Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

STAT3, a key member of the Signal Transducer and Activator of Transcription (STAT) family, plays a vital role in the development and progression of glioblastoma (GBM), as well as in the resistance to the chemotherapy drug temozolomide (TMZ). This review outlines the dysregulation of STAT3 in GBM, focusing on its activation mechanisms and its contribution to TMZ resistance. STAT3 can be activated by cytokines, like IL-6, growth factors, and membrane receptors, like EGFR. In GBM, constitutively active STAT3 enhances tumor growth and therapy resistance. Specifically, resistance to TMZ, a standard chemotherapeutic agent for GBM, is facilitated by STAT3-induced expression of the DNA repair enzyme O6-methylguanine-DNA methyltransferase and anti-apoptotic proteins like Bcl-2, as well as through the regulation of microRNAs. To combat TMZ resistance in GBM, strategies that inhibit STAT3 activity have been explored. Recent advancements, such as the use of small molecule inhibitors targeting STAT3 and its upstream or downstream regulators, RNA-based therapies, as well as the development of nanocarriers for targeted delivery of STAT3 across the blood-brain barrier, have demonstrated significant potential in enhancing the sensitivity of GBM to TMZ. These targeted therapies hold promise for improving the treatment outcomes of patients with GBM.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429386400250415053351
2024-01-01
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429386400.html?itemId=/content/journals/cmp/10.2174/0118761429386400250415053351&mimeType=html&fmt=ahah

References

  1. TanA.C. AshleyD.M. LópezG.Y. MalinzakM. FriedmanH.S. KhasrawM. Management of glioblastoma: State of the art and future directions.CA Cancer J. Clin.202070429931210.3322/caac.2161332478924
    [Google Scholar]
  2. RongL. LiN. ZhangZ. Emerging therapies for glioblastoma: Current state and future directions.J. Exp. Clin. Cancer Res.202241114210.1186/s13046‑022‑02349‑735428347
    [Google Scholar]
  3. TomarM.S. KumarA. SrivastavaC. ShrivastavaA. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance.Biochim. Biophys. Acta Rev. Cancer20211876218861610.1016/j.bbcan.2021.18861634419533
    [Google Scholar]
  4. El-TananiM. Al KhatibA.O. AladwanS.M. AbuelhanaA. McCarronP.A. TambuwalaM.M. Importance of STAT3 signalling in cancer, metastasis and therapeutic interventions.Cell. Signal.20229211027510.1016/j.cellsig.2022.11027535122990
    [Google Scholar]
  5. MaJ.H. QinL. LiX. Role of STAT3 signaling pathway in breast cancer.Cell Commun. Signal.20201813310.1186/s12964‑020‑0527‑z32111215
    [Google Scholar]
  6. SadrkhanlooM. EntezariM. OroueiS. GhollasiM. FathiN. RezaeiS. HejaziE.S. KakavandA. SaebfarH. HashemiM. GoharriziM.A.S.B. SalimimoghadamS. RashidiM. TaheriazamA. SamarghandianS. STAT3-EMT axis in tumors: Modulation of cancer metastasis, stemness and therapy response.Pharmacol. Res.202218210631110.1016/j.phrs.2022.10631135716914
    [Google Scholar]
  7. LiX. JiangW. DongS. LiW. ZhuW. ZhouW. STAT3 inhibitors: A novel insight for anticancer therapy of pancreatic cancer.Biomolecules20221210145036291659
    [Google Scholar]
  8. YuH. LeeH. HerrmannA. BuettnerR. JoveR. Revisiting STAT3 signalling in cancer: New and unexpected biological functions.Nat. Rev. Cancer2014141173674610.1038/nrc381825342631
    [Google Scholar]
  9. ShiD. TaoJ. ManS. ZhangN. MaL. GuoL. HuangL. GaoW. Structure, function, signaling pathways and clinical therapeutics: The translational potential of STAT3 as a target for cancer therapy.Biochim. Biophys. Acta Rev. Cancer20241879618920710.1016/j.bbcan.2024.18920739500413
    [Google Scholar]
  10. WangZ. LiaoX. HeH. GuoX. ChenJ. Targeting the STAT3 pathway with STAT3 degraders.Trends Pharmacol. Sci.202445981182310.1016/j.tips.2024.07.00339117533
    [Google Scholar]
  11. ShenY. ThngD.K.H. WongA.L.A. TohT.B. Mechanistic insights and the clinical prospects of targeted therapies for glioblastoma: A comprehensive review.Exp. Hematol. Oncol.20241314010.1186/s40164‑024‑00512‑838615034
    [Google Scholar]
  12. LiX. ZhouM. ZhuZ. WangZ. ZhangX. LuL. XieZ. WangB. PanY. ZhangJ. XuJ. Kaempferol from Alpinia officinarum hance induces G2/M cell cycle arrest in hepatocellular carcinoma cells by regulating the ATM/CHEK2/KNL1 pathway.J. Ethnopharmacol.202433311843010.1016/j.jep.2024.11843038857680
    [Google Scholar]
  13. JiangS. LiH. ZhangL. MuW. ZhangY. ChenT. WuJ. TangH. ZhengS. LiuY. WuY. LuoX. XieY. RenJ. Generic Diagramming Platform (GDP): A comprehensive database of high-quality biomedical graphics.Nucleic Acids Res.202553D1D1670D167610.1093/nar/gkae97339470721
    [Google Scholar]
  14. BernsteinZ.J. ShenoyA. ChenA. HellerN.M. SpanglerJ.B. Engineering the IL-4/IL-13 axis for targeted immune modulation.Immunol. Rev.20233201295710.1111/imr.1323037283511
    [Google Scholar]
  15. RahamanS.O. VogelbaumM.A. HaqueS.J. Aberrant Stat3 signaling by interleukin-4 in malignant glioma cells: Involvement of IL-13Ralpha2.Cancer Res.20056572956296310.1158/0008‑5472.CAN‑04‑359215805299
    [Google Scholar]
  16. DetchouD. BarrieU. Interleukin 4 and cancer resistance in glioblastoma multiforme.Neurosurg. Rev.202447144810.1007/s10143‑024‑02695‑439164434
    [Google Scholar]
  17. HiranoT. IL-6 in inflammation, autoimmunity and cancer.Int. Immunol.202133312714810.1093/intimm/dxaa07833337480
    [Google Scholar]
  18. AraT. NakataR. SheardM.A. ShimadaH. BuettnerR. GroshenS.G. JiL. YuH. JoveR. SeegerR.C. DeClerckY.A. Critical role of STAT3 in IL-6-mediated drug resistance in human neuroblastoma.Cancer Res.201373133852386410.1158/0008‑5472.CAN‑12‑235323633489
    [Google Scholar]
  19. LiW. CaiH. RenL. YangY. YangH. LiuJ. LiS. ZhangY. ZhengX. TanW. DuG. WangJ. Sphingosine kinase 1 promotes growth of glioblastoma by increasing inflammation mediated by the NF-κB /IL-6/STAT3 and JNK/PTX3 pathways.Acta Pharm. Sin. B202212124390440610.1016/j.apsb.2022.09.01236562002
    [Google Scholar]
  20. CaiS. LuJ.X. WangY.P. ShiC.J. YuanT. WangX.P. SH2B3, transcribed by STAT1, promotes glioblastoma progression through transducing IL-6/gp130 signaling to activate STAT3 signaling.Front. Cell Dev. Biol.2021960652710.3389/fcell.2021.60652733937225
    [Google Scholar]
  21. KeirM. YiY. LuT. GhilardiN. The role of IL-22 in intestinal health and disease.J. Exp. Med.20202173e2019219510.1084/jem.2019219532997932
    [Google Scholar]
  22. AkilH. AbbaciA. LallouéF. BessetteB. CostesL.M. DomballeL. CharreauS. GuilloteauK. Karayan-TaponL. BernardF.X. MorelF. JauberteauM.O. LecronJ.C. IL22/IL-22R pathway induces cell survival in human glioblastoma cells.PLoS One2015103e011987210.1371/journal.pone.011987225793261
    [Google Scholar]
  23. ZhengQ. HanL. DongY. TianJ. HuangW. LiuZ. JiaX. JiangT. ZhangJ. LiX. KangC. RenH. JAK2/STAT3 targeted therapy suppresses tumor invasion via disruption of the EGFRvIII/JAK2/STAT3 axis and associated focal adhesion in EGFRvIII-expressing glioblastoma.Neuro-oncol.20141691229124310.1093/neuonc/nou04624861878
    [Google Scholar]
  24. StechishinO.D. LuchmanH.A. RuanY. BloughM.D. NguyenS.A. KellyJ.J. CairncrossJ.G. WeissS. On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells.Neuro-oncol.201315219820710.1093/neuonc/nos30223262510
    [Google Scholar]
  25. GhoshM.K. SharmaP. HarborP.C. RahamanS.O. HaqueS.J. PI3K-AKT pathway negatively controls EGFR-dependent DNA-binding activity of Stat3 in glioblastoma multiforme cells.Oncogene200524497290730010.1038/sj.onc.120889416007122
    [Google Scholar]
  26. SmedleyW. PatraA. JAK3 inhibition regulates stemness and thereby controls glioblastoma pathogenesis.Cells20231221254737947625
    [Google Scholar]
  27. CuevasP. Díaz-GonzálezD. SánchezI. LozanoR.M. Giménez-GallegoG. DujovnyM. Dobesilate inhibits the activation of signal transducer and activator of transcription 3, and the expression of cyclin D1 and bcl-XL in glioma cells.Neurol. Res.200628212713010.1179/016164106X9798216551428
    [Google Scholar]
  28. WangC. CaoS. YanY. YingQ. JiangT. XuK. WuA. TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients.BMC Cancer20101041510.1186/1471‑2407‑10‑41520696081
    [Google Scholar]
  29. BhatG.J. BakerK.M. Cross-talk between angiotensin II and interleukin-6-induced signaling through Stat3 transcription factor.Basic Res. Cardiol.199893Suppl. 3262910.1007/s0039500502039879441
    [Google Scholar]
  30. XinH. LuR. LeeH. ZhangW. ZhangC. DengJ. LiuY. ShenS. WagnerK.U. FormanS. JoveR. YuH. G-protein-coupled receptor agonist BV8/prokineticin-2 and STAT3 protein form a feed-forward loop in both normal and malignant myeloid cells.J. Biol. Chem.201328819138421384910.1074/jbc.M113.45004923548897
    [Google Scholar]
  31. RiolfiM. FerlaR. ValleL.D. Piña-OviedoS. ScolaroL. MiccioloR. GuidiM. TerrasiM. CettoG.L. SurmaczE. Leptin and its receptor are overexpressed in brain tumors and correlate with the degree of malignancy.Brain Pathol.201020248148910.1111/j.1750‑3639.2009.00323.x19775291
    [Google Scholar]
  32. LiH. ChenL. LiJ. ZhouQ. HuangA. LiuW. WangK. GaoL. QiS. LuY. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway.J. Hematol. Oncol.20181117010.1186/s13045‑018‑0618‑029843746
    [Google Scholar]
  33. WangG. WangJ.J. TangH.M. ToS.S.T. Targeting strategies on miRNA-21 and PDCD4 for glioblastoma.Arch. Biochem. Biophys.2015580647410.1016/j.abb.2015.07.00126142886
    [Google Scholar]
  34. WuW. YuT. WuY. TianW. ZhangJ. WangY. The miR155HG/miR-185/ANXA2 loop contributes to glioblastoma growth and progression.J. Exp. Clin. Cancer Res.201938113310.1186/s13046‑019‑1132‑030898167
    [Google Scholar]
  35. SadeghipourN. KumarS.U. MassoudT.F. PaulmuruganR. A rationally identified panel of microRNAs targets multiple oncogenic pathways to enhance chemotherapeutic effects in glioblastoma models.Sci. Rep.20221211201710.1038/s41598‑022‑16219‑x35835978
    [Google Scholar]
  36. OttN. FalettiL. HeegM. AndreaniV. GrimbacherB. JAKs and STATs from a clinical perspective: Loss-of-function mutations, gain-of-function mutations, and their multidimensional consequences.J. Clin. Immunol.20234361326135910.1007/s10875‑023‑01483‑x37140667
    [Google Scholar]
  37. BrantleyE.C. NaborsL.B. GillespieG.Y. ChoiY.H. PalmerC.A. HarrisonK. RoartyK. BenvenisteE.N. Loss of protein inhibitors of activated STAT-3 expression in glioblastoma multiforme tumors: Implications for STAT-3 activation and gene expression.Clin. Cancer Res.200814154694470410.1158/1078‑0432.CCR‑08‑061818676737
    [Google Scholar]
  38. OrtonS. KarkiaR. MustafovD. GharaneiS. BraoudakiM. FilipeA. PanfilovS. SaraviS. KhanN. KyrouI. KarterisE. ChatterjeeJ. RandevaH.S. In silico and in vitro mapping of receptor-type protein tyrosine phosphatase receptor type D in health and disease: Implications for asprosin signalling in endometrial cancer and neuroblastoma.Cancers202416358210.3390/cancers1603058238339334
    [Google Scholar]
  39. OrtizB. FabiusA.W.M. WuW.H. PedrazaA. BrennanC.W. SchultzN. PitterK.L. BrombergJ.F. HuseJ.T. HollandE.C. ChanT.A. Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis.Proc. Natl. Acad. Sci. USA2014111228149815410.1073/pnas.140195211124843164
    [Google Scholar]
  40. VeeriahS. BrennanC. MengS. SinghB. FaginJ.A. SolitD.B. PatyP.B. RohleD. VivancoI. ChmieleckiJ. PaoW. LadanyiM. GeraldW.L. LiauL. CloughesyT.C. MischelP.S. SanderC. TaylorB. SchultzN. MajorJ. HeguyA. FangF. MellinghoffI.K. ChanT.A. The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers.Proc. Natl. Acad. Sci. USA2009106239435944010.1073/pnas.090057110619478061
    [Google Scholar]
  41. ChunK.S. JangJ.H. KimD.H. Perspectives regarding the intersections between STAT3 and oxidative metabolism in cancer.Cells2020910220233003453
    [Google Scholar]
  42. ShiY. GuryanovaO.A. ZhouW. LiuC. HuangZ. FangX. WangX. ChenC. WuQ. HeZ. WangW. ZhangW. JiangT. LiuQ. ChenY. WangW. WuJ. KimL. GimpleR.C. FengH. KungH.F. YuJ.S. RichJ.N. PingY.F. BianX.W. BaoS. Ibrutinib inactivates BMX-STAT3 in glioma stem cells to impair malignant growth and radioresistance.Sci. Transl. Med.201810443eaah681629848664
    [Google Scholar]
  43. VenteroM.P. Fuentes-BaileM. QueredaC. Perez-ValecianoE. AlendaC. Garcia-MoralesP. EspositoD. DoradoP. Manuel BarberaV. SacedaM. Radiotherapy resistance acquisition in Glioblastoma. Role of SOCS1 and SOCS3.PLoS One2019142e021258110.1371/journal.pone.021258130811476
    [Google Scholar]
  44. LeeS.Y. Temozolomide resistance in glioblastoma multiforme.Genes Dis.20163319821010.1016/j.gendis.2016.04.00730258889
    [Google Scholar]
  45. WuM. SongD. LiH. AhmadN. XuH. YangX. WangQ. ChengX. DengS. ShuX. Resveratrol enhances temozolomide efficacy in glioblastoma cells through downregulated MGMT and negative regulators-related STAT3 inactivation.Int. J. Mol. Sci.20232411945310.3390/ijms2411945337298405
    [Google Scholar]
  46. WangY. ChenL. BaoZ. LiS. YouG. YanW. ShiZ. LiuY. YangP. ZhangW. HanL. KangC. JiangT. Inhibition of STAT3 reverses alkylator resistance through modulation of the AKT and β-catenin signaling pathways.Oncol. Rep.20112651173118010.3892/or.2011.139621887474
    [Google Scholar]
  47. YinJ. GeX. ShiZ. YuC. LuC. WeiY. ZengA. WangX. YanW. ZhangJ. YouY. Extracellular vesicles derived from hypoxic glioma stem-like cells confer temozolomide resistance on glioblastoma by delivering miR-30b-3p.Theranostics20211141763177910.7150/thno.4705733408780
    [Google Scholar]
  48. ChuangH.Y. SuY.K. LiuH.W. ChenC.H. ChiuS.C. ChoD.Y. LinS.Z. ChenY.S. LinC.M. Preclinical evidence of STAT3 inhibitor pacritinib overcoming temozolomide resistance via downregulating miR-21-enriched exosomes from M2 glioblastoma-associated macrophages.J. Clin. Med.20198795931269723
    [Google Scholar]
  49. ShiZ.D. QianX.M. LiuC.Y. HanL. ZhangK.L. ChenL.Y. ZhangJ.X. PuP.Y. YuanX.B. KangC.S. Chinese Glioma Cooperative Group (CGCG) Aspirin-/TMZ-coloaded microspheres exert synergistic antiglioma efficacy via inhibition of β-catenin transactivation.CNS Neurosci. Ther.20131929810810.1111/cns.1204123230963
    [Google Scholar]
  50. ShiL. SunG. Low-dose DMC significantly enhances the effect of tmz on glioma cells by targeting multiple signaling pathways both in vivo and in vitro.Neuromolecular Med.201517443144210.1007/s12017‑015‑8372‑826458914
    [Google Scholar]
  51. LiuT. LiA. XuY. XinY. Momelotinib sensitizes glioblastoma cells to temozolomide by enhancement of autophagy via JAK2/STAT3 inhibition.Oncol. Rep.20194131883189210.3892/or.2019.697030664175
    [Google Scholar]
  52. JensenK.V. CsehO. AmanA. WeissS. LuchmanH.A. The JAK2/STAT3 inhibitor pacritinib effectively inhibits patient-derived GBM brain tumor initiating cells in vitro and when used in combination with temozolomide increases survival in an orthotopic xenograft model.PLoS One20171212e018967010.1371/journal.pone.018967029253028
    [Google Scholar]
  53. VlachostergiosP.J. HatzidakiE. BefaniC.D. LiakosP. PapandreouC.N. Bortezomib overcomes MGMT-related resistance of glioblastoma cell lines to temozolomide in a schedule-dependent manner.Invest. New Drugs20133151169118110.1007/s10637‑013‑9968‑123645448
    [Google Scholar]
  54. ZhuS. GuoJ. YuL. LiuJ. ChenJ. XinJ. ZhangY. LuoJ. DuanC. Synergistic effect of cryptotanshinone and temozolomide treatment against human glioblastoma cells.Sci. Rep.20231312183510.1038/s41598‑023‑48777‑z38071213
    [Google Scholar]
  55. LiuX. ChenJ. LiW. HangC. DaiY. Inhibition of casein kinase II by CX-4945, but not yes-associated protein (YAP) by verteporfin, enhances the antitumor efficacy of temozolomide in glioblastoma.Transl. Oncol.2020131707810.1016/j.tranon.2019.09.00631810002
    [Google Scholar]
  56. LiuY. SongX. WuM. WuJ. LiuJ. Synergistic effects of resveratrol and temozolomide against glioblastoma cells: Underlying mechanism and therapeutic implications.Cancer Manag. Res.2020128341835410.2147/CMAR.S25858432982428
    [Google Scholar]
  57. ChenY. MuY. GuanQ. LiC. ZhangY. XuY. ZhouC. GuoY. MaY. ZhaoM. JiG. LiuP. SunD. SunH. WuN. JinY. RPL22L1, a novel candidate oncogene promotes temozolomide resistance by activating STAT3 in glioblastoma.Cell Death Dis.2023141175710.1038/s41419‑023‑06156‑637985768
    [Google Scholar]
  58. VengojiR. MachaM.A. NimmakayalaR.K. RachaganiS. SiddiquiJ.A. MallyaK. GorantlaS. JainM. PonnusamyM.P. BatraS.K. ShonkaN. Afatinib and Temozolomide combination inhibits tumorigenesis by targeting EGFRvIII-cMet signaling in glioblastoma cells.J. Exp. Clin. Cancer Res.201938126610.1186/s13046‑019‑1264‑231215502
    [Google Scholar]
  59. CiechomskaI.A. WojnickiK. WojtasB. SzadkowskaP. PoleszakK. KazaB. JaskulaK. DawidczykW. CzepkoR. BanachM. CzapskiB. NaumanP. KotulskaK. GrajkowskaW. RoszkowskiM. CzernickiT. MarchelA. KaminskaB. Exploring novel therapeutic opportunities for glioblastoma using patient-derived cell cultures.Cancers2023155156210.3390/cancers1505156236900355
    [Google Scholar]
  60. LiangH. ChenG. LiJ. YangF. Snail expression contributes to temozolomide resistance in glioblastoma.Am. J. Transl. Res.20191174277428931396334
    [Google Scholar]
  61. WangY. YangC.H. SchultzA.P. SimsM.M. MillerD.D. PfefferL.M. Brahma-Related Gene-1 (BRG1) promotes the malignant phenotype of glioblastoma cells.J. Cell. Mol. Med.20212562956296610.1111/jcmm.1633033528916
    [Google Scholar]
  62. WuP. CaiJ. ChenQ. HanB. MengX. LiY. LiZ. WangR. LinL. DuanC. KangC. JiangC. Lnc-TALC promotes O6-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p.Nat. Commun.2019101204510.1038/s41467‑019‑10025‑231053733
    [Google Scholar]
  63. ZhaoC. YuH. FanX. NiuW. FanJ. SunS. GongM. ZhaoB. FangZ. ChenX. GSK3β palmitoylation mediated by ZDHHC4 promotes tumorigenicity of glioblastoma stem cells in temozolomide-resistant glioblastoma through the EZH2-STAT3 axis.Oncogenesis20221112810.1038/s41389‑022‑00402‑w35606353
    [Google Scholar]
  64. RehmanF.U. LiuY. YangQ. YangH. LiuR. ZhangD. MuhammadP. LiuY. HanifS. IsmailM. ZhengM. ShiB. Heme Oxygenase-1 targeting exosomes for temozolomide resistant glioblastoma synergistic therapy.J. Control. Release202234569670810.1016/j.jconrel.2022.03.03635341901
    [Google Scholar]
  65. KimS.R. BaeM.K. KimJ.Y. WeeH.J. YooM.A. BaeS.K. Aspirin induces apoptosis through the blockade of IL-6-STAT3 signaling pathway in human glioblastoma A172 cells.Biochem. Biophys. Res. Commun.2009387234234710.1016/j.bbrc.2009.07.02219595669
    [Google Scholar]
  66. PanJ. ZhaoR. DongC. YangJ. ZhangR. SunM. AhmadN. ZhouY. LiuY. Cudraflavone B induces human glioblastoma cells apoptosis via ER stress-induced autophagy.BMC Neurosci.20232411010.1186/s12868‑023‑00778‑436721107
    [Google Scholar]
  67. XuF. YangY.H. YangH. LiW. HaoY. ZhangS. ZhangY.Z. CaoW.X. LiX.X. DuG.H. JiT.F. WangJ.H. Progress of studies on natural products for glioblastoma therapy.J. Asian Nat. Prod. Res.202426115417610.1080/10286020.2023.230036738321773
    [Google Scholar]
  68. ParkM.N. SongH.S. KimM. LeeM.J. ChoW. LeeH.J. HwangC.H. KimS. HwangY. KangB. KimB. Review of natural product-derived compounds as potent antiglioblastoma drugs.BioMed Res. Int.20172017813984810.1155/2017/813984829181405
    [Google Scholar]
  69. VengojiR. MachaM.A. BatraS.K. ShonkaN.A. Natural products: A hope for glioblastoma patients.Oncotarget2018931221942221910.18632/oncotarget.2517529774132
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429386400250415053351
Loading
/content/journals/cmp/10.2174/0118761429386400250415053351
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Glioblastoma; Membrane receptors; miRNA; Resistance; STAT3; Temozolomide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test