Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Introduction

Inflammatory Bowel Disease (IBD) imposes a huge burden on both patients and the society. Standard treatments are often ineffective and can lead to adverse effects. Biological Tumor Necrosis Factor (TNF-α) inhibitors, though effective, have issues with immunogenicity and high costs. Our study investigates the potential of Brefeldin A (BFA) and (R)-STU104 in treating IBD by targeting the Transforming Growth Factor-β-Activated Kinase 1 (TAK1) - Mitogen-Activated Protein Kinase Kinase 3 (MKK3)-p38 pathway.

Methods

RAW264.7 cells (Murine Leukemia macrophage cell line) were treated with (R)-STU104 and BFA to evaluate their impact on the TAK1-MKK3-p38 pathway using Western blotting and RT-qPCR. , C57BL/6 mice were given Dextran Sulfate Sodium (DSS) to induce IBD, and the effects of BFA and (R)-STU104 were assessed by monitoring Disease Activity Index (DAI), colon length, and cytokine levels.

Results

Both compounds inhibited the MKK3-p38 pathway and reduced TNF-α mRNA expression levels in a dose-dependent manner. Combination therapy showed an enhanced inhibitory effect, reducing mRNA levels of TNF-α, Interleukin (IL)-1β, and IL-6. In the DSS-induced IBD model, this combination alleviated symptoms, improved DAI scores, increased colon length, and reduced inflammatory cell infiltration.

Discussion

This study delved into the synergistic effect of BFA combined with (R)-STU104 on IBD treatment, and revealed that this combination can more effectively inhibit inflammatory responses, as well as enhance disease condition improvement. (R)-STU104selectively suppresses TNF-α production by targeting the p38 signaling pathway, and this suppressive effect is further strengthened when used in tandem with BFA. While,the combination therapy shows potential as an effective IBD treatment strategy,additional research is necessary to confirm its clinical applicability.

Conclusion

BFA and (R)-STU104 exert synergistic anti-inflammatory effects by inhibiting the TAK1-MKK3-p38 pathway, suggesting a new therapeutic approach for IBD. Further studies are required to determine the clinical potential of this combination therapy.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429377081250508081722
2024-01-01
2025-09-28
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429377081.html?itemId=/content/journals/cmp/10.2174/0118761429377081250508081722&mimeType=html&fmt=ahah

References

  1. BedkeT. StummeF. TomczakM. SteglichB. JiaR. BohmannS. WittekA. KempskiJ. GökeE. BöttcherM. ReherD. FrankeA. LennartzM. ClauditzT. SauterG. FründtT. WeidemannS. TiegsG. SchrammC. GaglianiN. PelczarP. HuberS. Protective function of sclerosing cholangitis on IBD.Gut20247381292130110.1136/gutjnl‑2023‑33085638839272
    [Google Scholar]
  2. PiovaniD. DaneseS. Peyrin-BirouletL. NikolopoulosG.K. LytrasT. BonovasS. Environmental risk factors for inflammatory bowel diseases: An umbrella review of meta-analyses.Gastroenterology20191573647659.e410.1053/j.gastro.2019.04.01631014995
    [Google Scholar]
  3. MehtaR.S. MayersJ.R. ZhangY. BhosleA. GlasserN.R. NguyenL.H. MaW. BaeS. BranckT. SongK. SebastianL. PachecoJ.A. SeoH.S. ClishC. Dhe-PaganonS. AnanthakrishnanA.N. FranzosaE.A. BalskusE.P. ChanA.T. HuttenhowerC. Gut microbial metabolism of 5-ASA diminishes its clinical efficacy in inflammatory bowel disease.Nat. Med.202329370070910.1038/s41591‑023‑02217‑736823301
    [Google Scholar]
  4. ChenY. WangP. ZhangY. DuX.Y. ZhangY.J. Comparison of effects of aminosalicylic acid, glucocorticoids and immunosuppressive agents on the expression of multidrug-resistant genes in ulcerative colitis.Sci. Rep.20221212065610.1038/s41598‑022‑19612‑836450761
    [Google Scholar]
  5. BruscoliS. FeboM. RiccardiC. MiglioratiG. Glucocorticoid therapy in inflammatory bowel disease: Mechanisms and clinical practice.Front. Immunol.20211269148010.3389/fimmu.2021.69148034149734
    [Google Scholar]
  6. ArdizzoneS. Bianchi PorroG. Biologic therapy for inflammatory bowel disease.Drugs200565162253228610.2165/00003495‑200565160‑0000216266194
    [Google Scholar]
  7. DassopoulosT. SultanS. Falck-YtterY.T. InadomiJ.M. HanauerS.B. American gastroenterological association institute technical review on the use of thiopurines, methotrexate, and anti-tnf-α biologic drugs for the induction and maintenance of remission in inflammatory crohn's disease.Gastroenterology201314561464147810.1053/j.gastro.2013.10.046
    [Google Scholar]
  8. GreuterT. RiederF. KucharzikT. Peyrin-BirouletL. SchoepferA.M. RubinD.T. VavrickaS.R. Emerging treatment options for extraintestinal manifestations in IBD.Gut202170479680210.1136/gutjnl‑2020‑32212932847845
    [Google Scholar]
  9. LiuL. ZhangS. WangY. BaoW. ZhouY. DangW. WangX. LiH. CaoX. YouY. FangH. ShenX. BIG1 controls macrophage pro-inflammatory responses through ARF3-mediated PI(4,5)P2 synthesis.Cell Death Dis.202011537410.1038/s41419‑020‑2590‑132415087
    [Google Scholar]
  10. SunM. HanX. ZhouD. ZhongJ. LiuL. WangY. NiJ. ShenX. LiangC. FangH. BIG1 mediates sepsis-induced lung injury by modulating lipid raft-dependent macrophage inflammatory responses.Acta Biochim. Biophys. Sin.20215381088109710.1093/abbs/gmab08534153089
    [Google Scholar]
  11. KubraK.T. BarabutisN. Brefeldin A and kifunensine modulate LPS-induced lung endothelial hyperpermeability in human and bovine cells.Am. J. Physiol. Cell Physiol.20213212C214C22010.1152/ajpcell.00142.202134161151
    [Google Scholar]
  12. TangM.L. LiH. NingJ.F. ShenX. SunX. Discovery of first-in-class TAK1–MKK3 protein–protein interaction (PPI) inhibitor ( R )-STU104 for the treatment of ulcerative colitis through modulating TNF-a production.J. Med. Chem.20226596690670910.1021/acs.jmedchem.1c0219835442672
    [Google Scholar]
  13. AlexP. ZachosN.C. NguyenT. GonzalesL. ChenT.E. ConklinL.S. CentolaM. LiX. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis.Inflamm. Bowel Dis.200915334135210.1002/ibd.2075318942757
    [Google Scholar]
  14. AllegrettiJ.R. KhannaS. MullishB.H. FeuerstadtP. The progression of microbiome therapeutics for the management of gastrointestinal diseases and beyond.Gastroenterology2024167588590210.1053/j.gastro.2024.05.00438754739
    [Google Scholar]
  15. CheifetzA.S. GianottiR. LuberR. GibsonP.R. Complementary and alternative medicines used by patients with inflammatory bowel diseases.Gastroenterology20171522415429.e1510.1053/j.gastro.2016.10.00427743873
    [Google Scholar]
  16. KinnucanJ. BinionD. CrossR. EvansE. HarlenK. MatareseL. MullinsA. O’NealB. ReissM. ScottF.I. WeaverA. RosenbergJ. Inflammatory bowel disease care referral pathway.Gastroenterology20191571242254.e610.1053/j.gastro.2019.03.06430980795
    [Google Scholar]
  17. JeongD.Y. KimS. SonM.J. SonC.Y. KimJ.Y. KronbichlerA. LeeK.H. ShinJ.I. Induction and maintenance treatment of inflammatory bowel disease: A comprehensive review.Autoimmun. Rev.201918543945410.1016/j.autrev.2019.03.00230844556
    [Google Scholar]
  18. BillietT. RutgeertsP. FerranteM. Van AsscheG. VermeireS. Targeting TNF-α for the treatment of inflammatory bowel disease.Expert Opin. Biol. Ther.20141417510110.1517/14712598.2014.85869524206084
    [Google Scholar]
  19. EderP. ZielińskaA. KarczewskiJ. DobrowolskaA. SłomskiR. SoutoE.B. How could nanobiotechnology improve treatment outcomes of anti-TNF-α therapy in inflammatory bowel disease? Current knowledge, future directions.J. Nanobiotechnol.202119134610.1186/s12951‑021‑01090‑134715852
    [Google Scholar]
  20. NoguchiT. TsuchidaM. KogueY. SpadiniC. HirataY. MatsuzawaA. Brefeldin a-inhibited guanine nucleotide-exchange factor 1 (BIG1) governs the recruitment of tumor necrosis factor receptor-associated factor 2 (TRAF2) to tumor necrosis factor receptor 1 (TNFR1) signaling complexes.Int. J. Mol. Sci.20161711186910.3390/ijms1711186927834853
    [Google Scholar]
  21. KoelinkP.J. BloemendaalF.M. LiB. WesteraL. VogelsE.W.M. van RoestM. GloudemansA.K. van ’t WoutA.B. KorfH. VermeireS. te VeldeA.A. PonsioenC.Y. D’HaensG.R.A.M. VerbeekJ.S. GeigerT.L. WildenbergM.E. van den BrinkG.R. Anti-TNF therapy in IBD exerts its therapeutic effect through macrophage IL-10 signalling.Gut20206961053106310.1136/gutjnl‑2019‑31826431506328
    [Google Scholar]
  22. AtreyaR. ZimmerM. BartschB. WaldnerM.J. AtreyaI. NeumannH. HildnerK. HoffmanA. KiesslichR. RinkA.D. RauT.T. Rose-JohnS. KesslerH. SchmidtJ. NeurathM.F. Antibodies against tumor necrosis factor (TNF) induce T-cell apoptosis in patients with inflammatory bowel diseases via TNF receptor 2 and intestinal CD14⁺ macrophages.Gastroenterology201114162026203810.1053/j.gastro.2011.08.03221875498
    [Google Scholar]
  23. LarabiA. BarnichN. NguyenH.T.T. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD.Autophagy2020161385110.1080/15548627.2019.163538431286804
    [Google Scholar]
  24. SunZ. YeJ. SunW. JiangL. ShanB. ZhangM. XuJ. LiW. LiuJ. JingH. ZhangT. HouM. XieC. WuR. PanH. YuanJ. Cooperation of TRADD- and RIPK1-dependent cell death pathways in maintaining intestinal homeostasis.Nat. Commun.2025161189010.1038/s41467‑025‑57211‑z39987261
    [Google Scholar]
  25. XuD. MatsumotoM.L. McKenzieB.S. ZarrinA.A. TPL2 kinase action and control of inflammation.Pharmacol. Res.201812918819310.1016/j.phrs.2017.11.03129183769
    [Google Scholar]
  26. ZhangZ. LengZ. KangL. YanX. ShiJ. JiY. GuoC. FangK. WangZ. LiZ. SunM. ZhaoZ. FengA. ChenZ. ZhangS. WanD. ChenT. XuM. Alcohol inducing macrophage M2b polarization in colitis by modulating the TRPV1-MAPK/NF-κB pathways.Phytomedicine202413015558010.1016/j.phymed.2024.15558038810558
    [Google Scholar]
  27. AkıncılarS.C. WuL. NgQ.F. ChuaJ.Y.H. UnalB. NodaT. ChorW.H.J. IkawaM. TergaonkarV. NAIL : An evolutionarily conserved lncRNA essential for licensing coordinated activation of p38 and NFκB in colitis.Gut202170101857187110.1136/gutjnl‑2020‑32298033239342
    [Google Scholar]
  28. ArulampalamV. PetterssonS. Uncoupling the p38 MAPK kinase in IBD: A double edged sword?Gut200250444644710.1136/gut.50.4.44611889058
    [Google Scholar]
  29. VaidyanathanA.K. Basics in statistics: Sample size calculation and descriptive data statistics.J. Indian Prosthodont. Soc.202323320720910.4103/jips.jips_307_2337929358
    [Google Scholar]
  30. GordonM. LakuninaS. SinopoulouV. AkobengA. Minimum sample size estimates for trials in inflammatory bowel disease: A systematic review of a support resource.World J. Gastroenterol.202127437572758110.3748/wjg.v27.i43.757234887650
    [Google Scholar]
  31. ChatziA. DoodyO. The one-way ANOVA test explained.Nurse Res.202331381410.7748/nr.2023.e188537317616
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429377081250508081722
Loading
/content/journals/cmp/10.2174/0118761429377081250508081722
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test