Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background

Amyloid-beta (Aβ) oligomers, formed by Aβ aggregation, are the causative agent of Alzheimer’s disease and induce the hyperphosphorylation of tau protein (Tau) and neurotoxicity. The antioxidant ergothioneine (ERGO) is transferred to the brain after oral ingestion and protects against Aβ-induced neurotoxicity and cognitive dysfunction. However, the impact of ERGO on Aβ oligomer-induced Tau phosphorylation remains unclear.

Objective

To investigate the effects of ERGO on Aβ-induced Tau phosphorylation and their mechanism in neurons.

Method

SH-SY5Y cells differentiated into cholinergic neuron-like cells or primary cultured neurons derived from the murine hippocampus were pretreated with ERGO and exposed to Aβ oligomers. Cytotoxicity was evaluated by assessing the chemiluminescence of dead cell-derived proteases. The expression of phosphorylated (p-) Tau at serine 396, p-glycogen synthase kinase-3 beta (GSK-3β) at serine 9, amyloid precursor protein (APP), beta-site amyloid precursor protein cleaving enzyme 1 (BACE1; β-secretase), and nicastrin, which is a component protein of the γ-secretase complex, was assessed by western blotting.

Result

Differentiated SH-SY5Y cells exhibited increased neurite outgrowth and mRNA expression of , and showed cholinergic neuron-like characteristics compared with those of undifferentiated cells. ERGO significantly suppressed the Aβ oligomer-induced increased cytotoxicity and p-Tau expression in differentiated SH-SY5Y cells and cultured hippocampal neurons. ERGO recovered the decreased expression of p-GSK-3β at serine 9, indicating its inactivation, and the increased expression of APP, BACE1, and nicastrin induced by Aβ oligomer exposure in cultured hippocampal neurons. These ERGO effects on Aβ oligomers were inhibited by treatment with LY294002, which activated GSK-3β.

Conclusion

ERGO may suppress the increased expression of p-Tau and proteins involved in Aβ production induced by Aβ oligomers by inactivating GSK-3β, thereby mitigating neurotoxicity.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429387340250507055903
2024-01-01
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429387340.html?itemId=/content/journals/cmp/10.2174/0118761429387340250507055903&mimeType=html&fmt=ahah

References

  1. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.1301636918389
    [Google Scholar]
  2. HymanB.T. Van HoesenG.W. DamasioA.R. Alzheimer’s disease: Glutamate depletion in the hippocampal perforant pathway zone.Ann. Neurol.1987221374010.1002/ana.4102201102443073
    [Google Scholar]
  3. SelkoeD.J. Alzheimer’s disease: genes, proteins, and therapy.Physiol. Rev.200181274176610.1152/physrev.2001.81.2.74111274343
    [Google Scholar]
  4. MurphyM.P. LeVineH.III Alzheimer’s disease and the amyloid-beta peptide.J. Alzheimers Dis.201019131132310.3233/JAD‑2010‑122120061647
    [Google Scholar]
  5. HainesJ.L. Alzheimer disease: perspectives from epidemiology and genetics.J. Law Med. Ethics201846369469810.1177/107311051880423030336113
    [Google Scholar]
  6. LongJ.M. HoltzmanD.M. Alzheimer disease: An update on pathobiology and treatment strategies.Cell2019179231233910.1016/j.cell.2019.09.00131564456
    [Google Scholar]
  7. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  8. HampelH. MesulamM.M. CuelloA.C. FarlowM.R. GiacobiniE. GrossbergG.T. KhachaturianA.S. VergalloA. CavedoE. SnyderP.J. KhachaturianZ.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease.Brain201814171917193310.1093/brain/awy13229850777
    [Google Scholar]
  9. BekdashR.A. The cholinergic system, the adrenergic system and the neuropathology of Alzheimer’s disease.Int. J. Mol. Sci.2021223127310.3390/ijms2203127333525357
    [Google Scholar]
  10. PerryE.K. TomlinsonB.E. BlessedG. PerryR.H. CrossA.J. CrowT.J. Neuropathological and biochemical observations on the noradrenergic system in Alzheimer’s disease.J. Neurol. Sci.198151227928710.1016/0022‑510X(81)90106‑47276979
    [Google Scholar]
  11. FrancisP.T. PalmerA.M. SimsN.R. BowenD.M. DavisonA.N. EsiriM.M. NearyD. SnowdenJ.S. WilcockG.K. Neurochemical studies of early-onset Alzheimer’s disease. Possible influence on treatment.N. Engl. J. Med.1985313171110.1056/NEJM1985070431301022582256
    [Google Scholar]
  12. CummingsJ. LeeG. RitterA. SabbaghM. ZhongK. Alzheimer’s disease drug development pipeline: 2020.Alzheimers Dement. (N. Y.)202061e1205010.1002/trc2.1205032695874
    [Google Scholar]
  13. SelkoeD.J. Biochemistry and molecular biology of amyloid beta-protein and the mechanism of Alzheimer’s disease.Handb. Clin. Neurol.20088924526010.1016/S0072‑9752(07)01223‑718631749
    [Google Scholar]
  14. DuyckaertsC. DelatourB. PotierM.C. Classification and basic pathology of Alzheimer disease.Acta Neuropathol.2009118153610.1007/s00401‑009‑0532‑119381658
    [Google Scholar]
  15. TaipaR. PinhoJ. Melo-PiresM. Clinico-pathological correlations of the most common neurodegenerative dementias.Front. Neurol.201236810.3389/fneur.2012.0006822557993
    [Google Scholar]
  16. MielkeM. VemuriP. RoccaW. Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences.Clin. Epidemiol.20146374810.2147/CLEP.S3792924470773
    [Google Scholar]
  17. GarinD. Virgone-CarlottaA. GözelB. OukhatarF. PerretP. Marti-BattleD. TouretM. MilletP. Dubois-DauphinM. MeyronetD. StreichenbergerN. LaferlaF.M. DemeunynckM. ChiericiS. SallanonM.M. GhezziC. COB231 targets amyloid plaques in post‐mortem human brain tissue and in an Alzheimer mouse model.J. Neurochem.2015132560961810.1111/jnc.1295125258048
    [Google Scholar]
  18. ZempelH. ThiesE. MandelkowE. MandelkowE.M. Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines.J. Neurosci.20103036119381195010.1523/JNEUROSCI.2357‑10.201020826658
    [Google Scholar]
  19. WangY.J. RenQ.G. GongW.G. WuD. TangX. LiX.L. WuF.F. BaiF. XuL. ZhangZ.J. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.Oncotarget2016712133281333910.18632/oncotarget.779826950279
    [Google Scholar]
  20. LeeK.H. LeeS.J. LeeH.J. ChoiG.E. JungY.H. KimD.I. GabrA.A. RyuJ.M. HanH.J. Amyloid β1-42 (Aβ1-42) induces the CDK2-mediated phosphorylation of tau through the activation of the mTORC1 signaling pathway while promoting neuronal cell death.Front. Mol. Neurosci.20171022910.3389/fnmol.2017.0022928790888
    [Google Scholar]
  21. TackenbergC. NitschR.M. The secreted APP ectodomain sAPPα, but not sAPPβ, protects neurons against Aβ oligomer-induced dendritic spine loss and increased tau phosphorylation.Mol. Brain20191212710.1186/s13041‑019‑0447‑230922360
    [Google Scholar]
  22. HaoF.X. ZengM.N. CaoB. LiangX.W. JiaoX.M. FengW.S. ZhengX.K. [Effect of aqueous extract of Corni Fructus on Aβ_(25-35)-induced brain injury and neuroinflammation in mice with Alzheimer’s disease].Zhongguo Zhongyao Zazhi2023481540154026[Effect of aqueous extract of Corni Fructus on Aβ_(25-35)-induced brain injury and neuroinflammation in mice with Alzheimer's disease].37802769
    [Google Scholar]
  23. AvgerinosK.I. FerrucciL. KapogiannisD. Effects of monoclonal antibodies against amyloid-β on clinical and biomarker outcomes and adverse event risks: A systematic review and meta-analysis of phase III RCTs in Alzheimer’s disease.Ageing Res. Rev.20216810133910.1016/j.arr.2021.10133933831607
    [Google Scholar]
  24. LaversenneV. NazeeruddinS. KällstigE.C. ColinP. VoizeC. SchneiderB.L. Anti-Aβ antibodies bound to neuritic plaques enhance microglia activity and mitigate tau pathology.Acta Neuropathol. Commun.20208119810.1186/s40478‑020‑01069‑333225991
    [Google Scholar]
  25. ArriagadaP.V. GrowdonJ.H. Hedley-WhyteE.T. HymanB.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease.Neurology199242363163910.1212/WNL.42.3.6311549228
    [Google Scholar]
  26. RileyK.P. SnowdonD.A. MarkesberyW.R. Alzheimer’s neurofibrillary pathology and the spectrum of cognitive function: Findings from the Nun Study.Ann. Neurol.200251556757710.1002/ana.1016112112102
    [Google Scholar]
  27. MesulamM. ShawP. MashD. WeintraubS. Cholinergic nucleus basalis tauopathy emerges early in the aging‐MCI‐AD continuum.Ann. Neurol.200455681582810.1002/ana.2010015174015
    [Google Scholar]
  28. MufsonE.J. CountsS.E. PerezS.E. GinsbergS.D. Cholinergic system during the progression of Alzheimer’s disease: Therapeutic implications.Expert Rev. Neurother.20088111703171810.1586/14737175.8.11.170318986241
    [Google Scholar]
  29. EyJ. SchömigE. TaubertD. Dietary sources and antioxidant effects of ergothioneine.J. Agric. Food Chem.200755166466647410.1021/jf071328f17616140
    [Google Scholar]
  30. HalliwellB. CheahI.K. TangR.M.Y. Ergothioneine – a diet‐derived antioxidant with therapeutic potential.FEBS Lett.2018592203357336610.1002/1873‑3468.1312329851075
    [Google Scholar]
  31. GründemannD. HarlfingerS. GolzS. GeertsA. LazarA. BerkelsR. JungN. RubbertA. SchömigE. Discovery of the ergothioneine transporter.Proc. Natl. Acad. Sci. USA2005102145256526110.1073/pnas.040862410215795384
    [Google Scholar]
  32. GrigatS. HarlfingerS. PalS. StriebingerR. GolzS. GeertsA. LazarA. SchömigE. GründemannD. Probing the substrate specificity of the ergothioneine transporter with methimazole, hercynine, and organic cations.Biochem. Pharmacol.200774230931610.1016/j.bcp.2007.04.01517532304
    [Google Scholar]
  33. TuckerR.A.J. CheahI.K. HalliwellB. Specificity of the ergothioneine transporter natively expressed in HeLa cells.Biochem. Biophys. Res. Commun.20195131222710.1016/j.bbrc.2019.02.12230929922
    [Google Scholar]
  34. TangR.M.Y. CheahI.K.M. YewT.S.K. HalliwellB. Distribution and accumulation of dietary ergothioneine and its metabolites in mouse tissues.Sci. Rep.201881160110.1038/s41598‑018‑20021‑z29371632
    [Google Scholar]
  35. JangJ.H. AruomaO.I. JenL.S. ChungH.Y. SurhY.J. Ergothioneine rescues PC12 cells from β-amyloid-induced apoptotic death.Free Radic. Biol. Med.200436328829910.1016/j.freeradbiomed.2003.11.00515036348
    [Google Scholar]
  36. YangN.C. LinH.C. WuJ.H. OuH.C. ChaiY.C. TsengC.Y. LiaoJ.W. SongT.Y. Ergothioneine protects against neuronal injury induced by β-amyloid in mice.Food Chem. Toxicol.201250113902391110.1016/j.fct.2012.08.02122921351
    [Google Scholar]
  37. PåhlmanS. HoehnerJ.C. NånbergE. HedborgF. FagerströmS. GestblomC. JohanssonI. LarssonU. LaveniusE. ÖrtoftE. SöderholmH. Differentiation and survival influences of growth factors in human neuroblastoma.Eur. J. Cancer199531445345810.1016/0959‑8049(95)00033‑F7576944
    [Google Scholar]
  38. ArcangeliA. RosatiB. CrocianiO. CherubiniA. FontanaL. PassaniB. WankeE. OlivottoM. Modulation of HERG current andherg gene expression during retinoic acid treatment of human neuroblastoma cells: Potentiating effects of BDNF.J. Neurobiol.199940221422510.1002/(SICI)1097‑4695(199908)40:2214::AID‑NEU73.0.CO;2‑010413451
    [Google Scholar]
  39. EncinasM. IglesiasM. LiuY. WangH. MuhaisenA. CeñaV. GallegoC. ComellaJ.X. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells.J. Neurochem.2000753991100310.1046/j.1471‑4159.2000.0750991.x10936180
    [Google Scholar]
  40. LopesF.M. SchröderR. JúniorM.L.C.F. Zanotto-FilhoA. MüllerC.B. PiresA.S. MeurerR.T. ColpoG.D. GelainD.P. KapczinskiF. MoreiraJ.C.F. FernandesM.C. KlamtF. Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies.Brain Res.20101337859410.1016/j.brainres.2010.03.10220380819
    [Google Scholar]
  41. KrishtalJ. MetslaK. BraginaO. TõuguV. PalumaaP. Toxicity of amyloid-β peptides varies depending on differentiation route of SH-SY5Y cells.J. Alzheimers Dis.201971387988710.3233/JAD‑19070531450506
    [Google Scholar]
  42. NgJ. KaurH. CollierT. ChangK. BrooksA.E.S. AllisonJ.R. BrimbleM.A. HickeyA. BirchN.P. Site-specific glycation of Aβ1–42 affects fibril formation and is neurotoxic.J. Biol. Chem.2019294228806881810.1074/jbc.RA118.00684630996005
    [Google Scholar]
  43. PereiraM.E. LimaL.S. SouzaJ.V. de Souza da CostaN. da SilvaJ.F. GuiloskiI.C. IriodaA.C. OliveiraC.S. Evaluation of the neuroprotective effect of organic selenium compounds: An in vitro model of Alzheimer’s disease.Biol. Trace Elem. Res.202420272954296510.1007/s12011‑023‑03893‑937803188
    [Google Scholar]
  44. HoppeJ.B. HaagM. WhalleyB.J. SalbegoC.G. CimarostiH. Curcumin protects organotypic hippocampal slice cultures from Aβ1–42-induced synaptic toxicity.Toxicol. In Vitro20132782325233010.1016/j.tiv.2013.10.00224134851
    [Google Scholar]
  45. CaioliS. SeveriniC. CiottiT. FlorenzanoF. PimpinellaD. Petrocchi PasseriP. BalboniG. PoliscaP. LattanziR. NisticòR. NegriL. ZonaC. Prokineticin system modulation as a new target to counteract the amyloid beta toxicity induced by glutamatergic alterations in an in vitro model of Alzheimer’s disease.Neuropharmacology2017116829710.1016/j.neuropharm.2016.12.01227989680
    [Google Scholar]
  46. IlounP. HooshmandiE. GheibiS. KashfiK. GhasemiR. AhmadianiA. Roles and interaction of the MAPK signaling cascade in Aβ25-35-induced neurotoxicity using an isolated primary hippocampal cell culture system.Cell. Mol. Neurobiol.20214171497150710.1007/s10571‑020‑00912‑432601776
    [Google Scholar]
  47. SoaresE.S. de SouzaA.C.G. ZanellaC.A. CarmichaelR.E. HenleyJ.M. WilkinsonK.A. CimarostiH.I. Effects of amyloid-β on protein SUMOylation and levels of mitochondrial proteins in primary cortical neurons.IBRO Neuroscience Reports20221214214810.1016/j.ibneur.2022.01.00335746977
    [Google Scholar]
  48. MitroshinaE.V. KalininaE.P. KalyakulinaA.I. TeplyakovaA.V. VedunovaM.V. The effect of the optogenetic stimulation of astrocytes on neural network activity in an in vitro model of Alzheimer’s disease.Int. J. Mol. Sci.202425221223710.3390/ijms25221223739596305
    [Google Scholar]
  49. Serrano-PozoA. FroschM.P. MasliahE. HymanB.T. Neuropathological alterations in Alzheimer disease.Cold Spring Harb. Perspect. Med.201111a00618910.1101/cshperspect.a00618922229116
    [Google Scholar]
  50. DeTureM.A. DicksonD.W. The neuropathological diagnosis of Alzheimer’s disease.Mol. Neurodegener.20191413210.1186/s13024‑019‑0333‑531375134
    [Google Scholar]
  51. CabinioM. SaresellaM. PianconeF. LaRosaF. MarventanoI. GueriniF.R. NemniR. BaglioF. ClericiM. Association between hippocampal shape, neuroinflammation, and cognitive decline in Alzheimer’s disease.J. Alzheimers Dis.20186631131114410.3233/JAD‑18025030400090
    [Google Scholar]
  52. ZhangC. ZhaoX. LinS. LiuF. MaJ. HanZ. JiaF. XieW. ZhangQ. LiX. Neuroprotective effect of ent-Kaur-15-en-17-al-18-oic acid on amyloid beta peptide-induced oxidative apoptosis in Alzheimer’s disease.Molecules201925114210.3390/molecules2501014231905798
    [Google Scholar]
  53. TrzeciakiewiczH. AjitD. TsengJ.H. ChenY. AjitA. TabassumZ. LobrovichR. PetersonC. RiddickN.V. ItanoM.S. TripathyA. MoyS.S. LeeV.M.Y. TrojanowskiJ.Q. IrwinD.J. CohenT.J. An HDAC6-dependent surveillance mechanism suppresses tau-mediated neurodegeneration and cognitive decline.Nat. Commun.2020111552210.1038/s41467‑020‑19317‑433139698
    [Google Scholar]
  54. NakamichiN. NakaoS. NishiyamaM. TakedaY. IshimotoT. MasuoY. MatsumotoS. SuzukiM. KatoY. Oral administration of the food-derived hydrophilic antioxidant ergothioneine enhances object recognition memory in mice.Curr. Mol. Pharmacol.202014222023310.2174/187446721366620021210271032048982
    [Google Scholar]
  55. ShibagakiF. KojimaN. FurukawaA. NakamichiN. Depression-like behavior induced by repeated administration of dexamethasone to lipopolysaccharide-inflamed mice.Curr. Mol. Pharmacol.202417e18742106230222010.2174/011876142927549523121505402438284734
    [Google Scholar]
  56. YauY.F. CheahI.K. MahendranR. TangR.M.Y. ChuaR.Y. GohR.E.S. FengL. LiJ. KuaE.H. ChenC. HalliwellB. Investigating the efficacy of ergothioneine to delay cognitive decline in mild cognitively impaired subjects: A pilot study.J. Alzheimers Dis.2024102384185410.1177/1387287724129125339544014
    [Google Scholar]
  57. PrasertsuksriP. KraokaewP. PranweerapaiboonK. SobhonP. ChaithirayanonK. Neuroprotection of andrographolide against neurotoxin MPP(+)-induced apoptosis in SH-SY5Y cells via activating mitophagy, autophagy, and antioxidant activities.Int. J. Mol. Sci.20232410852810.3390/ijms2410852837239873
    [Google Scholar]
  58. FlachK. HilbrichI. SchiffmannA. GärtnerU. KrügerM. LeonhardtM. WaschipkyH. WickL. ArendtT. HolzerM. Tau oligomers impair artificial membrane integrity and cellular viability.J. Biol. Chem.201228752432234323310.1074/jbc.M112.39617623129775
    [Google Scholar]
  59. Guerrero-MuñozM.J. GersonJ. Castillo-CarranzaD.L. Tau oligomers: The toxic player at synapses in Alzheimer’s disease.Front. Cell. Neurosci.2015946410.3389/fncel.2015.0046426696824
    [Google Scholar]
  60. SenguptaU. KayedR. Tau oligomers as pathogenic seeds: Preparation, characterization, and propagation in vitro and in vivo.Methods Mol. Biol.2024275414718310.1007/978‑1‑0716‑3629‑9_938512666
    [Google Scholar]
  61. SunX. LiL. DongQ.X. ZhuJ. HuangY. HouS. YuX. LiuR. Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease.J. Neuroinflammation202118113110.1186/s12974‑021‑02182‑334116706
    [Google Scholar]
  62. YamamotoS. KayamaT. Noguchi-ShinoharaM. HamaguchiT. YamadaM. AbeK. KobayashiS. Rosmarinic acid suppresses tau phosphorylation and cognitive decline by downregulating the JNK signaling pathway.NPJ Sci. Food202151110.1038/s41538‑021‑00084‑533514742
    [Google Scholar]
  63. TangJ.J. HuangL.F. DengJ.L. WangY.M. GuoC. PengX.N. LiuZ. GaoJ.M. Cognitive enhancement and neuroprotective effects of OABL, a sesquiterpene lactone in 5xFAD Alzheimer’s disease mice model.Redox Biol.20225010222910.1016/j.redox.2022.10222935026701
    [Google Scholar]
  64. FerrerI. BlancoR. CarmonaM. RiberaR. GoutanE. PuigB. ReyM.J. CardozoA. ViñalsF. RibaltaT. Phosphorylated map kinase (ERK1, ERK2) expression is associated with early tau deposition in neurones and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration.Brain Pathol.200111214415810.1111/j.1750‑3639.2001.tb00387.x11303790
    [Google Scholar]
  65. HartzlerA. ZhuX. SiedlakS. CastellaniR. AviláJ. PerryG. SmithM. The p38 pathway is activated in Pick disease and progressive supranuclear palsy: A mechanistic link between mitogenic pathways, oxidative stress, and tau.Neurobiol. Aging200223585585910.1016/S0197‑4580(02)00029‑512392790
    [Google Scholar]
  66. TolnayM. ClavagueraF. Argyrophilic grain disease: A late‐onset dementia with distinctive features among tauopathies.Neuropathology200424426928310.1111/j.1440‑1789.2004.00591.x15641585
    [Google Scholar]
  67. WarrenJ.D. RohrerJ.D. RossorM.N. Frontotemporal dementia.BMJ2013347aug12 3f482710.1136/bmj.f482723920254
    [Google Scholar]
  68. Fernández-NogalesM. LucasJ.J. Altered levels and isoforms of tau and nuclear membrane invaginations in Huntington’s disease.Front. Cell. Neurosci.20201357410.3389/fncel.2019.0057432009905
    [Google Scholar]
  69. CrossD.A.E. AlessiD.R. CohenP. AndjelkovichM. HemmingsB.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.Nature1995378655978578910.1038/378785a08524413
    [Google Scholar]
  70. HoffmeisterL. DiekmannM. BrandK. HuberR. GSK3: A kinase balancing promotion and resolution of inflammation.Cells20209482010.3390/cells904082032231133
    [Google Scholar]
  71. ResendeR. FerreiroE. PereiraC. OliveiraC.R. ER stress is involved in Aβ-induced GSK‐3β activation and tau phosphorylation.J. Neurosci. Res.20088692091209910.1002/jnr.2164818335524
    [Google Scholar]
  72. CanetG. PineauF. ZussyC. HernandezC. HuntH. ChevallierN. PerrierV. TorrentJ. BelanoffJ.K. MeijerO.C. DesrumauxC. GivaloisL. Glucocorticoid receptors signaling impairment potentiates amyloid-β oligomers‐induced pathology in an acute model of Alzheimer’s disease.FASEB J.20203411150116810.1096/fj.201900723RRR31914623
    [Google Scholar]
  73. YangW. LiuY. XuQ.Q. XianY.F. LinZ.X. Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/Akt/GSK-3β pathway in experimental models of Alzheimer’s disease.Oxid. Med. Cell. Longev.2020202011710.1155/2020/475419532963694
    [Google Scholar]
  74. ZhangF. GannonM. ChenY. YanS. ZhangS. FengW. TaoJ. ShaB. LiuZ. SaitoT. SaidoT. KeeneC.D. JiaoK. RobersonE.D. XuH. WangQ. β-amyloid redirects norepinephrine signaling to activate the pathogenic GSK3β/tau cascade.Sci. Transl. Med.202012526eaay693110.1126/scitranslmed.aay693131941827
    [Google Scholar]
  75. ZhangL.N. LiM.J. ShangY.H. LiuY.R. Han-ChangH. LaoF.X. Zeaxanthin attenuates the vicious circle between endoplasmic reticulum stress and tau phosphorylation: Involvement of GSK-3β activation.J. Alzheimers Dis.202286119120410.3233/JAD‑21540835034906
    [Google Scholar]
  76. PengX. GuoH. ZhangX. YangZ. RuganzuJ.B. YangZ. WuX. BiW. JiS. YangW. TREM2 inhibits tau hyperphosphorylation and neuronal apoptosis via the PI3K/Akt/GSK-3β signaling pathway in vivo and in vitro.Mol. Neurobiol.20236052470248510.1007/s12035‑023‑03217‑x36662361
    [Google Scholar]
  77. QiaoM. ShengS. PardeeA.B. Metastasis and AKT activation.Cell Cycle20087192991299610.4161/cc.7.19.678418818526
    [Google Scholar]
  78. HuangY. SunL. ZhuS. XuL. LiuS. YuanC. GuoY. WangX. Neuroprotection against Parkinson’s disease through the activation of Akt/GSK3β signaling pathway by tovophyllin A.Front. Neurosci.20201472310.3389/fnins.2020.0072332742256
    [Google Scholar]
  79. QiY. ChengX. GongG. YanT. DuY. WuB. BiK. JiaY. Synergistic neuroprotective effect of schisandrin and nootkatone on regulating inflammation, apoptosis and autophagy via the PI3K/AKT pathway.Food Funct.20201132427243810.1039/C9FO02927C32129354
    [Google Scholar]
  80. HetmanM. HsuanS.L. HabasA. HigginsM.J. XiaZ. ERK1/2 antagonizes glycogen synthase kinase-3beta-induced apoptosis in cortical neurons.J. Biol. Chem.200227751495774958410.1074/jbc.M11122720012393899
    [Google Scholar]
  81. de la TorreA.V. JunyentF. FolchJ. PelegríC. VilaplanaJ. AuladellC. Beas-ZarateC. PallàsM. VerdaguerE. CaminsA. GSK3β inhibition is involved in the neuroprotective effects of cyclin-dependent kinase inhibitors in neurons.Pharmacol. Res.2012651667310.1016/j.phrs.2011.08.00621875668
    [Google Scholar]
  82. SongM. ZhangS. YuW. FanX. Gomisin N rescues cognitive impairment of Alzheimer’s disease by targeting GSK3β and activating Nrf2 signaling pathway.Phytomedicine202413215581110.1016/j.phymed.2024.15581138924927
    [Google Scholar]
  83. HseuY.C. LoH.W. KoriviM. TsaiY.C. TangM.J. YangH.L. Dermato-protective properties of ergothioneine through induction of Nrf2/ARE-mediated antioxidant genes in UVA-irradiated Human keratinocytes.Free Radic. Biol. Med.20158610211710.1016/j.freeradbiomed.2015.05.02626021820
    [Google Scholar]
  84. LiY. GaoJ. LiuS. ChenS. WeiX. GuanY. LiX. LiY. HuangZ. LiG. ZhaoY. LiuP. ZhangY. Ergothioneine protects against UV-induced oxidative stress through the PI3K/AKT/Nrf2 signaling pathway.Clin. Cosmet. Investig. Dermatol.2024171309131910.2147/CCID.S44998738854850
    [Google Scholar]
  85. HaassC. SelkoeD.J. Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide.Cell19937561039104210.1016/0092‑8674(93)90312‑E8261505
    [Google Scholar]
  86. VassarR. BennettB.D. Babu-KhanS. KahnS. MendiazE.A. DenisP. TeplowD.B. RossS. AmaranteP. LoeloffR. LuoY. FisherS. FullerJ. EdensonS. LileJ. JarosinskiM.A. BiereA.L. CurranE. BurgessT. LouisJ.C. CollinsF. TreanorJ. RogersG. CitronM. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE.Science1999286544073574110.1126/science.286.5440.73510531052
    [Google Scholar]
  87. WolfeM.S. XiaW. OstaszewskiB.L. DiehlT.S. KimberlyW.T. SelkoeD.J. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity.Nature1999398672751351710.1038/1907710206644
    [Google Scholar]
  88. SunX. SatoS. MurayamaO. MurayamaM. ParkJ.M. YamaguchiH. TakashimaA. Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein C100.Neurosci. Lett.20023211-2616410.1016/S0304‑3940(01)02583‑611872257
    [Google Scholar]
  89. RyderJ. SuY. LiuF. LiB. ZhouY. NiB. Divergent roles of GSK3 and CDK5 in APP processing.Biochem. Biophys. Res. Commun.2003312492292910.1016/j.bbrc.2003.11.01414651959
    [Google Scholar]
  90. CaiZ. ZhaoY. ZhaoB. Roles of glycogen synthase kinase 3 in Alzheimer’s disease.Curr. Alzheimer Res.20129786487910.2174/15672051280245538622272620
    [Google Scholar]
  91. LyP.T.T. WuY. ZouH. WangR. ZhouW. KinoshitaA. ZhangM. YangY. CaiF. WoodgettJ. SongW. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes.J. Clin. Invest.2013123122423510.1172/JCI6451623202730
    [Google Scholar]
  92. WangL. YinY.L. LiuX.Z. ShenP. ZhengY.G. LanX.R. LuC.B. WangJ.Z. Current understanding of metal ions in the pathogenesis of Alzheimer’s disease.Transl. Neurodegener.2020911010.1186/s40035‑020‑00189‑z32266063
    [Google Scholar]
  93. DeckerH. LoK.Y. UngerS.M. FerreiraS.T. SilvermanM.A. Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons.J. Neurosci.201030279166917110.1523/JNEUROSCI.1074‑10.201020610750
    [Google Scholar]
  94. ReifertJ. Hartung-CranstonD. FeinsteinS.C. Amyloid beta-mediated cell death of cultured hippocampal neurons reveals extensive Tau fragmentation without increased full-length tau phosphorylation.J. Biol. Chem.201128623207972081110.1074/jbc.M111.23467421482827
    [Google Scholar]
  95. MamadaN. TanokashiraD. HosakaA. KametaniF. TamaokaA. ArakiW. Amyloid β-protein oligomers upregulate the β-secretase, BACE1, through a post-translational mechanism involving its altered subcellular distribution in neurons.Mol. Brain2015817310.1186/s13041‑015‑0163‑526552445
    [Google Scholar]
  96. LiuH. LiW. ZhaoS. ZhangX. ZhangM. XiaoY. WilsonJ.X. HuangG. Folic acid attenuates the effects of amyloid β oligomers on DNA methylation in neuronal cells.Eur. J. Nutr.20165551849186210.1007/s00394‑015‑1002‑226224648
    [Google Scholar]
  97. LiangC.H. HuangP.C. MauJ.L. ChiangS.S. Effect of the king oyster culinary-medicinal mushroom Pleurotus eryngii (Agaricomycetes) Basidiocarps powder to ameliorate memory and learning deficit in ability in Aβ-induced Alzheimer’s disease C57BL/6J mice model.Int. J. Med. Mushrooms202022214515910.1615/IntJMedMushrooms.202003376632479003
    [Google Scholar]
  98. WhitmoreC.A. HaynesJ.R. BehofW.J. RosenbergA.J. TantawyM.N. HacheyB.C. WadzinskiB.E. SpillerB.W. PetersonT.E. PaffenrothK.C. HarrisonF.E. BeelmanR.B. WijesingheP. MatsubaraJ.A. PhamW. Longitudinal consumption of ergothioneine reduces oxidative stress and amyloid plaques and restores glucose metabolism in the 5XFAD mouse model of Alzheimer’s disease.Pharmaceuticals202215674210.3390/ph1506074235745661
    [Google Scholar]
  99. CheahI.K. NgL.T. NgL.F. LamV.Y. GruberJ. HuangC.Y.W. GohF.Q. LimK.H.C. HalliwellB. Inhibition of amyloid‐induced toxicity by ergothioneine in a transgenic Caenorhabditis elegans model.FEBS Lett.2019593162139215010.1002/1873‑3468.1349731211853
    [Google Scholar]
  100. WuL.Y. CheahI.K. ChongJ.R. ChaiY.L. TanJ.Y. HilalS. VroomanH. ChenC.P. HalliwellB. LaiM.K.P. Low plasma ergothioneine levels are associated with neurodegeneration and cerebrovascular disease in dementia.Free Radic. Biol. Med.202117720121110.1016/j.freeradbiomed.2021.10.01934673145
    [Google Scholar]
  101. IshimotoT. YamashitaR. MatsumotoR. MatsumotoS. MatsuoY. NakaoS. MasuoY. SuzukiM. KatoY. TrkB phosphorylation in serum extracellular vesicles correlates with cognitive function enhanced by ergothioneine in humans.NPJ Sci. Food2024811110.1038/s41538‑024‑00250‑538321007
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429387340250507055903
Loading
/content/journals/cmp/10.2174/0118761429387340250507055903
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test