Current Molecular Medicine - Online First
Description text for Online First listing goes here...
1 - 20 of 72 results
-
-
Genistein - A Broad-spectrum Bioactive Compound with Diverse Pharmacological Potential: A Systematic Review
Available online: 24 July 2025More LessIntroductionGenistein is an isoflavone primarily extracted from soybeans and the Dyer’s broom (Genista tinctora L.). It has been extensively studied using various extraction methods and characterized via NMR for structural elucidation. Its pharmacological potential, mediated through interactions with multiple receptors and signalling pathways, has been validated through numerous preclinical studies globally.
MethodsTo analyze the pharmaceutical profile of genistein using PASS software, we correlated it with existing literature, and evaluated its efficacy against various diseases. The study aims to explore the broad-spectrum potential of genistein as a lead compound against the various diseases such as cancer, cardiovascular disease (CVD), neurodegenerative and viral diseases.
ResultsIt is a broad-spectrum drug that is effective against – cancer, heart associated diseases, neurodegenerative diseases and viral diseases. It is a potential anticancer drug that modulates apoptosis, cell cycle, metastasis, and regulates the cancer signalling pathways. Based on the compilation of reports from the literature reviews, it is effective against breast cancer (23%), neuroblastoma (12.77%), prostate and lung cancer (10.64%). Secondly, it has cardio protectant properties and supports cardiovascular health by improving endothelial function and lowering cholesterol. It is reported to be effective against cardiac dysfunction (38.46%), atherosclerosis (26.92%), and cardiotoxicity (15.39%). Thirdly, it offers various neuroprotective benefits in neurodegenerative diseases like Alzheimer's (69.84%) and Parkinson's (19.05%). Lastly, it was also reported to be effective against HSV (23.08%), HIV (23.08%) and HPV (15.39%) viral infections.
DiscussionGenistein exhibits a wide range of therapeutic properties, including anticancer, cardioprotective, neuroprotective, and antiviral effects. It has shown notable efficacy in treating cancers such as breast, prostate, and lung, as well as neurodegenerative conditions like Alzheimer's and Parkinson's. Additionally, its benefits in improving cardiovascular health and combating viral infections further support its potential as a multifunctional therapeutic agent. Although genistein has a broad pharmacological spectrum, its clinical relevance is hampered by a suboptimal pharmacokinetic profile, such as poor bioavailability, rapid systemic clearance, extensive first-pass metabolism, and low aqueous solubility, which limit its therapeutic efficacy.
ConclusionsThis systematic review highlights genistein’s pharmacological profile, demonstrating its efficacy against various diseases and its potential as a lead candidate for drug development in oncology, cardiovascular health, and neurodegenerative therapies. Thus, underscoring its potential, Genistein can be considered a versatile therapeutic agent.
-
-
-
A Cross-sectional Data Analysis between Serum Total Bilirubin and Potential Obesity Indices in US Adults
Authors: Libing Tian, Jian-gang Zhang, Yanshen Chen, Yong Feng, Qing Liu and Cunbao LingAvailable online: 23 July 2025More LessIntroductionObesity is a major risk factor for metabolic and cardiovascular disorders. Recently, emerging biomarkers, such as the Visceral Adiposity Index (VAI) and Lipid Accumulation Product (LAP), have garnered attention for their utility in assessing visceral obesity. Bilirubin, a potent endogenous antioxidant, has been associated with protective effects against various diseases. This study aims to investigate the relationship between serum total bilirubin (STB) levels and VAI/LAP in adults.
MethodsThis cross-sectional study utilized data from the National Health and Nutrition Examination Survey (NHANES) collected between 2003 and 2020. The calculation of VAI and LAP was performed computationally. Weighted multivariate regression models were used to explore the potential correlation between STB levels and VAI or LAP. RCS curves were used to identify the potential non-linear relationship. Moreover, subgroup analyses were conducted to examine heterogeneity across different populations.
ResultsThe analysis included a cohort of 10,625 individuals aged 20 to 85 years. Both unadjusted and adjusted statistical models revealed a significant negative association between STB levels and VAI or LAP (all P< 0.001). RCS indicates that these relationships are linear. Subgroup analyses identified particularly strong associations in non-smokers aged 20-59 without hypertension/diabetes (P < 0.05).
DiscussionOur study's strengths include the use of nationally representative data with appropriate weighting, comprehensive adjustment for confounding variables, and pioneering research on the link between serum bilirubin levels and visceral fat indices, which may indicate early metabolic risk markers. This finding highlights the significant role of bilirubin in body fat distribution and lipid metabolism.
ConclusionThis study revealed that STB was associated with VAI or LAP among the specific general American population aged 20-59 without hypertension/diabetes. Further prospective investigations are warranted to clarify the temporal relationship between STB and novel obesity indices.
-
-
-
Genetic Association Between Sleep Traits and Vertigo Risk: A Two-sample Bidirectional Mendelian Randomization Study
Authors: Weimin Xu, E. Tian, Jun Wang, Xixi Yu, Zhaoqi Guo, Jingyu Chen and Sulin ZhangAvailable online: 10 July 2025More LessBackgroundObservational studies suggest the potential association between sleep traits and vertigo; however, causal evidence remains limited.
ObjectiveThis study aimed to explore the relationship between genetically predicted sleep traits and vertigo with the Mendelian randomization (MR) method.
MethodsInstrumental variables for sleep traits (snoring, sleep duration, insomnia, daytime sleepiness, daytime napping, and chronotype) were adopted from genome-wide association studies (GWAS) data of European ancestry from UK Biobank. The summary-level datasets of vertigo were retrieved from the GWAS of FinnGen. Inverse-variance weighted (IVW) method was adopted as the main analysis.
ResultsIVW analysis revealed a significant association between genetically predicted daytime napping (OR = 1.51, 95% CI =1.08-2.12, P = 0.016) and chronotype (OR = 1.13, 95% CI =1.01-1.26, P = 0.033), both of which were associated with an increased risk of vertigo. However, we did not find evidence for a causal effect of snoring, overall sleep duration, long sleep duration, short sleep duration, insomnia, and excessive daytime sleepiness on vertigo. No reverse causality was detected.
ConclusionOur findings suggest that abnormal sleep patterns may serve as risk factors for vertigo disorders and offer opportunities for the prevention and management of vertigo disorders.
-
-
-
M1 Macrophage-derived TNF-α Promotes Pancreatic Cancer Ferroptosis Via p38 MAPK-ACSL4 Pathway
Authors: Ji-cheng Zhang, Han-lin Yin, Qiang-da Chen, Guo-chao Zhao, Ning Pu, Wen-hui Lou and Wen-chuan WuAvailable online: 10 July 2025More LessIntroductionPancreatic Ductal Adenocarcinoma (PDAC) is one of the most malignant gastrointestinal tumors. M1 macrophage, a subtype within the Tumor Microenvironment (TME), plays a vital role in the development of cancer. Despite its anti-tumoral functions, the specific mechanisms of its action remain incompletely understood.
MethodsThe effect of M1 macrophages on the proliferation ability and cell viability of PDAC cells was evaluated by Cell Counting Kit-8 (CCK-8) cell proliferation assay, cell clone formation assay, and flow cytometry. Western blot, qRT-PCR, confocal microscope, RNA-sequencing, and transmission electron microscope were performed to assess lipid peroxidation and ferroptosis level of PDAC cells in the context of M1 macrophage or TNF-α.
ResultsM1 macrophages inhibited cell proliferation and promoted cell death of PDAC cells, in which ferroptosis played a vital role. Mechanistically, Tumor Necrosis Factor-alpha (TNF-α) released by M1 macrophages binds to the TNFR1 receptor on pancreatic cancer cells, activating the p38 MAPK signaling, which upregulates Acyl-CoA Synthetase Long-chain family member 4 (ACSL4) expression, a critical lipid metabolism enzyme linked to ferroptosis, thereby promoting ferroptosis. Knockdown of ACSL4 or TNFR1 significantly reduced TNF-α-induced ferroptosis.
DiscussionTNF-α is a major inflammatory cytokine and is mainly generated by macrophages and T lymphocytes. It is involved in many pathological processes, such as inflammatory diseases, autoimmune diseases, and cancer. Studies have shown that the administration of recombinant TNF-α can induce tumor regression in mice with sarcomas. In our study, systemic injection of TNF-α slowed the tumor growth in nude mice, but with no significant difference compared with the control group, which may partially be attributed to its angiogenic activity. TNF-α signals via two distinct membrane-binding receptors, TNFR1 and TNFR2, which regulate various diseases. In pancreatic cancer, the role of TNF-α is complex and poorly understood. In a previous study, they found that exogenous systemic administration of human TNF-α, which interacted with murine TNFR1, significantly increased overall tumor growth in the Panc02-PDAC model. Intriguingly, the loss of TNFR1 led to an impediment of immune cell infiltration into the tumor and impaired immunosurveillance, which accelerated tumor growth. This suggests that TNFR1 exerts both pro-tumoral and anti-tumoral functions in the Panc02-PDAC model, but the overall outcome is likely dependent on the spatiotemporal availability of TNF-α. However, systemic TNF-α injection can lead to severe side effects in animals, limiting its further application. In a recent study, TNFR2 was found to promote tumorigenesis and progression in the KPC-PDAC model. Knockdown of TNFR2 or pretreatment with an anti-TNFR2 antibody could significantly slow the tumor progression and incidence. In our study, TNFR2 was found to have a low expression in pancreatic cancer cells and was barely detected with the failure of knockdown. However, the cell lines used in the former study were established from a KPC mouse model, while our experiments were conducted using human PDAC cell lines. Contrary findings are possible as cell lines originate from two different species. However, we will further investigate the mechanism of this difference.
ConclusionIn summary, this study revealed that M1 macrophages could induce ferroptosis in pancreatic cancer cells through secreting TNF-α, indicating a potential therapeutic option for PDAC.
-
-
-
Plasma Sphingomyelin Levels Mediate the Causal Relationship Between Gut Microbiota and Myocardial Interstitial Fibrosis: A Mendelian Randomization Study
Authors: Mingjun Yu, Xingxiao Huang, Beibei Gao and Jinyu HuangAvailable online: 10 July 2025More LessBackgroundPrior studies established associations between gut microbiota and myocardial interstitial fibrosis. Nevertheless, the causal relationships and potential intermediaries remain unknown. Thus, we employed a Mendelian randomization strategy to explore whether gut microbiota causally influence myocardial interstitial fibrosis and to assess whether plasma metabolites serve as potential intermediaries in this pathway.
MethodsA two-sample Mendelian randomization approach was performed, utilizing genome-wide association studies to examine the causal relationship between gut microbiota (n= 18,340) and myocardial interstitial fibrosis (n=41,505). Additionally, an investigation was conducted to determine the potential mediation by four plasma metabolites (n=8,299) via a two-step Mendelian randomization analysis. Inverse variance weighted method was the primary method employed in Mendelian randomization, and complementary analyses were conducted alongside to enhance the robustness of the results.
ResultsMendelian randomization analysis indicated suggestive associations of three microbial taxa with myocardial interstitial fibrosis. The most significant taxon was the genus Faecalibacterium (β [SE], -0.1272 [0.0347], P = 0.0002). Reverse Mendelian randomization analyses revealed no evidence of myocardial interstitial fibrosis affecting these three microbial taxa. In the two-step Mendelian randomization analysis involving four plasma metabolites, it was found that plasma sphingomyelin levels mediated the causal effects of genus Faecalibacterium on myocardial interstitial fibrosis (proportion mediated = 14.2%, 95% CI = 1.4-27.0%).
ConclusionThe study validates the causality between particular gut microbial taxa and myocardial interstitial fibrosis, and suggests that plasma sphingomyelin might mediate this association. These findings offer a novel perspective on myocardial interstitial fibrosis prevention, and underscore the significance of plasma sphingomyelin in human health and disease.
-
-
-
A Comparative Review of Methods for Detecting Epidermal Growth Factor Receptor Mutations in Cell-free DNA from Lung Cancer Patients
Authors: Sepideh Shohani, Mahmood Barati and Arshad HosseiniAvailable online: 08 July 2025More LessBackgroundLung cancer remains the leading cause of cancer-related mortality. Determining the T790M resistance variants and epidermal growth factor receptor (EGFR) mutations is crucial for personalized treatment, especially when using targeted therapies.
ObjectiveThis review article aims to comprehensively compare some of the various diagnostic techniques associated with liquid biopsies, such as cell-free DNA (cfDNA) for T790M and EGFR mutant identification. It also aims to evaluate their pertinence in clinical settings, as well as their sensitivity and specificity to determine how effectively they monitor treatment response and resistance.
MethodsA literature search was conducted using databases including PubMed, Scopus, and Web of Science. The keyword list included “EGFR mutations,” “T790M resistance,” “liquid biopsy,” “COLD PCR,” “NGS,” “ddPCR,” “BEAMing,” and other methods. The effect of these studies on diagnostic technologies for identifying EGFR mutations was assessed in terms of clinical practice, methodological accuracy, and significance. Sensitivity, specificity, clinical applicability, cost analysis, turnaround times, and ease of integration into clinical workflows were used as parameters for evaluation based on the literature.
ResultsThere are advantages and disadvantages to cfDNA monitoring strategies for treatment response and resistance, as well as to the assessment of sensitivity, specificity, and clinical applicability for identifying EGFR mutations.
ConclusionAdvanced techniques such as COLD-PCR, LC-MS, qPCR, NGS sequencing, Sanger sequencing, PNA microarrays, the Allele-Specific Competitive Extension (ASCE) real-time PCR assay, and nanopore technology are necessary for personalized lung cancer management. However, depending on the objective of the work, the suitable method should be selected based on its benefits and drawbacks.
-
-
-
The Mechanosensitive Ion Channel Piezo1 Promotes Obliterative Bronchiolitis through YAP-Dependent Epithelial-to-mesenchymal Transition
Authors: Li Wan, You Wu, Jinsong Yang, Peng Deng, Zuhuan Yao and Quanchao SunAvailable online: 07 July 2025More LessIntroductionObliterative bronchiolitis (OB) is a severe and progressive complication characterized by the fibrotic obliteration of small airways, leading to significant morbidity and mortality, particularly in lung transplant recipients. The pathogenesis of OB involves complex cellular processes, among which epithelial-to-mesenchymal transition (EMT) plays a crucial role. This study investigates the role of mechanosensitive ion channel Piezo1 in promoting OB through Yes-associated protein (YAP)-dependent EMT.
MethodPiezo1-induced signal pathway alterations, fibrosis, and EMT-related features were examined in the mouse OB model and BEAS-2B cells. The efficacy of Piezo1 in EMT and OB was explored and validated both in vitro and in vivo.
ResultsPiezo1 was found to be upregulated in OB, and pharmacological inhibition of Piezo1 effectively alleviated EMT and fibrotic deposition. Piezo1 activation stimulated the Ca2+ influx and nuclear translocation of YAP that triggered the transition of epithelial cells into a mesenchymal phenotype, which contributed to airway fibrosis and obstruction. Furthermore, inhibition of YAP or calcium chelation significantly attenuated Piezo1 activation-induced EMT and OB, indicating that YAP and Ca2+ are critical mediators in this process.
DiscussionPiezo1 expression was found to be upregulated in OB, and its activation induced the epithelial-to-mesenchymal transition (EMT) process via a YAP-dependent pathway. Piezo1 could accelerate EMT and the occlusion rate of grafts via Ca2+ influx-dependent YAP activation in OB, suggesting a direct role in facilitating EMT and subsequent fibrotic remodeling in OB.
ConclusionThe present results highlight that Piezo1 promotes OB through a YAP-dependent EMT pathway, suggesting Piezo1 as a novel therapeutic strategy for treating OB and potentially improving outcomes of lung transplant recipients.
-
-
-
SLC41A2 Suppresses Colon Cancer Progression by Inhibiting GSK3β Ubiquitin-proteasome Degradation
Authors: Yueyao Lu, Ying Shen, Jinsong Liu, Jianzhong Deng, Yue Wang, Qian Liu and Wenbin LuAvailable online: 07 July 2025More LessBackgroundColon cancer is a highly prevalent tumor with a high mortality rate worldwide. SLC41A2 is a member of the solute carrier family, but its role in colon cancer is still unclear.
MethodsThe relationship between the expression level of SLC41A2 and clinicopathological features in colon cancer was investigated using data from the TCGA database. The differential expression genes of SLC41A2 were identified the potential role of SLC41A2 in colon cancer was analysed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. By transfecting plasmids or siRNA to overexpress or knock down SLC41A2 in colon cancer cells, the effects of SLC41A2 on colon cancer cell proliferation, migration, and apoptosis were detected through EdU, MTT, wound-healing, Transwell, and JC-1 experiments. Western blot and ubiquitination experiments validated the regulation of GSK3β stability by SLC41A2. Rescue experiments and CCK8 assays confirmed the regulatory effect of SLC41A2 on GSK3β.
ResultsCompared to normal tissues, SLC41A2 exhibited a lower expression level in colon cancer, and the expression levels of SLC41A2 were correlated with the stage and Tumor Node Metastasis (TNM) classification. GO and KEGG analyses displayed that SLC41A2 primarily affected the growth factor activity and Wnt signaling pathway. Furthermore, elevated expression of SLC41A2 notably decreased the proliferation, migration and invasion of colon cancer cells, along with increased apoptosis. The overexpression of SLC41A2 and rescue experiments confirmed that SLC41A2 enhances the protein stability of GSK3β by inhibiting its ubiquitin-proteasome degradation and causes the upregulation of GSK3β, thereby suppressing the progression of colon cancer.
ConclusionSLC41A2 was lowly expressed in colon cancer tissues or cells. By inhibiting the ubiquitin-proteasome degradation of GSK3β, SLC41A2 can significantly upregulate the expression of GSK3β, which ultimately suppresses the proliferation and migration of colon cancer cells.
-
-
-
Triple Negative Breast Cancer Heterogeneity and Tumour Micro-environment-based Model Systems’ Focus on Druggable Targets
Authors: Shreyasi Kundu and Suresh P. K.Available online: 04 July 2025More LessFifteen to twenty percent of all cases of breast cancer are TNBC (triple negative breast cancer) and exhibit heterogenic features due to their diverse molecular characteristics. Additionally, their aberrant cell cycling behavior contributes to their metastatic capabilities and aggressive nature. TNBC is the only molecular subtype, which lacks the expression of hormone receptors, like estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2). Hence, it is recalcitrant to hormone therapy. Also, the complex and evolving tumour microenvironment (TME) comprises blood vessels, stromal cells, immune cells, metabolic factors, extracellular matrix (ECM), and an integrated perspective of their interconnections as well as their variability with respect to TNBC progression needs to be comprehended for biomarker/druggable target(s) development and/or their validation. Such TME-based model systems can help us understand the relationship between the different TME components that affect tumour growth and metastasis. This review also catalogs biomarkers and TNBC behaviour within the TME. Also, this review discusses and analyses models that replicate various tumour subtypes that can be correlated with variability in treatment responses, thereby facilitating a better understanding of TNBC heterogeneity. Thus, by identifying biomarkers and constructing model systems, we can augment efforts to overcome treatment failure and poor outcomes in TNBC patients. These subtype-specific TNBC model systems, mirroring the intricacies of the TME, have the potential to provide a feasible and innovative approach to target TNBC cells. This review will facilitate the ongoing global efforts to develop efficacious and safe “tailor-made” drugs for TNBC patients.
-
-
-
Gut Microbiota-induced Long Non-coding RNA Snhg9 Regulates the Development of Human Malignant Tumors
Authors: Dengke Jia, Yaping He, Qianle Chen and Yawu ZhangAvailable online: 03 July 2025More LessGut microbes influence the progression of human malignancies through their recognition by the immune system and their effects on numerous metabolic pathways. Long non-coding RNA is a key target of intestinal microbiota involved in the progression of human malignant tumors. Current research shows that there is a close cross-talk between long non-coding RNA Snhg9 and intestinal microorganisms, and it is widely involved in the progression of human malignant tumors. An in-depth study of the interaction between long non-coding RNA and intestinal flora and the intrinsic regulatory mechanism of snhg9 will provide new and powerful therapeutic targets for future research on human malignant tumors.
-
-
-
Pancreatic Elastase Affects Liver Injury by Activating Pro-inflammatory Cytokines in Kupffer Cells via the JAK2/STAT3 Signaling Pathway
Authors: Ying Feng, Xinxin Jin, Haoyu Xu, Bo Sun, Meixia Guo and Minli LiAvailable online: 01 July 2025More LessIntroductionThis study aimed to investigate the role of JAK2 (Janus kinase 2)/STAT3 (signal transducer and activator of transcription 3) signaling in liver injury during severe acute pancreatitis (SAP), focusing on pancreatic elastase- and lipopolysaccharide (LPS)-induced Kupffer cell (KC) activation.
MethodsA rat SAP model was established via retrograde taurocholic acid infusion into the biliopancreatic duct. Inflammatory cytokine levels and JAK2/STAT3 pathway activity were quantified in liver tissues. KCs were treated with elastase/LPS ± AG490 (JAK2 inhibitor). Proinflammatory cytokines, RNA, and protein expression were analyzed.
Results and DiscussionSAP rats exhibited elevated TNF-α, IL-6, and IL-18 levels in both serum and liver tissues, with JAK2/STAT3 pathway activation. AG490 administration suppressed JAK2/STAT3 activation, reduced inflammation, and alleviated liver injury. Similarly, KCs treated with elastase and LPS showed increased proinflammatory cytokine levels and JAK2/STAT3 upregulation, which were mitigated by AG490 treatment.
ConclusionThe findings highlighted the pivotal role of the JAK2/STAT3 signaling pathway in SAP-induced liver injury. Selective inhibition of this pathway by AG490 could reduce inflammation and protect against liver damage, suggesting its potential as a therapeutic target for inflammatory liver diseases.
-
-
-
Role of Exosomes from Nucleus Pulposus Cells in Attenuating Intervertebral Disc Degeneration by Inhibiting Nucleus Pulposus Cell Apoptosis via the miR-8485/GSK-3β/Wnt/β-catenin Signaling Axis
Authors: Weiye Zhang, Ping Zhang, Jiawen Zhan, Xu Wei, Yuxuan Du, Ke Zhao, Liguo Zhu, Rong Xie, Hualong Xie, Shuaiqi Zhou, Gewen Wang and Chuhao CaiAvailable online: 23 June 2025More LessBackgroundStudies have shown that abnormal stress is a significant inducer of Intervertebral Disc Degeneration (IVDD). Although traction force is commonly used to delay IVDD, its effects on Nucleus Pulposus Cells (NPCs) and their secreted exosomes remain unclear. In addition, this study systematically revealed the relationship between miR-8485 and IVDD for the first time.
MethodsCellular experiments were performed using a Flexcell cell stretching platform to apply traction force to NPCs. After optimizing loading parameters, NPC-derived exosomes (NPCs-exo) were isolated and subjected to miRNA high-throughput sequencing. Differentially expressed miRNAs were identified, and their regulatory effects on the Wnt/β-catenin pathway were investigated. Ex vivo rabbit spinal samples were used to validate the cellular experimental results under traction force loading.
ResultsNPCs-exo were found to be internalized by NPCs, and traction force promoted NPCs-exo secretion. High-throughput sequencing and differential expression analysis identified miR-8485 as a differentially expressed miRNA in NPCs-exo secreted under Cyclic Mechanical Tension (CMT) conditions. Dual-luciferase reporter assays confirmed the targeted regulatory relationship between miR-8485 and GSK-3β, as well as its involvement in the Wnt/β-catenin pathway-mediated regulation of NPCs degeneration. Ex vivo experiments, including morphological and immunofluorescence analyses, revealed that the traction group exhibited better morphology than the pressure group, with a more organized AF, NP, and higher NPCs content, though some loss persisted. Both groups showed significant differences in ECM markers (Collagen II, Aggrecan, MMP3) compared to the control (p < 0.05). Additionally, the traction group had significantly higher Collagen II and Aggrecan levels than the pressure group (p < 0.05).
ConclusionCMT can promote the secretion of NPCs-exo, which are internalized by the NPCs. Through the delivery of miR-8485, NPCs-exo target and regulate GSK-3β, thereby enhancing Wnt/β-catenin pathway activity. This mechanism increases NPCs viability and extracellular matrix synthesis while suppressing apoptosis, ultimately delaying IVDD progression. Immunofluorescence staining in animal experiments confirmed that traction force effectively improves extracellular matrix expression in the IVD and mitigates stress-induced morphological alterations of the IVD.
-
-
-
Exploring the Therapeutic Role of Pregnane X Receptor Activation in Acute Kidney Injury: Mechanisms and Clinical Implications
Authors: Qiming Fan, Huihui Song, Kexin Zhang, Chengxia Kan, Sufang Sheng, Yujie Ma, Xiaodong Sun, Ruiyan Pan and Zhentao GuoAvailable online: 12 June 2025More LessAcute Kidney Injury (AKI) is a critical condition characterized by a rapid decline in kidney function, often resulting from ischemia-reperfusion, nephrotoxicity, or inflammation. Current treatments primarily rely on renal replacement therapies, which remain limited and controversial. The pregnane X receptor (PXR), a nuclear receptor involved in drug metabolism, immune regulation, and cellular homeostasis, has emerged as a promising target for AKI therapy. Preclinical studies suggest that PXR activation demonstrates protective effects in AKI through multiple mechanisms, including reducing inflammation, oxidative stress, and mitochondrial dysfunction. Specifically, PXR modulates nuclear factor-κB (NF-κB) signaling, supports mitochondrial function, regulates apoptosis, and enhances renal hemodynamics, thus mitigating AKI progression. Furthermore, PXR's role in the gut-liver-kidney axis strengthens intestinal barrier integrity and bile acid homeostasis, contributing to renal protection. Recent advances in research on the PXR agonists rifampicin and tanshinone IIA (TanIIA) highlight the potential of PXR-targeted therapies to mitigate nephrotoxicity and promote kidney recovery. This review provides a comprehensive analysis of PXR’s protective mechanisms in AKI, underscoring its therapeutic potential and paving the way for new treatment strategies.
-
-
-
Hemochromatosis and Hepatic Complications: A Comprehensive Review of Molecular Mechanisms, Diagnostics, and Emerging Therapeutics
Available online: 04 June 2025More LessHemochromatosis is an autosomal recessive iron overload disorder. It occurs due to a failure in the hepcidin response, leading to systemic iron overload. The high iron levels in the plasma stored in various organs cause injury and permanent damage. There are two types of hemochromatosis: primary and secondary. In non-HFE hemochromatosis, mutations in the HJV, HAMP, TRF2, and SLC40A1 genes are implicated, with the associated condition classified as type I hemochromatosis. In contrast, juvenile hemochromatosis (type II hemochromatosis/ HFE II) is linked to mutations in the hemojuvelin gene or the antimicrobial peptide hepcidin. In this study, relevant literature in databases, including PubMed, MEDLINE records, Cochrane Central Register of Controlled Trials (CENTRAL), Google Scholar, and Embase, was searched. Our study inclusion criteria encompassed both experimental and observational studies or a combination of both, with data derived from the human population. The exclusion criteria included animal models, observational studies, and unpublished data. Hepcidin is usually up-regulated in response to high serum iron, but it is unexpectedly low in patients with hemochromatosis because of mutations in HFE, hemojuvelin (JH), and transferrin receptor 2 (TfR2). TfR2, expressed by hepatocytes, is mutated in hemochromatosis type III. Future research directions include exploring the molecular mechanisms underlying the effects of the TFR2 gene variant on iron homeostasis and liver damage and investigating potential therapeutic targets for treating hemochromatosis-related liver disease. Additionally, further epidemiological and modern genetic engineering studies are needed to better understand the prevalence and impact of hemochromatosis on liver health in different populations.
-
-
-
Oxidized HDL as a Novel Predictive Biomarker in Conjunction with Selected Inflammatory Variables in Severe Dengue Fever Patients from Lahore, Pakistan
Authors: Muhammad Sarwar, Noor Kamil, Rizwan Ashraf, Raahim Ali, Rehan Majeed, Saba Arif, Hassaan B. Sohail, Zara Khan and Maira RehanAvailable online: 03 June 2025More LessBackgroundDengue fever is a deadly disease and represents one of the biggest threats to global health, with persisting uncertainty surrounding its prognosis and treatment standards. The onset of severe dengue fever, characterized by intense inflammation and the production of pro-inflammatory molecules, is currently the only well-established association with disease severity. Therefore, identifying and assessing both new and established biomarkers that can accurately predict the outcome of severe dengue fever is essential.
MethodsIn this study, 100 age-matched healthy controls and 100 hospitalized dengue patients positive for NS1 and IgM, with a mean age of 45 years (range: 22–65), were examined. Potential biomarkers were analyzed using a Coulter counter, spectroscopy, and ELISA to determine their prognostic value in assessing dengue fever severity.
ResultsTriglycerides and very-low-density lipoproteins (VLDL) were significantly higher in severe dengue fever patients compared to controls (p<0.001). Conversely, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and cholesterol levels were significantly lower in patients compared to controls (p<0.001). Albumin levels were 40.9% lower, lactate dehydrogenase (LDH) was 422.1% higher, and C-reactive protein (CRP) levels were 435.6% higher in severe dengue fever patients compared to controls. Unlike HDL, oxidized HDL (oxHDL) levels were 160.4% higher in patients with severe dengue fever compared to controls. Still, the absolute levels of oxHDL did not exceed total HDL levels, as confirmed by corrected data.
ConclusionOxidized HDL, combined with other lipoproteins, may provide an ideal panel of prognostic indicators that could guide the treatment of severe dengue fever and serve as reliable biomarkers for predicting disease outcomes.
-
-
-
Urinary CFHR2 as a Biomarker for Early Diagnosis and Disease Progression Prediction in Diabetic Kidney Disease
Authors: Tao Du and Qing ZhangAvailable online: 26 May 2025More LessAimThe pathogenesis of diabetic kidney disease (DKD) is complex, and the specific biomarkers for detecting early diagnosis and monitoring kidney function deterioration are insufficient, which affects the prognosis of patients. The complement activation in glomeruli and renal interstitium contributes to the aggravation of DKD. Several key complement proteins, such as complement factor 3 (C3), CD59, and complement factor H-related protein 2 (CFHR2) were reported to be potential biomarkers for early diagnosis and prognosis for DKD.
MethodsIn the current study, we focus on CFHR2, to investigate its capability and sensitivity as a DKD biomarker. As a non-invasive detection sample, urine has the characteristic of convenient sampling. In the current study, the urine samples were collected from three groups: diabetic patients without albuminuria, with micro-albuminuria, and macroalbuminuria, to analyze whether CFHR2 was associated with albuminuria concentration and declined renal function. Meanwhile, the urinary neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), and C3 were also examined by enzyme-linked immunosorbent assay (ELISA) to compare with CFHR2 to determine whether CFHR2 had an advantage in predicting the early detection and progression of DKD. The Spearman correlation analysis was performed for the correlation analysis. The receiver operating characteristic curve was used to analyze the diagnostic efficacy.
ResultsCFHR2 had superior diagnostic power to predict the early occurrence of DKD and disease progression, compared with NGAL, microalbumin, and C3 in urine.
ConclusionCFHR2 has satisfactory potential to be a biomarker for early diagnosis and risk of progression of DKD.
-
-
-
CD82 Methylation Patterns in Inflammatory Arthritis and their Clinical Association with Hypertension in Rheumatoid Arthritis
Authors: Yiming Shi, Hongliang Hu, Mi Zhou, Cen Chang, Jianan Zhao, Yu Shan, Yixin Zheng, Fuyu Zhao, Yunshen Li, Shicheng Guo, Xiaolei Fan, Wukai Ma and Dongyi HeAvailable online: 20 May 2025More LessObjectiveThis study aimed to compare CD82 methylation patterns in peripheral blood among patients with rheumatoid arthritis [RA], inflammatory arthritis, and healthy controls [HC] and to assess their clinical associations with hypertension in RA.
MethodsIn this cross-sectional study, CD82 methylation at positions 44596705-44596865 on chromosome 11 was analyzed using targeted methylation techniques in peripheral blood from patients with RA, psoriatic arthritis [PsA], ankylosing spondylitis [AS], gout, and HC.
ResultsCD82 cg22143324 methylation levels were significantly different between RA patients and healthy controls [P<0.0001], PsA [P=0.0281], and AS [P=0.0360]. In RA subgroups, individuals negative for both rheumatoid factor [RF] and cyclic citrullinated peptide [CCP] [RA-DN], as well as those positive for both [RA-DP], exhibited significantly different methylation levels compared to HC [P=0.0355 and P<0.0001, respectively]. ROC analysis indicated a promising diagnostic potential for CD82 cg22143324 methylation, especially with the TTT haplotype. Correlation analysis revealed significant associations between CD82 methylation and CCP levels, as well as hypertension in RA patients.
ConclusionThe analysis conducted revealed altered CD82 cg22143324 methylation in RA, with potential utility in distinguishing seronegative patients from healthy controls. An association between lower methylation levels and comorbid hypertension in RA patients was also observed, warranting further investigation.
-
-
-
SMAC/DIABLO: A Guardian Angel in Boosting Anticancer Drug-Induced Apoptosis
Authors: Anuja Mishra and Swaroop Kumar PandeyAvailable online: 19 May 2025More LessApoptosis is an established hallmark of cancer. In normal conditions, apoptosis is strictly controlled; however, when it is not properly managed, it causes several complications, including cancer progression and drug resistance. SMAC/ Diablo (SMAC) is a mitochondrial protein that is released into the cytosol upon activation of BAX/BAK channels with apoptotic signals. SMAC protein interacts and neutralizes inhibitors of apoptosis (IAP) proteins and initiates the caspase cascade, which leads to apoptosis. SMAC is downregulated in several types of cancer, which led to the design of small-molecule inhibitors known as SMAC mimetics as new cancer therapeutics, and some of these molecules are in the clinical phase. It has also been shown that a combination of SMAC with standard anti-cancer drugs could be beneficial to drug-resistant cancer. Despite being a pro-apoptotic protein, it has been found that SMAC/Diablo is overexpressed in several types of cancers like lung, breast, bladder, cervix, pancreas, prostate, and colon, as well as in melanoma and glioma, and in cancer cells. Recently, we have reported that the overexpression of SMAC in cancers is essential for cell and tumor growth due to non-apoptotic regulation of phospholipid synthesis. The current review is focused on apoptotic and non-apoptotic functions of SMAC and its role in drug resistance.
-
-
-
miRNA-29b-3p: An Important Target for Ameliorating Liver Fibrosis in Wilson Disease by Inhibiting Autophagy
Authors: Peng Huang, Yuzhe Huang, Ting Dong, Yulong Yang, Wei He, Meixia Wang, Han Wang and Wenming YangAvailable online: 14 May 2025More LessBackgroundLiver fibrosis is an important pathological feature of Wilson disease (WD). The miRNA-29b-3p level decreased in liver fibrosis, while the mechanism of miRNA-29b-3p in liver fibrosis has not been reported, and was elucidated in the work.
MethodsThe miRNA-29b-3p levels were evaluated by q-PCR. The effect of miRNA-29b-3p on the activity of hepatic stellate cells was detected by cell activity assay. The protein levels were checked by western blot. The interaction between miRNA-29b-3p and ULK1 mRNA with base complementary sequences was detected by double luciferase assay. The autophagosomes were observed by TEM. The cell fibrosis-like change was evaluated with an anti-α-smooth muscle actin (α-SMA) antibody by IF.
ResultsThe results showed that miRNA-29b-3p mimics down-regulated the α-SMA and Col1 protein levels, and miRNA-29b-3p inhibitors upregulated the α-SMA and Col1 protein levels. The dual-luciferase assay result revealed that miRNA-29b-3p interacted with ULK1. The miRNA-29b-3p mimics inhibited the protein expression of ULK1, beclin1, and LC3, whereas miRNA-29b-3p inhibitors promoted the protein expression of ULK1, beclin1, and LC3.
ConclusionThe miRNA-29b-3p blocked HSCs trans-differentiation into myofibroblasts by inhibiting autophagy, and further inhibiting liver fibrosis in WD.
-
-
-
Boosting Antiviral Defenses: stat3 Inhibition Enhances Type I Interferon Response to Respiratory Syncytial Virus by Silencing KAP1
Authors: Huagui Chen, Dongmei Ding, Zimeng Teng and Ran ZhangAvailable online: 13 May 2025More LessIntroductionThe antiviral effects of type I interferons [IFNs] on respiratory syncytial virus [RSV]-infected airway epithelial cells have been identified. We aim to further reveal the mechanism of stat3 and kruppel-associated box-associated protein 1 [KAP1] in RSV-infected airway epithelial cells.
MethodsUsing the A549 cell line, we investigated the impact of RSV infection, KAP1 overexpression, and stat3 inhibition with Stattic. Cell counting kit 8 assay was used to determine the viability, and enzyme-linked immunosorbent assay was applied to measure the levels of IL-6, IL-8, IL-1β, IFN-α, and IFN-β. Viral replication was tested via plaque assay. Meanwhile, quantitative real-time reverse transcription polymerase chain reaction or/and western blot were applied to measure the expressions of p-stat3 and KAP1 in the cells.
ResultsRSV infection repressed the viability, upregulated p-stat3 and KAP1 expressions, elevated levels of inflammation-related factors [IL-6, IL-8, IL-1β], and type I IFN immune response-associated factors [IFN-α, IFN-β], and promoted viral replication in A549 cells. Stattic attenuated the promoting effect of RSV on inflammation-related factors and viral replication, but enhanced its impact on IFN-α and IFN-β levels in the cells. More importantly, KAP1 overexpression reversed the effects of Stattic on viability, inflammation [IL-6, IL-8, IL-1β], type I IFN immune response [IFN-α, IFN-β], and viral replication in RSV-infected A549 cells.
ConclusionOur findings unveil the pivotal role of stat3 inhibition in potentiating type I IFN-mediated antiviral responses against RSV in lung epithelial cells, revealing KAP1 as a potential therapeutic target for combating respiratory viral infections.
-