Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Introduction

Due to its critical role in inflammation and necroptotic cell death, RIPK1 has been considered a prominent therapeutic drug target for managing a wide variety of diseases, including sepsis. Therefore, we aimed to investigate whether the RIPK1-driven necroptotic pathway contributes to the nitrosative stress-mediated cardiorenal inflammatory necroptotic injury and mortality using RIPK1 inhibitor, Nec-1s, in the murine sepsis model induced by LPS.

Methods

Experiments were performed using mice injected intraperitoneally with DMSO or Nec-1s with saline and/or LPS. Following euthanasia and 6 hours after the injection of these agents, arteriovenous blood samples, hearts, and kidneys of the animals were collected. Serum MPO, iNOS, CK-MB, creatinine, and HMGB1 levels were measured by ELISA. Associated proteins were measured by immunoblotting. HE staining was used to evaluate histopathological changes in the tissues. In the mortality studies, the mice were monitored every 6 hours for mortality up to 96 hours after saline, LPS, DMSO, and/or Nec-1s injection.

Results

In the LPS-injected mice, a rise in serum MPO, iNOS, CK-MB, creatinine, and HMGB1 levels was associated with the enhanced expression/activity of RIPK1/RIPK3/MLKL necrosome, HMGB1, iNOS, nitrotyrosine, gp91phox, and p47phox, in addition to scores related to histopathological changes in their tissues. Nec-1s attenuated the LPS-induced changes. Mortality rates of 10%, 50%, and 60% were observed at the 24th, 36th, and 48th hours, respectively, in the LPS-treated mice. When endotoxemic mice were treated with Nec-1s, mortality rates were 60%, 90%, and 100% at 18, 30, and 42 hours, respectively.

Conclusion

These findings suggest that RIPK1/RIPK3/MLKL necrosome contributes to not only LPS-induced nitrosative stress-mediated cardiorenal inflammatory necroptotic injury, but also mortality.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429374574250415114715
2024-01-01
2025-09-28
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429374574.html?itemId=/content/journals/cmp/10.2174/0118761429374574250415114715&mimeType=html&fmt=ahah

References

  1. ChiuC. LegrandM. Epidemiology of sepsis and septic shock.Curr. Opin. Anaesthesiol.2021342717610.1097/ACO.000000000000095833492864
    [Google Scholar]
  2. Garcia-VelloP. Di LorenzoF. ZucchettaD. ZamyatinaA. De CastroC. MolinaroA. Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics.Pharmacol. Ther.202223010797010.1016/j.pharmthera.2021.10797034454000
    [Google Scholar]
  3. GuarinoM. PernaB. CesaroA.E. MaritatiM. SpampinatoM.D. ContiniC. De GiorgioR. 2023 update on sepsis and septic shock in adult patients: Management in the emergency department.J. Clin. Med.2023129318810.3390/jcm1209318837176628
    [Google Scholar]
  4. ChaouhanH.S. VinodC. MahapatraN. YuS.H. WangI.K. ChenK.B. YuT.M. LiC.Y. Necroptosis: A pathogenic negotiator in human diseases.Int. J. Mol. Sci.202223211271410.3390/ijms23211271436361505
    [Google Scholar]
  5. ChoiM.E. PriceD.R. RyterS.W. ChoiA.M.K. Necroptosis: A crucial pathogenic mediator of human disease.JCI Insight2019415e12883410.1172/jci.insight.12883431391333
    [Google Scholar]
  6. DaiW. ChengJ. LengX. HuX. AoY. The potential role of necroptosis in clinical diseases (Review).Int. J. Mol. Med.20214758910.3892/ijmm.2021.492233786617
    [Google Scholar]
  7. KearneyC.J. MartinS.J. An inflammatory perspective on necroptosis.Mol. Cell201765696597310.1016/j.molcel.2017.02.02428306512
    [Google Scholar]
  8. LiuX. XieX. RenY. ShaoZ. ZhangN. LiL. DingX. ZhangL. The role of necroptosis in disease and treatment.MedComm20212473075510.1002/mco2.10834977874
    [Google Scholar]
  9. MázlóA. JeneiV. BuraiS. MolnárT. BácsiA. KonczG. Types of necroinflammation, the effect of cell death modalities on sterile inflammation.Cell Death Dis.202213542310.1038/s41419‑022‑04883‑w35501340
    [Google Scholar]
  10. MuraoA. AzizM. WangH. BrennerM. WangP. Release mechanisms of major DAMPs.Apoptosis2021263-415216210.1007/s10495‑021‑01663‑333713214
    [Google Scholar]
  11. WangX. ChaiY. GuoZ. WangZ. LiaoH. WangZ. WangZ. A new perspective on the potential application of RIPK1 in the treatment of sepsis.Immunotherapy2023151435610.2217/imt‑2022‑021936597707
    [Google Scholar]
  12. YangH. WangH. AnderssonU. Targeting inflammation driven by HMGB1.Front. Immunol.20201148410.3389/fimmu.2020.0048432265930
    [Google Scholar]
  13. LiuL. LalaouiN. 25 years of research put RIPK1 in the clinic.Semin. Cell Dev. Biol.2021109869510.1016/j.semcdb.2020.08.00732938551
    [Google Scholar]
  14. LiuY. XuQ. WangY. LiangT. LiX. WangD. WangX. ZhuH. XiaoK. Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge.Cell Death Dis.20211216210.1038/s41419‑020‑03365‑133431831
    [Google Scholar]
  15. LiD. WangM. YeJ. ZhangJ. XuY. WangZ. ZhaoM. YeD. WanJ. Maresin 1 alleviates the inflammatory response, reduces oxidative stress and protects against cardiac injury in LPS-induced mice.Life Sci.202127711946710.1016/j.lfs.2021.11946733811894
    [Google Scholar]
  16. LiangG. HeZ. High mobility group proteins in sepsis.Front. Immunol.20221391115210.3389/fimmu.2022.91115235720285
    [Google Scholar]
  17. WuZ. DengJ. ZhouH. TanW. LinL. YangJ. Programmed cell death in sepsis associated acute kidney injury.Front. Med. (Lausanne)2022988302810.3389/fmed.2022.88302835655858
    [Google Scholar]
  18. ChenH. LiY. WuJ. LiG. TaoX. LaiK. YuanY. ZhangX. ZouZ. XuY. RIPK3 collaborates with GSDMD to drive tissue injury in lethal polymicrobial sepsis.Cell Death Differ.20202792568258510.1038/s41418‑020‑0524‑132152555
    [Google Scholar]
  19. DongW. LiZ. ChenY. ZhangL. YeZ. LiangH. LiR. XuL. ZhangB. LiuS. WangW. LiC. ShiW. LiangX. Necrostatin-1 attenuates sepsis-associated acute kidney injury by promoting autophagosome elimination in renal tubular epithelial cells.Mol. Med. Rep.20181723194319910.3892/mmr.2017.821429257238
    [Google Scholar]
  20. GuanE. WangY. WangC. ZhangR. ZhaoY. HongJ. Necrostatin-1 attenuates lipopolysaccharide-induced acute lung injury in mice.Exp. Lung Res.2017439-1037838710.1080/01902148.2017.138408329199874
    [Google Scholar]
  21. KimS.J. LeeS.M. Necrostatin-1 protects against D-dalactosamine and lipopolysaccharide-induced hepatic injury by preventing TLR4 and RAGE signaling.Inflammation20174061912192310.1007/s10753‑017‑0632‑328752362
    [Google Scholar]
  22. KondoT. MacdonaldS. EngelmannC. HabtesionA. MacnaughtanJ. MehtaG. MookerjeeR.P. DaviesN. PavesiM. MoreauR. AngeliP. ArroyoV. AndreolaF. JalanR. The role of RIPK1 mediated cell death in acute on chronic liver failure.Cell Death Dis.2021131510.1038/s41419‑021‑04442‑934921136
    [Google Scholar]
  23. LinB. JinZ. ChenX. ZhaoL. WengC. ChenB. TangY. LinL. Necrostatin‑1 protects mice from acute lung injury by suppressing necroptosis and reactive oxygen species.Mol. Med. Rep.20202152171218110.3892/mmr.2020.1101032323764
    [Google Scholar]
  24. NajjarM. SalehD. ZelicM. NogusaS. ShahS. TaiA. FingerJ.N. PolykratisA. GoughP.J. BertinJ. WhalenM.J. PasparakisM. BalachandranS. KelliherM. PoltorakA. DegterevA. RIPK1 and RIPK3 kinases promote cell-death-independent inflammation by toll-like receptor 4.Immunity2016451465910.1016/j.immuni.2016.06.00727396959
    [Google Scholar]
  25. SeoM.J. HongJ.M. KimS.J. LeeS.M. Genipin protects d-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the necroptosis-mediated inflammasome signaling.Eur. J. Pharmacol.201781212813710.1016/j.ejphar.2017.07.02428709622
    [Google Scholar]
  26. XuQ. GuoJ. LiX. WangY. WangD. XiaoK. ZhuH. WangX. HuC.A.A. ZhangG. LiuY. Necroptosis underlies hepatic damage in a piglet model of lipopolysaccharide-induced sepsis.Front. Immunol.20211263383010.3389/fimmu.2021.63383033777021
    [Google Scholar]
  27. YuX. MaoM. LiuX. ShenT. LiT. YuH. ZhangJ. ChenX. ZhaoX. ZhuD. A cytosolic heat shock protein 90 and co-chaperone p23 complex activates RIPK3/MLKL during necroptosis of endothelial cells in acute respiratory distress syndrome.J. Mol. Med. (Berl.)202098456958310.1007/s00109‑020‑01886‑y32072232
    [Google Scholar]
  28. YuanZ. ZhangH. HasnatM. DingJ. ChenX. LiangP. SunL. ZhangL. JiangZ. A new perspective of triptolide-associated hepatotoxicity: Liver hypersensitivity upon LPS stimulation.Toxicology2019414455610.1016/j.tox.2019.01.00530633930
    [Google Scholar]
  29. MikušP. PecherD. RauováD. HorváthC. SzobiA. AdameováA. Determination of novel highly effective necrostatin Nec-1s in rat plasma by high performance liquid chromatography hyphenated with quadrupole-time-of-flight mass spectrometry.Molecules2018238194610.3390/molecules2308194630081531
    [Google Scholar]
  30. TakahashiN. DuprezL. GrootjansS. CauwelsA. NerinckxW. DuHadawayJ.B. GoossensV. RoelandtR. Van HauwermeirenF. LibertC. DeclercqW. CallewaertN. PrendergastG.C. DegterevA. YuanJ. VandenabeeleP. Necrostatin-1 analogues: Critical issues on the specificity, activity and in vivo use in experimental disease models.Cell Death Dis.2012311e43710.1038/cddis.2012.17623190609
    [Google Scholar]
  31. QinD. WangX. LiY. YangL. WangR. PengJ. EssandohK. MuX. PengT. HanQ. YuK.J. FanG.C. MicroRNA-223-5p and -3p cooperatively suppress necroptosis in ischemic/reperfused hearts.J. Biol. Chem.201629138202472025910.1074/jbc.M116.73273527502281
    [Google Scholar]
  32. NewtonK. DuggerD.L. MaltzmanA. GreveJ.M. HedehusM. Martin-McNultyB. CaranoR A D. CaoT.C. van BruggenN. BernsteinL. LeeW.P. WuX. DeVossJ. ZhangJ. JeetS. PengI. McKenzieB.S. Roose-GirmaM. CaplaziP. DiehlL. WebsterJ.D. VucicD. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury.Cell Death Differ.20162391565157610.1038/cdd.2016.4627177019
    [Google Scholar]
  33. KimuraA. KitajimaM. NishidaK. SeradaS. FujimotoM. NakaT. Fujii-KuriyamaY. SakamatoS. ItoT. HandaH. TanakaT. YoshimuraA. SuzukiH. NQO1 inhibits the TLR-dependent production of selective cytokines by promoting IκB-ζ degradation.J. Exp. Med.201821582197220910.1084/jem.2017202429934320
    [Google Scholar]
  34. RaduolovicK. Mak’AnyengoR. KayaB. SteinertA. NiessJ.H. Injections of lipopolysaccharide into mice to mimic entrance of microbial-derived products after intestinal barrier breach.J. Vis. Exp.2018135135e5761010.3791/5761029782025
    [Google Scholar]
  35. AlblihedM.A. Hydroxytyrosol ameliorates oxidative challenge and inflammatory response associated with lipopolysaccharide-mediated sepsis in mice.Hum. Exp. Toxicol.202140234235410.1177/096032712094961832840384
    [Google Scholar]
  36. ChenR.C. WangJ. YangL. SunG.B. SunX.B. Protective effects of ginsenoside Re on lipopolysaccharide-induced cardiac dysfunction in mice.Food Funct.2016752278228710.1039/C5FO01357G27074714
    [Google Scholar]
  37. ChuM. GaoY. ZhangY. ZhouB. WuB. YaoJ. XuD. The role of speckle tracking echocardiography in assessment of lipopolysaccharide-induced myocardial dysfunction in mice.J. Thorac. Dis.20157122253226110.3978/j.issn.2072‑1439.2015.12.3726793347
    [Google Scholar]
  38. DuY. ZhongY. DingR. WangX. XiaF. ZhangQ. PengQ. New insights of necroptosis and immune infiltration in sepsis-induced myocardial dysfunction from bioinformatics analysis through RNA-seq in mice.Front. Cell. Infect. Microbiol.202212106832410.3389/fcimb.2022.106832436619743
    [Google Scholar]
  39. FairchildK.D. SaucermanJ.J. RaynorL.L. SivakJ.A. XiaoY. LakeD.E. MoormanJ.R. Endotoxin depresses heart rate variability in mice: cytokine and steroid effects.Am. J. Physiol. Regul. Integr. Comp. Physiol.20092974R1019R102710.1152/ajpregu.00132.200919657103
    [Google Scholar]
  40. JiangS. ZhuW. LiC. ZhangX. LuT. DingZ. CaoK. LiuL. α-Lipoic acid attenuates LPS-induced cardiac dysfunction through a PI3K/Akt-dependent mechanism.Int. Immunopharmacol.201316110010710.1016/j.intimp.2013.03.02423562296
    [Google Scholar]
  41. LiuJ. WangJ. LuoH. LiZ. ZhongT. TangJ. JiangY. Screening cytokine/chemokine profiles in serum and organs from an endotoxic shock mouse model by LiquiChip.Sci. China Life Sci.201760111242125010.1007/s11427‑016‑9016‑628667518
    [Google Scholar]
  42. ShiJ. ChenY. ZhiH. AnH. HuZ. Levosimendan protects from sepsis-inducing cardiac dysfunction by suppressing inflammation, oxidative stress and regulating cardiac mitophagy via the PINK-1-Parkin pathway in mice.Ann. Transl. Med.202210421210.21037/atm‑22‑48335280364
    [Google Scholar]
  43. SunB. XiaoJ. SunX.B. WuY. Notoginsenoside R1 attenuates cardiac dysfunction in endotoxemic mice: An insight into oestrogen receptor activation and PI3K/Akt signalling.Br. J. Pharmacol.201316871758177010.1111/bph.1206323170834
    [Google Scholar]
  44. WuY. ZhouJ. BiL. HuangM. HanY. ZhangQ. ZhuD. ZhouS. Effects of bone marrow mesenchymal stem cells on the cardiac function and immune system of mice with endotoxemia.Mol. Med. Rep.20161365317532510.3892/mmr.2016.515127109149
    [Google Scholar]
  45. XiaY. ZhangW. HeK. BaiL. MiaoY. LiuB. ZhangX. JinS. WuY. Hydrogen sulfide alleviates lipopolysaccharide-induced myocardial injury through TLR4-NLRP3 pathway.Physiol. Res.2023721152510.33549/physiolres.93492836545872
    [Google Scholar]
  46. YuY. HuL.L. LiuL. YuL.L. LiJ.P. RaoJ. ZhuL.J. BaoH.H. ChengX.S. Hsp22 ameliorates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidative stress, and apoptosis.Bioengineered2021122125441255410.1080/21655979.2021.201031534839787
    [Google Scholar]
  47. ZhaiJ. GuoY. Paeoniflorin attenuates cardiac dysfunction in endotoxemic mice via the inhibition of nuclear factor-κB.Biomed. Pharmacother.20168020020610.1016/j.biopha.2016.03.03227133057
    [Google Scholar]
  48. ZhangH. WuX. TaoY. LuG. Berberine attenuates sepsis-induced cardiac dysfunction by upregulating the Akt/eNOS pathway in mice.Exp. Ther. Med.202223637110.3892/etm.2022.1129835495613
    [Google Scholar]
  49. ZhaoP. WangY. ZengS. LuJ. JiangT.M. LiY.M. Protective effect of astragaloside IV on lipopolysaccharide-induced cardiac dysfunction via downregulation of inflammatory signaling in mice.Immunopharmacol. Immunotoxicol.201537542843310.3109/08923973.2015.108026626376109
    [Google Scholar]
  50. TunçtanB. Uluda ǦO. Altu ǦS. Abacio ǦN. Effects of nitric oxide synthase inhibition in lipopolysaccharide-induced sepsis in mice.Pharmacol. Res.199838540541110.1006/phrs.1998.03819806822
    [Google Scholar]
  51. TunçtanB. AltuğS. UludağO. AbacioğluN. Time-dependent variations in serum nitrite, 6-keto-prostaglandin F1α and thromboxane B2 levels induced by lipopolysaccharide in mice.Biol. Rhythm Res.200031449951310.1076/0929‑1016(200010)31:4;1‑2;FT499
    [Google Scholar]
  52. TunçtanB. AltugS. UludagO. DemirkayB. AbaciogluN. Effects of cyclooxygenase inhibitors on nitric oxide production and survival in a mice model of sepsis.Pharmacol. Res.2003481374810.1016/S1043‑6618(03)00064‑112770513
    [Google Scholar]
  53. TunctanB. KorkmazB. SariA.N. KacanM. UnsalD. SerinM.S. BuharaliogluC.K. Sahan-FiratS. CuezT. SchunckW.H. FalckJ.R. MalikK.U. 5,14-HEDGE, a 20-HETE mimetic, reverses hypotension and improves survival in a rodent model of septic shock: Contribution of soluble epoxide hydrolase, CYP2C23, MEK1/ERK1/2/IKKβ/IκB-α/NF-κB pathway, and proinflammatory cytokine formation.Prostaglandins Other Lipid Mediat.2013102-103314110.1016/j.prostaglandins.2013.01.00523454652
    [Google Scholar]
  54. CagliA. SenolS.P. Temiz-ResitogluM. GudenD.S. SariA.N. Sahan-FiratS. TunctanB. Soluble epoxide hydrolase inhibitor trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea prevents hyperalgesia through regulating NLRC4 inflammasome-related pro-inflammatory and anti-inflammatory signaling pathways in the lipopolysaccharide-induced pain mouse model.Drug Dev. Res.202182681582510.1002/ddr.2178633559150
    [Google Scholar]
  55. DolunayA. SenolS.P. Temiz-ResitogluM. GudenD.S. SariA.N. Sahan-FiratS. TunctanB. Inhibition of NLRP3 inflammasome prevents LPS-Induced inflammatory hyperalgesia in mice: Contribution of NF-κB, caspase-1/11, ASC, NOX, and NOS isoforms.Inflammation201740236638610.1007/s10753‑016‑0483‑327924425
    [Google Scholar]
  56. KurtS. SenolS.P. YilmazD.E. BahceliO. OzgenB. SabrieZ. ElosmanM.A-R. TunctanB. Inhibition of RIPK1-driven necroptosis ameliorates inflammatory hyperalgesia caused by lipopolysaccharide: Involvement of TLR-, NLRP3-, and caspase-11- mediated signaling pathways.Cell. Mol. Biol.20247012525810.14715/cmb/2024.70.12.739799497
    [Google Scholar]
  57. Pérez-TorresI. Manzano-PechL. Rubio-RuízM.E. SotoM.E. Guarner-LansV. Nitrosative stress and its association with cardiometabolic disorders.Molecules20202511255510.3390/molecules2511255532486343
    [Google Scholar]
  58. YoonS. EomG.H. KangG. Nitrosative stress and human disease: Therapeutic potential of denitrosylation.Int. J. Mol. Sci.20212218979410.3390/ijms2218979434575960
    [Google Scholar]
  59. BuharaliogluK. OzbasogluO. KorkmazB. CuezT. Sahan-FiratS. YalcinA. TunctanB. Thalidomide potentiates analgesic effect of COX inhibitors on endotoxin-induced hyperalgesia by modulating TNF-α, PGE and NO synthesis in mice.FASEB J.200923S1742.4742.410.1096/fasebj.23.1_supplement.742.4
    [Google Scholar]
  60. OzgenB. SenolS.P. YilmazD.E. Temiz-ResitogluM. BahceliO. TunctanB. Pyroptosis and necroptosis inhibitor necrosulfonamide ameliorates lipopolysaccharide-induced inflammatory hyperalgesia in mice.Pharmacia20237041345135410.3897/pharmacia.70.e108995
    [Google Scholar]
  61. SenolS.P. Temiz-ResitogluM. GudenD.S. SariA.N. Sahan-FiratS. TunctanB. Suppression of TLR4/MyD88/TAK1/NF-kB/COX-2 signaling pathway in the central nervous system by bexarotene, a selective RXR agonist, prevents hyperalgesia in the lipopolysaccharide-induced pain mouse model.Neurochem. Res.202146362463710.1007/s11064‑020‑03197‑733389386
    [Google Scholar]
  62. TunctanB. OzverenE. KorkmazB. BuharaliogluC. TamerL. DegirmenciU. AtikU. Nitric oxide reverses endotoxin-induced inflammatory hyperalgesia via inhibition of prostacyclin production in mice.Pharmacol. Res.200653217719210.1016/j.phrs.2005.10.00916310374
    [Google Scholar]
  63. YilmazD.E. SenolS.P. Temiz-ResitogluM. Sahan-FiratS. TunctanB. NLRX1 ligand, docosahexaenoic acid, ameliorates LPS-induced inflammatory hyperalgesia by decreasing TRAF6/IKK/IκB-α/NF-κB signaling pathway activity.Cell. Mol. Biol.2023699152310.14715/cmb/2023.69.9.337807339
    [Google Scholar]
  64. TunctanB. KorkmazB. YyldyrymH. TamerL. AtikU. BuharalyogC.K. Increased production of nitric oxide contributes to renal oxidative stress in endotoxemic rat.Am. J. Infect. Dis.20051211111510.3844/ajidsp.2005.111.115
    [Google Scholar]
  65. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3942051
    [Google Scholar]
  66. CardosoR.D.R. ChamboS.D. ZaninelliT.H. BianchiniB.H.S. SilvaM.D.V. BertozziM.M. Saraiva-SantosT. FranciosiA. Martelossi-CebinelliG. Garcia-MiguelP.E. BorghiS.M. CasagrandeR. VerriW.A. Resolvin D5 (RvD5) reduces renal damage caused by LPS endotoxemia in female mice.Molecules202228112110.3390/molecules2801012136615318
    [Google Scholar]
  67. KothariN. KeshariR.S. BograJ. KohliM. AbbasH. MalikA. DikshitM. BarthwalM.K. Increased myeloperoxidase enzyme activity in plasma is an indicator of inflammation and onset of sepsis.J. Crit. Care2011264435.e1435.e710.1016/j.jcrc.2010.09.00121036525
    [Google Scholar]
  68. TunctanB. KucukkavrukS.P. Temiz-ResitogluM. GudenD.S. SariA.N. Sahan-FiratS. Bexarotene, a selective RXRα agonist, reverses hypotension associated with inflammation and tissue injury in a rat model of septic shock.Inflammation201841133735510.1007/s10753‑017‑0691‑529188497
    [Google Scholar]
  69. VermaN. TripathiS.K. ChaudhuryI. DasH.R. DasR.H. iNOS-targeted 10-23 DNAzyme reduces LPS-induced systemic inflammation and mortality in mice.Shock201033549349910.1097/SHK.0b013e3181c4ecbb19823115
    [Google Scholar]
  70. JiangY. GaoS. ChenZ. ZhaoX. GuJ. WuH. LiaoY. WangJ. ChenW. Pyroptosis in septic lung injury: Interactions with other types of cell death.Biomed. Pharmacother.202316911591410.1016/j.biopha.2023.11591438000360
    [Google Scholar]
  71. WuM. ChenW. YuX. DingD. ZhangW. HuaH. XuM. MengX. ZhangX. ZhangY. ZhangA. JiaZ. HuangS. Celastrol aggravates LPS-induced inflammation and injuries of liver and kidney in mice.Am. J. Transl. Res.20181072078208630093945
    [Google Scholar]
  72. ZagmignanA. MendesY.C. MesquitaG.P. SantosG.D.C. SilvaL.S. de Souza SalesA.C. Castelo BrancoS.J.S. JuniorA.R.C. BazánJ.M.N. AlvesE.R. AlmeidaB.L. SantosA.K.M. FirmoW.C.A. SilvaM.R.C. Cantanhede FilhoA.J. MirandaR.C.M. SilvaL.C.N. Short-term intake of Theobroma grandiflorum juice fermented with Lacticaseibacillus rhamnosus ATCC 9595 amended the outcome of endotoxemia induced by lipopolysaccharide.Nutrients2023154105910.3390/nu1504105936839417
    [Google Scholar]
  73. DengM. TangY. LiW. WangX. ZhangR. ZhangX. ZhaoX. LiuJ. TangC. LiuZ. HuangY. PengH. XiaoL. TangD. ScottM.J. WangQ. LiuJ. XiaoX. WatkinsS. LiJ. YangH. WangH. ChenF. TraceyK.J. BilliarT.R. LuB. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis.Immunity2018494740753.e710.1016/j.immuni.2018.08.01630314759
    [Google Scholar]
  74. WangH. YangH. TraceyK.J. Extracellular role of HMGB1 in inflammation and sepsis.J. Intern. Med.2004255332033110.1111/j.1365‑2796.2003.01302.x14871456
    [Google Scholar]
  75. ZhangX. LuanZ. LiangY. LiuY. MaX. Downregulation of high mobility group box 1 attenuates the severity of acute lung injury in endotoxemic mice.Mol. Med. Rep.20151164513451710.3892/mmr.2015.325125625772
    [Google Scholar]
  76. AshourH. HashemH.A. KhowailedA.A. RashedL.A. HassanR.M. SolimanA.S. Necrostatin-1 mitigates renal ischaemia–reperfusion injury time dependent via aborting the interacting protein kinase (RIPK-1)-induced inflammatory immune response.Clin. Exp. Pharmacol. Physiol.202249450151410.1111/1440‑1681.1362535090059
    [Google Scholar]
  77. ElsawyH. AlmalkiM. ElmenshawyO. Abdel-MoneimA. In vivo evaluation of the protective effects of arjunolic acid against lipopolysaccharide-induced septic myocardial injury.PeerJ202210e1298610.7717/peerj.1298635190789
    [Google Scholar]
  78. Erdogmus OzgenZ. ErdincM. Kelleİ. ErdincL. NergizY. Protective effects of necrostatin-1 on doxorubicin-induced cardiotoxicity in rat heart.Hum. Exp. Toxicol.2022410960327121106606610.1177/0960327121106606635137609
    [Google Scholar]
  79. FangJ. GuanH. γ-Secretase inhibitor alleviates lipopolysaccharide-induced myocardial injury through regulating JAK2/STAT3 signaling.Environ. Toxicol.202439113514710.1002/tox.2396237671635
    [Google Scholar]
  80. ShenB. MeiM. PuY. ZhangH. LiuH. TangM. PanQ. HeY. WuX. ZhaoH. Necrostatin-1 attenuates renal ischemia and reperfusion injury via meditation of HIF-1α/mir-26a/TRPC6/PARP1 signaling.Mol. Ther. Nucleic Acids20191770171310.1016/j.omtn.2019.06.02531422287
    [Google Scholar]
  81. FestingM.F.W. On determining sample size in experiments involving laboratory animals.Lab. Anim.201852434135010.1177/002367721773826829310487
    [Google Scholar]
  82. SunQ. KamathP. SunY. LiangM. WuL. ChangE. ChenQ. AlamA. LiuY. ZhaoH. MaD. Dexmedetomidine attenuates lipopolysaccharide-induced renal cell fibrotic phenotypic changes by inhibiting necroinflammation via activating α2-adrenoceptor: A combined randomised animal and in vitro study.Biomed. Pharmacother.202417411646210.1016/j.biopha.2024.11646238513598
    [Google Scholar]
  83. ShaoR.G. XieQ.W. PanL.H. LinF. QinK. MingS.P. LiJ.J. DuX.K. Necrostatin-1 attenuates Caspase-1-dependent pyroptosis induced by the RIPK1/ZBP1 pathway in ventilator-induced lung injury.Cytokine202215715595010.1016/j.cyto.2022.15595035780712
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429374574250415114715
Loading
/content/journals/cmp/10.2174/0118761429374574250415114715
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Lipopolysaccharide; Mortality; Necroptosis; Nitrosative stress; RIPK1; Sepsis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test