Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background

Airway mucus hypersecretion is a prominent pathophysiological characteristic observed in chronic obstructive pulmonary disease (COPD), cystic fibrosis, and asthma. It is a significant risk factor for lung dysfunction and impaired quality of life. Therefore, it is crucial to investigate changes in the major genes expressed in the lungs during airway mucus hypersecretion. Such investigations can help to identify genetic targets for the development of effective treatments to manage airway mucus hypersecretion and improve clinical outcomes for those affected by these respiratory disorders.

Objective

Our study aims to identify changes in the expression of key genes in the lungs during airway mucus hypersecretion in mice.

Methods

Thirty male C57BL/6 mice were randomly allocated into two groups. The Pyocyanin (PCN) group was intranasally infected with 25 μl of pyocyanin solution (1 μg/μl), while the phosphate-buffered saline (PBS) group received 25 μl of PBS intranasally once daily. The lung tissue of mice was extracted after 21 days for the purpose of identifying causal genes through a combination of transcriptomic and proteomic analysis. Finally, we validated the differentially expressed proteins using qRT-PCR and western blot.

Results

Our findings revealed significant alterations in 35,268 genes and 7,004 proteins within the lung tissue of mice treated with PCN. Pathway enrichment analysis, utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, showed that the differentially expressed proteins were mainly associated with apoptosis, galactose metabolism, and asthma, among the overlapping genes and proteins. To validate the results of the transcriptomic and proteomic analyses, we used qRT-PCR to examine the expression levels of fourteen differentially expressed proteins (DEPs), namely Fpr1, Ear1, Lama3, Col19a1, Spag16, Ropn1l, Dnali1, Cfap70, Ear2, Drc1, Ifit3, Lrrc23, Slpi, and Fam166b. Subsequently, we confirmed the expression of Spag16, Dnali1, and Ropn1l by western blotting.

Conclusions

Our study identified three DEPs, namely Spag16, Dnali1, and Ropn1l, which are closely associated with the movement and organization of cilia. This study provides novel insights for the development of therapeutic interventions targeting airway mucus hypersecretion.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429368288250401054301
2024-01-01
2025-09-23
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429368288.html?itemId=/content/journals/cmp/10.2174/0118761429368288250401054301&mimeType=html&fmt=ahah

References

  1. JaramilloA.M. AzzegaghZ. TuvimM.J. DickeyB.F. Airway mucin secretion.Ann. Am. Thorac. Soc.201815Suppl. 3S164S17010.1513/AnnalsATS.201806‑371AW30431339
    [Google Scholar]
  2. LaiH. RogersD.F. New pharmacotherapy for airway mucus hypersecretion in asthma and COPD: Targeting intracellular signaling pathways.J. Aerosol Med. Pulm. Drug Deliv.201023421923110.1089/jamp.2009.080220695774
    [Google Scholar]
  3. SinganayagamA. FootittJ. MarczynskiM. RadicioniG. CrossM.T. FinneyL.J. Trujillo-TorralboM.B. CalderazzoM. ZhuJ. AniscenkoJ. ClarkeT.B. MolyneauxP.L. BartlettN.W. MoffattM.F. CooksonW.O. WedzichaJ. EvansC.M. BoucherR.C. KesimerM. LielegO. MalliaP. JohnstonS.L. Airway mucins promote immunopathology in virus-exacerbated chronic obstructive pulmonary disease.J. Clin. Invest.20221328e12090110.1172/JCI12090135239513
    [Google Scholar]
  4. TianP. WenF. Clinical significance of airway mucus hypersecretion in chronic obstructive pulmonary disease.J. Transl. Int. Med.201533899210.1515/jtim‑2015‑001327847895
    [Google Scholar]
  5. HillD.B. ButtonB. RubinsteinM. BoucherR.C. Physiology and pathophysiology of human airway mucus.Physiol. Rev.202210241757183610.1152/physrev.00004.202135001665
    [Google Scholar]
  6. SacoT.V. BreitzigM.T. LockeyR.F. KolliputiN. Epigenetics of mucus hypersecretion in chronic respiratory diseases.Am. J. Respir. Cell Mol. Biol.201858329930910.1165/rcmb.2017‑0072TR29096066
    [Google Scholar]
  7. ShenY. HuangS. KangJ. LinJ. LaiK. SunY. XiaoW. YangL. YaoW. CaiS. HuangK. WenF. Management of airway mucus hypersecretion in chronic airway inflammatory disease: Chinese expert consensus (English edition).Int. J. Chron. Obstruct. Pulmon. Dis.20181339940710.2147/COPD.S14431229430174
    [Google Scholar]
  8. ChoiW. ChoeS. LinJ. BorchersM.T. KosmiderB. VassalloR. LimperA.H. LauG.W. Exendin-4 restores airway mucus homeostasis through the GLP1R-PKA-PPARγ-FOXA2-phosphatase signaling.Mucosal Immunol.202013463765110.1038/s41385‑020‑0262‑132034274
    [Google Scholar]
  9. WangX. HaoY. YinY. HouY. HanN. LiuY. LiZ. WeiY. MaK. GuJ. MaY. QiH. JiaZ. Lianhua qingke preserves mucociliary clearance in rat with acute exacerbation of chronic obstructive pulmonary disease by maintaining ciliated cells proportion and protecting structural integrity and beat function of cilia.Int. J. Chron. Obstruct. Pulmon. Dis.20241940341810.2147/COPD.S43632338343495
    [Google Scholar]
  10. CaoY. ChenM. DongD. XieS. LiuM. Environmental pollutants damage airway epithelial cell cilia: Implications for the prevention of obstructive lung diseases.Thorac. Cancer202011350551010.1111/1759‑7714.1332331975505
    [Google Scholar]
  11. KuekL.E. LeeR.J. First contact: The role of respiratory cilia in host-pathogen interactions in the airways.Am. J. Physiol. Lung Cell. Mol. Physiol.20203194L603L61910.1152/ajplung.00283.202032783615
    [Google Scholar]
  12. YaghiA. DolovichM. Airway epithelial cell cilia and obstructive lung disease.Cells2016544010.3390/cells504004027845721
    [Google Scholar]
  13. LoveM.E. ProudD. Respiratory viral and bacterial exacerbations of copd—the role of the airway epithelium.Cells2022119141610.3390/cells1109141635563722
    [Google Scholar]
  14. De RoseV. MolloyK. GohyS. PiletteC. GreeneC.M. Airway epithelium dysfunction in cystic fibrosis and COPD.Mediators Inflamm.2018201812010.1155/2018/130974629849481
    [Google Scholar]
  15. MaJ. RubinB.K. VoynowJ.A. Mucins, mucus, and goblet cells.Chest2018154116917610.1016/j.chest.2017.11.00829170036
    [Google Scholar]
  16. HaoY. KuangZ. WallingB.E. BhatiaS. SivaguruM. ChenY. GaskinsH.R. LauG.W. Pseudomonas aeruginosa pyocyanin causes airway goblet cell hyperplasia and metaplasia and mucus hypersecretion by inactivating the transcriptional factor FoxA2.Cell. Microbiol.201214340141510.1111/j.1462‑5822.2011.01727.x22103442
    [Google Scholar]
  17. KimD. LangmeadB. SalzbergS.L. HISAT: A fast spliced aligner with low memory requirements.Nat. Methods201512435736010.1038/nmeth.331725751142
    [Google Scholar]
  18. LiaoY. SmythG.K. ShiW. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features.Bioinformatics201430792393010.1093/bioinformatics/btt65624227677
    [Google Scholar]
  19. HaoY. KuangZ. XuY. WallingB.E. LauG.W. Pyocyanin-induced mucin production is associated with redox modification of FOXA2.Respir. Res.20131418210.1186/1465‑9921‑14‑8223915402
    [Google Scholar]
  20. GaoL. ZhuD. WangQ. BaoZ. YinS. QiangH. Proteome Analysis of USP7 Substrates Revealed Its Role in Melanoma Through PI3K/Akt/FOXO and AMPK Pathways.Front. Oncol.202111
    [Google Scholar]
  21. JeffriesJ.L. JiaJ. ChoiW. ChoeS. MiaoJ. XuY. PowellR. LinJ. KuangZ. GaskinsH.R. LauG.W. Pseudomonas aeruginosa pyocyanin modulates mucin glycosylation with sialyl-Lewisx to increase binding to airway epithelial cells.Mucosal Immunol.2016941039105010.1038/mi.2015.11926555707
    [Google Scholar]
  22. ChoiW. YangA.X. WaltenburgM.A. ChoeS. SteinerM. RadwanA. LinJ. MaddoxC.W. SternA.W. FredricksonR.L. LauG.W. FOXA2 depletion leads to mucus hypersecretion in canine airways with respiratory diseases.Cell. Microbiol.2019211e1295710.1111/cmi.1295730221439
    [Google Scholar]
  23. WangJ. LiJ. HeY. HuangX. FengJ. LiuL. LiuY. JiangX. JiaJ. The SIRT3 activator ganoderic acid D regulates airway mucin MUC5AC expression via the NRF2/GPX4 pathway.Pulm. Pharmacol. Ther.20238310226210.1016/j.pupt.2023.10226237879430
    [Google Scholar]
  24. WhitsettJ.A. Airway epithelial differentiation and mucociliary clearance.Ann. Am. Thorac. Soc.201815Suppl. 3S143S14810.1513/AnnalsATS.201802‑128AW30431340
    [Google Scholar]
  25. PangeniR. MengT. PoudelS. SharmaD. HutsellH. MaJ. RubinB.K. LongestW. HindleM. XuQ. Airway mucus in pulmonary diseases: Muco-adhesive and muco-penetrating particles to overcome the airway mucus barriers.Int. J. Pharm.202363412266110.1016/j.ijpharm.2023.12266136736964
    [Google Scholar]
  26. NawrothJ.C. van der DoesA.M. RyanA. KansoE. Multiscale mechanics of mucociliary clearance in the lung.Philos. Trans. R. Soc. Lond. B Biol. Sci.1792201937531884926
    [Google Scholar]
  27. BenamK.H. VladarE.K. JanssenW.J. EvansC.M. Mucociliary defense: Emerging cellular, molecular, and animal models.Ann. Am. Thorac. Soc.201815Suppl. 3S210S21510.1513/AnnalsATS.201806‑439AW30431350
    [Google Scholar]
  28. LegendreM. ZaragosiL.E. MitchisonH.M. Motile cilia and airway disease.Semin. Cell Dev. Biol.2021110193310.1016/j.semcdb.2020.11.00733279404
    [Google Scholar]
  29. YanF. GaoH. ZhaoH. BhatiaM. ZengY. Roles of airway smooth muscle dysfunction in chronic obstructive pulmonary disease.J. Transl. Med.201816126210.1186/s12967‑018‑1635‑z30257694
    [Google Scholar]
  30. WangK.C.W. DonovanG.M. JamesA.L. NobleP.B. Asthma: Pharmacological degradation of the airway smooth muscle layer.Int. J. Biochem. Cell Biol.202012610581810.1016/j.biocel.2020.10581832707120
    [Google Scholar]
  31. KhadangiF. BosséY. Extracellular regulation of airway smooth muscle contraction.Int. J. Biochem. Cell Biol.20191121710.1016/j.biocel.2019.04.01231042549
    [Google Scholar]
  32. BerairR. SaundersR. BrightlingC.E. Origins of increased airway smooth muscle mass in asthma.BMC Med.201311114510.1186/1741‑7015‑11‑14523742314
    [Google Scholar]
  33. YamauchiK. Airway remodeling in asthma and its influence on clinical pathophysiology.Tohoku J. Exp. Med.20062092758710.1620/tjem.209.7516707849
    [Google Scholar]
  34. HirotaN. MartinJ.G. Mechanisms of airway remodeling.Chest201314431026103210.1378/chest.12‑307324008953
    [Google Scholar]
  35. TlibaO. PanettieriR.A.Jr Noncontractile functions of airway smooth muscle cells in asthma.Annu. Rev. Physiol.200971150953510.1146/annurev.physiol.010908.16322718851708
    [Google Scholar]
  36. PrakashY.S. Airway smooth muscle in airway reactivity and remodeling: What have we learned?Am. J. Physiol. Lung Cell. Mol. Physiol.201330512L912L93310.1152/ajplung.00259.201324142517
    [Google Scholar]
  37. SaundersR.M. BiddleM. AmraniY. BrightlingC.E. Stressed out - The role of oxidative stress in airway smooth muscle dysfunction in asthma and COPD.Free Radic. Biol. Med.20221859711910.1016/j.freeradbiomed.2022.04.01135472411
    [Google Scholar]
  38. ShaoG. JulianM.W. BaoS. McCullersM.K. LaiJ.P. KnoellD.L. CrouserE.D. Formyl peptide receptor ligands promote wound closure in lung epithelial cells.Am. J. Respir. Cell Mol. Biol.201144326426910.1165/rcmb.2010‑0246RC20889801
    [Google Scholar]
  39. ZhangX. WangT. YuanZ.C. DaiL.Q. ZengN. WangH. LiuL. WenF.Q. Mitochondrial peptides cause proinflammatory responses in the alveolar epithelium via FPR-1, MAPKs, and AKT: A potential mechanism involved in acute lung injury.Am. J. Physiol. Lung Cell. Mol. Physiol.20183155L775L78610.1152/ajplung.00466.201730188748
    [Google Scholar]
  40. AlciaturiJ. AnesettiG. IrigoinF. SkowronekF. SapiroR. Distribution of sperm antigen 6 (SPAG6) and 16 (SPAG16) in mouse ciliated and non-ciliated tissues.J. Mol. Histol.201950318920210.1007/s10735‑019‑09817‑z30911868
    [Google Scholar]
  41. YapY.T. LiW. HuangQ. ZhouQ. ZhangD. ShengY. Mladenovic-LucasL. YeeS.P. OrwigK.E. GrannemanJ.G. WilliamsD.C.Jr HessR.A. ToureA. ZhangZ. DNALI1 interacts with the MEIG1/PACRG complex within the manchette and is required for proper sperm flagellum assembly in mice.eLife202312e7962010.7554/eLife.7962037083624
    [Google Scholar]
  42. WuH. LiuY. LiY. LiK. XuC. GaoY. LvM. GuoR. XuY. ZhouP. WeiZ. HuaR. HeX. CaoY. DNALI1 deficiency causes male infertility with severe asthenozoospermia in humans and mice by disrupting the assembly of the flagellar inner dynein arms and fibrous sheath.Cell Death Dis.202314212710.1038/s41419‑023‑05653‑y36792588
    [Google Scholar]
  43. ZariwalaM.A. OmranH. FerkolT.W. The emerging genetics of primary ciliary dyskinesia.Proc. Am. Thorac. Soc.20118543043310.1513/pats.201103‑023SD21926394
    [Google Scholar]
  44. ZariwalaM.A. GeeH.Y. KurkowiakM. Al-MutairiD.A. LeighM.W. HurdT.W. HjeijR. DellS.D. ChakiM. DoughertyG.W. AdanM. SpearP.C. Esteve-RuddJ. LogesN.T. RosenfeldM. DiazK.A. OlbrichH. WolfW.E. SheridanE. BattenT.F.C. HalbritterJ. PorathJ.D. KohlS. LovricS. HwangD.Y. PittmanJ.E. BurnsK.A. FerkolT.W. SagelS.D. OlivierK.N. MorganL.C. WernerC. RaidtJ. PennekampP. SunZ. ZhouW. AirikR. NatarajanS. AllenS.J. AmiravI. WieczorekD. LandwehrK. NielsenK. SchwerkN. SerticJ. KöhlerG. WashburnJ. LevyS. FanS. Koerner-RettbergC. AmselemS. WilliamsD.S. MitchellB.J. DrummondI.A. OttoE.A. OmranH. KnowlesM.R. HildebrandtF. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6.Am. J. Hum. Genet.201393233634510.1016/j.ajhg.2013.06.00723891469
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429368288250401054301
Loading
/content/journals/cmp/10.2174/0118761429368288250401054301
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test