Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Pulmonary fibrosis seriously endangers human health, with its incidence and mortality rates steadily increasing. Current treatment methods have limitations. This review focused on the research progress and future prospects of tangeretin in the treatment of pulmonary fibrosis. Tangeretin, a compound derived from the peel of citrus fruits, has garnered attention in pulmonary fibrosis research due to its unique chemical structure and its background in traditional medical applications. This paper discussed the pathological mechanisms of pulmonary fibrosis, including the initiation and persistent inflammation, abnormal activation and proliferation of fibroblasts, imbalance in extracellular matrix (ECM) metabolism, and the cycle of oxidative stress injury. Tangeretin has shown potential therapeutic effects, including anti-inflammation, regulation of ECM metabolism, and antioxidative stress activities. This paper reviewed the current research progress and possible therapeutic effects of tangeretin on pulmonary fibrosis and proposed future research directions for its application.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429385520250508041438
2024-01-01
2025-09-28
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429385520.html?itemId=/content/journals/cmp/10.2174/0118761429385520250508041438&mimeType=html&fmt=ahah

References

  1. YoneshimaY. IwamaE. MatsumotoS. MatsubaraT. TagawaT. OtaK. TanakaK. TakenoyamaM. OkamotoT. GotoK. MoriM. OkamotoI. Paired analysis of tumor mutation burden for lung adenocarcinoma and associated idiopathic pulmonary fibrosis.Sci. Rep.20211111273210.1038/s41598‑021‑92098‑y34140559
    [Google Scholar]
  2. HananiaA.N. MainwaringW. GhebreY.T. HananiaN.A. LudwigM. Radiation-induced lung injury.Chest2019156115016210.1016/j.chest.2019.03.03330998908
    [Google Scholar]
  3. NaoiH. SuzukiY. MoriK. AonoY. KonoM. HasegawaH. YokomuraK. InoueY. HozumiH. KarayamaM. FuruhashiK. EnomotoN. FujisawaT. NakamuraY. InuiN. NakamuraH. SudaT. Impact of antifibrotic therapy on lung cancer development in idiopathic pulmonary fibrosis.Thorax202277772773010.1136/thoraxjnl‑2021‑21828135354649
    [Google Scholar]
  4. MeyerK.C. Pulmonary fibrosis, part I: Epidemiology, pathogenesis, and diagnosis.Expert Rev. Respir. Med.201711511710.1080/17476348.2017.131234628345383
    [Google Scholar]
  5. PodolanczukA.J. ThomsonC.C. Remy-JardinM. RicheldiL. MartinezF.J. KolbM. RaghuG. Idiopathic pulmonary fibrosis: State of the art for 2023.Eur. Respir. J.2023614220095710.1183/13993003.00957‑202236702498
    [Google Scholar]
  6. WakwayaY. BrownK.K. Idiopathic pulmonary fibrosis: Epidemiology, diagnosis and outcomes.Am. J. Med. Sci.2019357535936910.1016/j.amjms.2019.02.01331010461
    [Google Scholar]
  7. FinnertyJ.P. PonnuswamyA. DuttaP. AbdelazizA. KamilH. Efficacy of antifibrotic drugs, nintedanib and pirfenidone, in treatment of progressive pulmonary fibrosis in both idiopathic pulmonary fibrosis (IPF) and non-IPF: A systematic review and meta-analysis.BMC Pulm. Med.202121141110.1186/s12890‑021‑01783‑134895203
    [Google Scholar]
  8. MaherT.M. BendstrupE. DronL. LangleyJ. SmithG. KhalidJ.M. PatelH. KreuterM. Global incidence and prevalence of idiopathic pulmonary fibrosis.Respir. Res.202122119710.1186/s12931‑021‑01791‑z34233665
    [Google Scholar]
  9. AshrafizadehM. AhmadiZ. MohammadinejadR. AfsharG.E. Tangeretin: A mechanistic review of its pharmacological and therapeutic effects.J. Basic Clin. Physiol. Pharmacol.20203142019019110.1515/jbcpp‑2019‑019132329752
    [Google Scholar]
  10. WaniI. KoppulaS. BaldaA. ThekkekkaraD. JamadagniA. WalseP. ManjulaS.N. KopalliS.R. An update on the potential of tangeretin in the management of neuroinflammation-mediated neurodegenerative disorders.Life202414450410.3390/life1404050438672774
    [Google Scholar]
  11. BraidyN. BehzadS. HabtemariamS. AhmedT. DagliaM. NabaviS.M. Sobarzo-SanchezE. NabaviS.F. Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and tangeretin in alzheimer’s and parkinson’s disease.CNS Neurol. Disord. Drug Targets201716438739728474543
    [Google Scholar]
  12. SherekarP. SukeS.G. DhokA. MalegaonkarS. DhaleS.A. Global scenario of silica-associated diseases: A review on emerging pathophysiology of silicosis and potential therapeutic regimes.Toxicol. Rep.20251410194110.1016/j.toxrep.2025.10194139989982
    [Google Scholar]
  13. ChangS. LvJ. WangX. SuJ. BianC. ZhengZ. YuH. BaoJ. XinY. JiangX. Pathogenic mechanisms and latest therapeutic approaches for radiation-induced lung injury: A narrative review.Crit. Rev. Oncol. Hematol.202420210446110.1016/j.critrevonc.2024.10446139103129
    [Google Scholar]
  14. KoudstaalT. Funke-ChambourM. KreuterM. MolyneauxP.L. WijsenbeekM.S. Pulmonary fibrosis: From pathogenesis to clinical decision-making.Trends Mol. Med.202329121076108710.1016/j.molmed.2023.08.01037716906
    [Google Scholar]
  15. FangC. WangL. QiaoJ. ChangL. HeQ. ZhangX. LiuM. Differential regulation of lipopolysaccharide-induced IL-1β and TNF-α production in macrophages by palmitate via modulating TLR4 downstream signaling.Int. Immunopharmacol.202210310845610.1016/j.intimp.2021.10845634923420
    [Google Scholar]
  16. ChenS. LuK. HouY. YouZ. ShuC. WeiX. WuT. ShiN. ZhangG. WuJ. ChenS. ZhangL. LiW. ZhangD. JuS. ChenM. XuB. YY1 complex in M2 macrophage promotes prostate cancer progression by upregulating IL-6.J. Immunother. Cancer2023114e00602010.1136/jitc‑2022‑00602037094986
    [Google Scholar]
  17. BentR. MollL. GrabbeS. BrosM. Interleukin-1 beta—a friend or foe in malignancies?Int. J. Mol. Sci.2018198215510.3390/ijms1908215530042333
    [Google Scholar]
  18. ChengP. LiS. ChenH. Macrophages in lung injury, repair, and fibrosis.Cells202110243610.3390/cells1002043633670759
    [Google Scholar]
  19. GeZ. ChenY. MaL. HuF. XieL. Macrophage polarization and its impact on idiopathic pulmonary fibrosis.Front. Immunol.202415144496410.3389/fimmu.2024.144496439131154
    [Google Scholar]
  20. WuJ. GongL. LiY. LiuT. SunR. JiaK. LiuR. DongF. GuX. LiX. SGK1 aggravates idiopathic pulmonary fibrosis by triggering H3k27ac-mediated macrophage reprogramming and disturbing immune homeostasis.Int. J. Biol. Sci.202420396898638250161
    [Google Scholar]
  21. BalestroE. CalabreseF. TuratoG. LunardiF. BazzanE. MarulliG. BiondiniD. RossiE. SanduzziA. ReaF. RigobelloC. GregoriD. BaraldoS. SpagnoloP. CosioM.G. SaettaM. Immune inflammation and disease progression in idiopathic pulmonary fibrosis.PLoS One2016115e015451627159038
    [Google Scholar]
  22. JiaQ. LeiY. ChenS. LiuS. WangT. ChengY. Circulating inflammatory cytokines and risk of idiopathic pulmonary fibrosis: A Mendelian randomization study.BMC Pulm. Med.202323136910.1186/s12890‑023‑02658‑337789433
    [Google Scholar]
  23. YiX.M. LiM. ChenY.D. ShuH.B. LiS. Reciprocal regulation of IL-33 receptor-mediated inflammatory response and pulmonary fibrosis by TRAF6 and USP38.Proc. Natl. Acad. Sci. USA202211910e211627911935238669
    [Google Scholar]
  24. YinY.Q. PengF. SituH.J. XieJ.L. TanL. WeiJ. JiangF.F. ZhangS.Q. LiuJ. Construction of prediction model of inflammation related genes in idiopathic pulmonary fibrosis and its correlation with immune microenvironment.Front. Immunol.202213101034536601116
    [Google Scholar]
  25. ChenG. LiJ. LiuH. ZhouH. LiuM. LiangD. Cepharanthine Ameliorates Pulmonary Fibrosis by Inhibiting the NF-κB/NLRP3 Pathway, Fibroblast-to-Myofibroblast Transition and Inflammation.Molecules202328275310.3390/molecules28020753
    [Google Scholar]
  26. HeC.H. LvJ.M. KhanG.J. DuanH. WangW. ZhaiK.F. ZouG.A. AisaH.A. Total flavonoid extract from Dracocephalum moldavica L. improves pulmonary fibrosis by reducing inflammation and inhibiting the hedgehog signaling pathway.Phytother. Res.20233772745275836794391
    [Google Scholar]
  27. DuanR. HongC.G. WangX. LuM. XieH. LiuZ.Z. Olfactory mucosa mesenchymal stem cells alleviate pulmonary fibrosis via the immunomodulation and reduction of inflammation.BMC Pulm. Med.20242411438178092
    [Google Scholar]
  28. TianJ. ZhangM. SuoM. LiuD. WangX. LiuM. PanJ. JinT. AnF. Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic rats.J. Cell. Mol. Med.202125167642765934169635
    [Google Scholar]
  29. FrangogiannisN. Transforming growth factor-β in tissue fibrosis.J. Exp. Med.20202173e2019010332997468
    [Google Scholar]
  30. ZhangY. LinX. ChuY. ChenX. DuH. ZhangH. XuC. XieH. RuanQ. LinJ. LiuJ. ZengJ. MaK. ChaiD. Dapagliflozin: A sodium–glucose cotransporter 2 inhibitor, attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling.Cardiovasc. Diabetol.202120112110.1186/s12933‑021‑01312‑834116674
    [Google Scholar]
  31. PengL. WenL. ShiQ.F. GaoF. HuangB. MengJ. HuC.P. WangC.M. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial–mesenchymal transition and inflammation.Cell Death Dis.2020111197810.1038/s41419‑020‑03178‑233188176
    [Google Scholar]
  32. ZhangY. JiaoH. WuY. SunX. P120-catenin regulates pulmonary fibrosis and TGF-β induced lung fibroblast differentiation.Life Sci.2019230354410.1016/j.lfs.2019.05.05231125560
    [Google Scholar]
  33. JiaoH. SongJ. SunX. SunD. ZhongM. Sodium arsenite inhibits lung fibroblast differentiation and pulmonary fibrosis.Pharmacology20191045-636837610.1159/00050253631553994
    [Google Scholar]
  34. XieT. WangY. DengN. HuangG. TaghavifarF. GengY. LiuN. KulurV. YaoC. ChenP. LiuZ. StrippB. TangJ. LiangJ. NobleP.W. JiangD. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis.Cell Rep.201822133625364010.1016/j.celrep.2018.03.01029590628
    [Google Scholar]
  35. ZhangP. WangJ. LuoW. YuanJ. CuiC. GuoL. WuC. Kindlin-2 acts as a key mediator of lung fibroblast activation and pulmonary fibrosis progression.Am. J. Respir. Cell Mol. Biol.2021651546910.1165/rcmb.2020‑0320OC33761308
    [Google Scholar]
  36. LiY. SunY. WuN. MaH. GRK2 promotes activation of lung fibroblast cells and contributes to pathogenesis of pulmonary fibrosis through increasing Smad3 expression.Am. J. Physiol. Cell Physiol.20223221C63C7210.1152/ajpcell.00347.202134852209
    [Google Scholar]
  37. ChengD. WangY. LiZ. XiongH. SunW. XiS. ZhouS. LiuY. NiC. Liposomal UHRF1 siRNA shows lung fibrosis treatment potential through regulation of fibroblast activation.JCI Insight2022722e16283110.1172/jci.insight.16283136166308
    [Google Scholar]
  38. TsukuiT. SunK.H. WetterJ.B. Wilson-KanamoriJ.R. HazelwoodL.A. HendersonN.C. AdamsT.S. SchuppJ.C. PoliS.D. RosasI.O. KaminskiN. MatthayM.A. WoltersP.J. SheppardD. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis.Nat. Commun.2020111192010.1038/s41467‑020‑15647‑532317643
    [Google Scholar]
  39. GengY. LiL. YanJ. LiuK. YangA. ZhangL. ShenY. GaoH. WuX. NothI. HuangY. LiuJ. FanX. PEAR1 regulates expansion of activated fibroblasts and deposition of extracellular matrix in pulmonary fibrosis.Nat. Commun.2022131711410.1038/s41467‑022‑34870‑w36402779
    [Google Scholar]
  40. BarbayianniI. KanellopoulouP. FanidisD. NastosD. NtouskouE.D. GalarisA. HarokoposV. HatzisP. TsitouraE. HomerR. KaminskiN. AntoniouK.M. CrestaniB. TzouvelekisA. AidinisV. SRC and TKS5 mediated podosome formation in fibroblasts promotes extracellular matrix invasion and pulmonary fibrosis.Nat. Commun.2023141588210.1038/s41467‑023‑41614‑x37735172
    [Google Scholar]
  41. DengZ. FearM.W. ChoiS.Y. WoodF.M. AllahhamA. MutsaersS.E. PrêleC.M. The extracellular matrix and mechanotransduction in pulmonary fibrosis.Int. J. Biochem. Cell Biol.202012610580232668329
    [Google Scholar]
  42. ZhangY. ZhuL. HongJ. ChenC. Extracellular matrix of early pulmonary fibrosis modifies the polarization of alveolar macrophage.Int. Immunopharmacol.202211110917936029666
    [Google Scholar]
  43. HewittR.J. PutturF. GaboriauD.C.A. FercoqF. FresquetM. TravesW.J. YatesL.L. WalkerS.A. MolyneauxP.L. KempS.V. NicholsonA.G. RiceA. RobertsE. LennonR. CarlinL.M. ByrneA.J. MaherT.M. LloydC.M. Lung extracellular matrix modulates KRT5+ basal cell activity in pulmonary fibrosis.Nat. Commun.2023141603910.1038/s41467‑023‑41621‑y37758700
    [Google Scholar]
  44. LuoH. YanJ. ZhouX. Constructing an extracellular matrix-related prognostic model for idiopathic pulmonary fibrosis based on machine learning.BMC Pulm. Med.202323139710.1186/s12890‑023‑02699‑837858084
    [Google Scholar]
  45. LinW SongY LiT YanJ ZhangR HanL Triptolide attenuates pulmonary fibrosis by inhibiting fibrotic extracellular matrix remodeling mediated by MMPs/LOX/integrin.Biomed. Pharmacother.202316611539410.1016/j.biopha.2023.115394
    [Google Scholar]
  46. Evangelista-LeiteD. CarreiraA.C.O. NishiyamaM.Y. GilpinS.E. MiglinoM.A. The molecular mechanisms of extracellular matrix-derived hydrogel therapy in idiopathic pulmonary fibrosis models.Biomaterials202330212233810.1016/j.biomaterials.2023.12233837820517
    [Google Scholar]
  47. WangJ. ZhangX. LongM. YuanM. YinJ. LuoW. WangS. CaiY. JiangW. ChaoJ. Macrophage-derived GPNMB trapped by fibrotic extracellular matrix promotes pulmonary fibrosis.Commun. Biol.20236113610.1038/s42003‑022‑04333‑536732560
    [Google Scholar]
  48. OtoupalovaE. SmithS. ChengG. ThannickalV.J. Oxidative stress in pulmonary fibrosis.Compr. Physiol.202010250954710.1002/j.2040‑4603.2020.tb00120.x32163196
    [Google Scholar]
  49. YangH. WangL. YangM. HuJ. ZhangE. PengL. Oridonin attenuates LPS-induced early pulmonary fibrosis by regulating impaired autophagy, oxidative stress, inflammation and EMT.Eur. J. Pharmacol.202292317493110.1016/j.ejphar.2022.17493135398392
    [Google Scholar]
  50. MilenkovicR.M. KlisicA. CerimanV. StevuljevicK.J. VujovicS.K. MirkovD. GajicM. IlicB. DimicN. SamardzicN. JovanovicD. Oxidative stress and inflammation parameters-novel biomarkers for idiopathic pulmonary fibrosis.Eur. Rev. Med. Pharmacol. Sci.202226392793435179759
    [Google Scholar]
  51. MakenaP. KikalovaT. PrasadG.L. BaxterS.A. Oxidative stress and lung fibrosis: Towards an adverse outcome pathway.Int. J. Mol. Sci.202324151249010.3390/ijms24151249037569865
    [Google Scholar]
  52. WaltersD.M. ChoH.Y. KleebergerS.R. Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: A potential role for Nrf2.Antioxid. Redox Signal.200810232133210.1089/ars.2007.190117999635
    [Google Scholar]
  53. ZhaoJ. MaX. LiS. LiuC. LiuY. TanJ. YuL. LiX. LiW. Berberine hydrochloride ameliorates PM2.5-induced pulmonary fibrosis in mice through inhibiting oxidative stress and inflammatory.Chem. Biol. Interact.202338611073137839514
    [Google Scholar]
  54. MansourH.H. OmranM.M. HasanH.F. KikiE.S.M. Modulation of bleomycin-induced oxidative stress and pulmonary fibrosis by N-acetylcysteine in rats via AMPK/SIRT1/NF-κβ.Clin. Exp. Pharmacol. Physiol.202047121943195232658336
    [Google Scholar]
  55. RenG. XuG. LiR. XieH. CuiZ. WangL. ZhangC. Modulation of bleomycin-induced oxidative stress and pulmonary fibrosis by ginkgetin in mice via AMPK.Curr. Mol. Pharmacol.202316221722735249515
    [Google Scholar]
  56. LiJ. WeiQ. SongK. WangY. YangY. LiM. YuJ. SuG. PengL. FuB. YiP. Tangeretin attenuates bleomycin-induced pulmonary fibrosis by inhibiting epithelial-mesenchymal transition via the PI3K/Akt pathway.Front. Pharmacol.202314124780037781713
    [Google Scholar]
  57. EunS.H. WooJ.T. KimD.H. Tangeretin inhibits IL-12 expression and NF-ΚB activation in dendritic cells and attenuates colitis in mice.Planta Med.201783652753310.1055/s‑0042‑11907427806407
    [Google Scholar]
  58. LiX. XieP. HouY. ChenS. HeP. XiaoZ. ZhanJ. LuoD. GuM. LinD. Tangeretin inhibits oxidative stress and inflammation via upregulating Nrf-2 signaling pathway in collagen-induced arthritic rats.Pharmacology20191043-418719531344704
    [Google Scholar]
  59. PengB. HuJ. SunY. HuangY. PengQ. ZhaoW. XuW. ZhuL. Tangeretin alleviates inflammation and oxidative response induced by spinal cord injury by activating the Sesn2/Keap1/Nrf2 pathway.Phytother. Res.20243894555456939054118
    [Google Scholar]
  60. ShiY. ChenJ. LiS. WuY. YuC. NiL. XiaoJ. ShaoZ. ZhuH. WangJ. WangX. ZhangX. Tangeretin suppresses osteoarthritis progression via the Nrf2/NF-κB and MAPK/NF-κB signaling pathways.Phytomedicine20229815392835104760
    [Google Scholar]
  61. KunduA. GhoshP. BishayiB. Verapamil and tangeretin enhances the M1 macrophages to M2 type in lipopolysaccharide-treated mice and inhibits the P-glycoprotein expression by downregulating STAT1/STAT3 and upregulating SOCS3.Int. Immunopharmacol.202413311215338678669
    [Google Scholar]
  62. YangG. LiS. YangY. YuanL. WangP. ZhaoH. HoC.T. LinC.C. Nobiletin and 5-Hydroxy-6,7,8,3′,4′-pentamethoxyflavone Ameliorate 12- O-Tetradecanoylphorbol-13-acetate-Induced Psoriasis-Like Mouse Skin Lesions by Regulating the Expression of Ki-67 and Proliferating Cell Nuclear Antigen and the Differentiation of CD4+ T Cells through Mitogen-Activated Protein Kinase Signaling Pathways.J. Agric. Food Chem.201866318299830630058806
    [Google Scholar]
  63. LiM. ZhaoY. QiD. HeJ. WangD. Tangeretin attenuates lipopolysaccharide-induced acute lung injury through Notch signaling pathway via suppressing Th17 cell response in mice.Microb. Pathog.202013810382631676364
    [Google Scholar]
  64. SedikA.A. ElgoharyR. Neuroprotective effect of tangeretin against chromium-induced acute brain injury in rats: Targeting Nrf2 signaling pathway, inflammatory mediators, and apoptosis.Inflammopharmacology20233131465148010.1007/s10787‑023‑01167‑336884189
    [Google Scholar]
  65. WunpatheC. ManeesaiP. RattanakanokchaiS. BunbuphaS. KukongviriyapanU. Tong-UnT. PakdeechoteP. Tangeretin mitigates l-NAME-induced ventricular dysfunction and remodeling through the AT1R/pERK1/2/pJNK signaling pathway in rats.Food Funct.20201121322133332031202
    [Google Scholar]
  66. OmarH.A. MohamedW.R. ArabH.H. ArafaS.A. Tangeretin alleviates cisplatin-induced acute hepatic injury in rats: Targeting MAPKs and apoptosis.PLoS One2016113e015164910.1371/journal.pone.015164927031695
    [Google Scholar]
  67. WuJ. ZhaoY.M. DengZ.K. Tangeretin ameliorates renal failure via regulating oxidative stress, NF-κB-TNF-α/iNOS signalling and improves memory and cognitive deficits in 5/6 nephrectomized rats.Inflammopharmacology201826111913210.1007/s10787‑017‑0394‑428871498
    [Google Scholar]
  68. ChenF MaY SunZ ZhuX Tangeretin inhibits high glucose-induced extracellular matrix accumulation in human glomerular mesangial cells.Biomed. Pharmacother.20181021077108310.1016/j.biopha.2018.03.169
    [Google Scholar]
  69. ShaoD. LiuX. WuJ. ZhangA. BaiY. ZhaoP. LiJ. Identification of the active compounds and functional mechanisms of Jinshui Huanxian formula in pulmonary fibrosis by integrating serum pharmacochemistry with network pharmacology.Phytomedicine202210215417710.1016/j.phymed.2022.15417735636171
    [Google Scholar]
  70. YangF. HouR. LiuX. TianY. BaiY. LiJ. ZhaoP. Yangqing Chenfei formula attenuates silica-induced pulmonary fibrosis by suppressing activation of fibroblast via regulating PI3K/AKT, JAK/STAT, and Wnt signaling pathway.Phytomedicine202311015462210.1016/j.phymed.2022.15462236577208
    [Google Scholar]
  71. KandaswamiC. PerkinsE. DrzewieckiG. SoloniukD.S. MiddletonE.Jr Differential inhibition of proliferation of human squamous cell carcinoma, gliosarcoma and embryonic fibroblast-like lung cells in culture by plant flavonoids.Anticancer Drugs19923552553010.1097/00001813‑199210000‑000131450447
    [Google Scholar]
  72. KeZ. TanS. LiH. JiangS. LiY. ChenR. LiM. Tangeretin improves hepatic steatosis and oxidative stress through the Nrf2 pathway in high fat diet-induced nonalcoholic fatty liver disease mice.Food Funct.20221352782279010.1039/D1FO02989D35171164
    [Google Scholar]
  73. IjazM.U. ShahabM.S. SamadA. AshrafA. Al-GhanimK. MruthintiS.S. MahboobS. Tangeretin ameliorates bisphenol induced hepatocyte injury by inhibiting inflammation and oxidative stress.Saudi J. Biol. Sci.20222931375137910.1016/j.sjbs.2021.11.00735280594
    [Google Scholar]
  74. LakshmiA. SubramanianS.P. Tangeretin ameliorates oxidative stress in the renal tissues of rats with experimental breast cancer induced by 7,12-dimethylbenz[a]anthracene.Toxicol. Lett.2014229233334810.1016/j.toxlet.2014.06.84524995432
    [Google Scholar]
  75. AntoE.M. SruthiC.R. KrishnanL. RaghuK.G. PurushothamanJ. Tangeretin alleviates Tunicamycin-induced endoplasmic reticulum stress and associated complications in skeletal muscle cells.Cell Stress Chaperones202328215116510.1007/s12192‑023‑01322‑336653727
    [Google Scholar]
  76. SuZ.Y. ChienJ.C. TungY.C. WuT.Y. LiaoJ.A. WeiG.J. Tangeretin and 4′-demethyltangeretin prevent damage to mouse hepatocytes from oxidative stress by activating the Nrf2-related antioxidant pathway via an epigenetic mechanism.Chem. Biol. Interact.202338211065010.1016/j.cbi.2023.11065037517432
    [Google Scholar]
  77. KangM.K. KimS.I. OhS.Y. NaW. KangY.H. Tangeretin ameliorates glucose-induced podocyte injury through blocking epithelial to mesenchymal transition caused by oxidative stress and hypoxia.Int. J. Mol. Sci.20202122857710.3390/ijms2122857733202982
    [Google Scholar]
  78. CaoZ. ZhaoC. MoS. GaoB.H. LiuM. The impact of tangeretin combined with whey protein on exercise-induced bronchoconstriction in professional athletes: A placebo-controlled trial.J. Int. Soc. Sports Nutr.2024211241487010.1080/15502783.2024.241487039422600
    [Google Scholar]
  79. LiuM MoSW ZhouZQ GaoBH [Effects of Tangeretin on cortisol stress response induced by high-intensity resistance exercise].Zhongguo. Ying. Yong. Sheng. Li. Xue. Za. Zhi.202137552352810.12047/j.cjap.6166.2021.055
    [Google Scholar]
  80. LiuM MoSW QinCL LyuBQ ZhouZQ GaoBH [Effects of the combination of tangeretin and whey protein on testosterone and cortisol in sprinters at winter training season].Zhongguo. Ying. Yong. Sheng. Li. Xue. Za. Zhi.202137667868210.12047/j.cjap.6100.2021.062
    [Google Scholar]
  81. BackmanJ.T. MäenpääJ. BelleD.J. WrightonS.A. KivistöK.T. NeuvonenP.J. Lack of correlation between in vitro and in vivo studies on the effects of tangeretin and tangerine juice on midazolam hydroxylation.Clin. Pharmacol. Ther.200067438239010801247
    [Google Scholar]
  82. HungW.L. ChangW.S. LuW.C. WeiG.J. WangY. HoC.T. HwangL.S. Pharmacokinetics, bioavailability, tissue distribution and excretion of tangeretin in rat.Yao Wu Shi Pin Fen Xi201826284985729567257
    [Google Scholar]
  83. RicheldiL. AzumaA. CottinV. HesslingerC. StowasserS. ValenzuelaC. WijsenbeekM.S. ZozD.F. VossF. MaherT.M. Trial of a preferential phosphodiesterase 4b inhibitor for idiopathic pulmonary fibrosis.N. Engl. J. Med.2022386232178218710.1056/NEJMoa220173735569036
    [Google Scholar]
  84. GurunathanS. JeyarajM. KangM.H. KimJ.H. Tangeretin-assisted platinum nanoparticles enhance the apoptotic properties of doxorubicin: Combination therapy for osteosarcoma treatment.Nanomaterials201998108931362420
    [Google Scholar]
  85. BaoH. ZhengN. LiZ. ZhiY. Synergistic effect of tangeretin and atorvastatin for colon cancer combination therapy: Targeted delivery of these dual drugs using RGD peptide decorated nanocarriers.Drug Des. Devel. Ther.2020143057306810.2147/DDDT.S25663632801644
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429385520250508041438
Loading
/content/journals/cmp/10.2174/0118761429385520250508041438
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test