sci.2022239464210.3390/ijms2309464235563035
    [Google Scholar]
  45. LiuY. NieM. LiX. WangH. RenS. ZouD. LiuJ. LiR. Garlic-derived exosomes alleviate osteoarthritis through inhibiting the MAPK signaling pathway.Appl. Biochem. Biotechnol.2025197151853310.1007/s12010‑024‑05047‑639190086
    [Google Scholar]
  46. ZhaoR. WeiX. ZhangC. WuH. XiangC. LiH. DuanW. DuanZ. LiC. ZhaoY. HuangL. α2-macroglobulin-rich serum as a master inhibitor of inflammatory factors attenuates cartilage degeneration in a mini pig model of osteoarthritis induced by “idealized” anterior cruciate ligament reconstruction.Front. Pharmacol.20221384910210.3389/fphar.2022.84910236133821
    [Google Scholar]
  47. DominicA. LeN.T. TakahashiM. Loop between NLRP3 inflammasome and reactive oxygen species.Antioxid. Redox Signal.20223610-1278479610.1089/ars.2020.825734538111
    [Google Scholar]
  48. Kryl’skiiE.D. PopovaT.N. ZhaglinD.A. RazuvaevG.A. OleynikS.A. SkQ1 improves immune status and normalizes activity of NADPH-Generating and antioxidant enzymes in rats with adjuvant-induced rheumatoid arthritis.Biochemistry (Mosc.)20238881092110410.1134/S000629792308004737758309
    [Google Scholar]
  49. HwangH. KimH. Chondrocyte apoptosis in the pathogenesis of osteoarthritis.Int. J. Mol. Sci.20151611260352605410.3390/ijms16112594326528972
    [Google Scholar]
  50. MarkouliM. PagoniM.N. DiamantopoulosP. BCL-2 inhibitors in hematological malignancies: Biomarkers that predict response and management strategies.Front. Oncol.202514150195010.3389/fonc.2024.150195039906657
    [Google Scholar]
  51. YangH. XieY. YangD. RenD. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma.Oncotarget2017815253102532210.18632/oncotarget.1581328445976
    [Google Scholar]
  52. YuanH. YiN. LiD. XuC. YinG.R. ZhuangC. WangY.J. NiS. PPARγ regulates osteoarthritis chondrocytes apoptosis through caspase-3 dependent mitochondrial pathway.Sci. Rep.20241411123710.1038/s41598‑024‑62116‑w38755283
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429383749250312082958
Loading
/content/journals/cmp/10.2174/0118761429383749250312082958
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test