Skip to content
2000
image of Molecular Pathways and Recent Therapeutic Strategies for Polyglutamine Diseases

Abstract

The abnormal expansion of trinucleotide cytosine–adenine–guanine [CAG] repeats within disease-associated genes is the primary cause of polyglutamine [polyQ] diseases. This study aims to evaluate the pathological threshold at which the polyglutamine [polyQ] tract, following mutation, leads to neurotoxic effects and to explore emerging therapeutic strategies targeting these mechanisms. The formation of protein aggregates comprising pathogenic polyQ proteins, which induce cellular cytotoxicity, is a key hallmark of polyQ diseases. Despite extensive research, the molecular pathways responsible for the cellular toxicity caused by mutant polyQ proteins remain untreatable. However, strategies to reduce the abnormal expansion of CAG repeats, inhibit the accumulation and aggregation of toxic polyQ-expanded proteins, and promote protein refolding, degradation, or prevention of proteolytic cleavage have shown promise. Additionally, therapeutic approaches such as induced autophagy and stem cell therapies represent promising avenues for intervention. Current treatment modalities for polyQ diseases primarily focus on temporarily alleviating symptoms and slowing disease progression. Continued research into targeted therapeutic strategies is essential to address the underlying pathophysiology of these disorders effectively.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240393446250829084646
2025-10-08
2025-11-01
Loading full text...

Full text loading...

References

  1. Zhang Q. Tsoi H. Peng S. Assessing a peptidylic inhibitor-based therapeutic approach that simultaneously suppresses polyglutamine RNA- and protein-mediated toxicities in patient cells and Drosophila. Dis. Model. Mech. 2016 9 3 321 334 26839389
    [Google Scholar]
  2. Li C Nagel J Androulakis S Song J Buckle AM PolyQ 2.0: An improved version of PolyQ, a database of human polyglutamine proteins. Database 2016 2016 26739773
    [Google Scholar]
  3. Fan H.C. Ho L.I. Chi C.S. Polyglutamine (PolyQ) diseases: Genetics to treatments. Cell Transplant. 2014 23 4-5 441 458 10.3727/096368914X678454 24816443
    [Google Scholar]
  4. Zurawel A.A. Kabeche R. DiGregorio S.E. CAG expansions are genetically stable and form nontoxic aggregates in cells lacking endogenous polyglutamine proteins. MBio 2016 7 5 e01367 e16 10.1128/mBio.01367‑16 27677791
    [Google Scholar]
  5. Eftekharzadeh B. Piai A. Chiesa G. Sequence context influences the structure and aggregation behavior of a PolyQ tract. Biophys. J. 2016 110 11 2361 2366 10.1016/j.bpj.2016.04.022 27276254
    [Google Scholar]
  6. Xiao L. Li H. Zhang J. Salidroside protects Caenorhabditis elegans neurons from polyglutamine-mediated toxicity by reducing oxidative stress. Molecules 2014 19 6 7757 7769 10.3390/molecules19067757 24918543
    [Google Scholar]
  7. Valor L.M. Guiretti D. Lopez-Atalaya J.P. Barco A. Genomic landscape of transcriptional and epigenetic dysregulation in early onset polyglutamine disease. J. Neurosci. 2013 33 25 10471 10482 10.1523/JNEUROSCI.0670‑13.2013 23785159
    [Google Scholar]
  8. Jimenez-Sanchez M. Thomson F. Zavodszky E. Rubinsztein D.C. Autophagy and polyglutamine diseases. Prog. Neurobiol. 2012 97 2 67 82 10.1016/j.pneurobio.2011.08.013 21930185
    [Google Scholar]
  9. Soto C. Estrada L.D. Protein misfolding and neurodegeneration. Arch. Neurol. 2008 65 2 184 189 10.1001/archneurol.2007.56 18268186
    [Google Scholar]
  10. Todd T.W. Lim J. Aggregation formation in the polyglutamine diseases: Protection at a cost? Mol. Cells 2013 36 3 185 194 10.1007/s10059‑013‑0167‑x 23794019
    [Google Scholar]
  11. Scherzinger E. Lurz R. Turmaine M. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 1997 90 3 549 558 10.1016/S0092‑8674(00)80514‑0 9267034
    [Google Scholar]
  12. Chen S. Berthelier V. Yang W. Wetzel R. Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol. 2001 311 1 173 182 10.1006/jmbi.2001.4850 11469866
    [Google Scholar]
  13. Chen S. Ferrone F.A. Wetzel R. Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci. USA 2002 99 18 11884 11889 10.1073/pnas.182276099 12186976
    [Google Scholar]
  14. Bucciantini M. Giannoni E. Chiti F. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002 416 6880 507 511 10.1038/416507a 11932737
    [Google Scholar]
  15. Gutekunst C.A. Li S.H. Yi H. Nuclear and neuropil aggregates in Huntington’s disease: Relationship to neuropathology. J. Neurosci. 1999 19 7 2522 2534 10.1523/JNEUROSCI.19‑07‑02522.1999 10087066
    [Google Scholar]
  16. Paulson H.L. Bonini N.M. Roth K.A. Polyglutamine disease and neuronal cell death. Proc. Natl. Acad. Sci. USA 2000 97 24 12957 12958 10.1073/pnas.210395797 11058149
    [Google Scholar]
  17. Horvitz H.R. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res. 1999 59 7 1701s 1706s 10197583
    [Google Scholar]
  18. Kegel K.B. Kim M. Sapp E. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J. Neurosci. 2000 20 19 7268 7278 10.1523/JNEUROSCI.20‑19‑07268.2000 11007884
    [Google Scholar]
  19. Ravikumar B. Duden R. Rubinsztein D.C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 2002 11 9 1107 1117 10.1093/hmg/11.9.1107 11978769
    [Google Scholar]
  20. Chandrasekaran V. Hediyal T.A. Anand N. Polyphenols, autophagy and neurodegenerative diseases: A review. Biomolecules 2023 13 8 1196 10.3390/biom13081196 37627261
    [Google Scholar]
  21. Chung C.G. Lee H. Lee S.B. Mechanisms of protein toxicity in neurodegenerative diseases. Cell. Mol. Life Sci. 2018 75 17 3159 3180 10.1007/s00018‑018‑2854‑4 29947927
    [Google Scholar]
  22. Ni C.L. Seth D. Fonseca F.V. Polyglutamine tract expansion increases s-nitrosylation of huntingtin and ataxin-1. PLoS One 2016 11 9 0163359 10.1371/journal.pone.0163359 27658206
    [Google Scholar]
  23. Sánchez I. Balagué E. Matilla-Dueñas A. Ataxin-1 regulates the cerebellar bioenergetics proteome through the GSK3β-mTOR pathway which is altered in Spinocerebellar ataxia type 1 (SCA1). Hum. Mol. Genet. 2016 25 18 4021 4040 10.1093/hmg/ddw242 27466200
    [Google Scholar]
  24. Kraus-Perrotta C. Lagalwar S. Expansion, mosaicism and interruption: Mechanisms of the CAG repeat mutation in spinocerebellar ataxia type 1. Cerebellum Ataxias 2016 3 1 20 10.1186/s40673‑016‑0058‑y 27895927
    [Google Scholar]
  25. Cvetanovic M. Ingram M. Orr H. Opal P. Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1. Neuroscience 2015 289 289 299 10.1016/j.neuroscience.2015.01.003 25595967
    [Google Scholar]
  26. Kang A. Park S.H. Lee S. A key lysine residue in the AXH domain of ataxin-1 is essential for its ubiquitylation. Biochim. Biophys. Acta. Proteins Proteomics 2015 1854 5 356 364 10.1016/j.bbapap.2015.01.012 25641559
    [Google Scholar]
  27. Kohiyama M.F. Lagalwar S. Stabilization and degradation mechanisms of cytoplasmic ataxin-1. J. Exp. Neurosci. 2016 9 Suppl. 2 123 129 27168726
    [Google Scholar]
  28. del Caño-Espinel M. Acebes J.R. Sanchez D. Ganfornina M.D. Lazarillo-related Lipocalins confer long-term protection against type I Spinocerebellar Ataxia degeneration contributing to optimize selective autophagy. Mol. Neurodegener. 2015 10 1 11 10.1186/s13024‑015‑0009‑8 25888134
    [Google Scholar]
  29. Ferro A. Carbone E. Marzouk E. Siegel A. Nguyen D. Polley K. Treating SCA1 mice with water-soluble compounds to non-specifically boost mitochondrial function. J. Vis. Exp. 2017 119 e53758 10.3791/53758
    [Google Scholar]
  30. Huynh D.P. Del Bigio M.R. Ho D.H. Pulst S.M. Expression of ataxin-2 in brains from normal individuals and patients with Alzheimer’s disease and spinocerebellar ataxia 2. Ann. Neurol. 1999 45 2 232 241 10.1002/1531‑8249(199902)45:2<232:AID‑ANA14>3.0.CO;2‑7 9989626
    [Google Scholar]
  31. Magaña J.J. Velázquez-Pérez L. Cisneros B. Spinocerebellar ataxia type 2: Clinical presentation, molecular mechanisms, and therapeutic perspectives. Mol. Neurobiol. 2013 47 1 90 104 10.1007/s12035‑012‑8348‑8 22996397
    [Google Scholar]
  32. Liu J. Tang T.S. Tu H. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J. Neurosci. 2009 29 29 9148 9162 10.1523/JNEUROSCI.0660‑09.2009 19625506
    [Google Scholar]
  33. Li P.P. Sun X. Xia G. ATXN2‐AS, a gene antisense to ATXN2, is associated with spinocerebellar ataxia type 2 and amyotrophic lateral sclerosis. Ann. Neurol. 2016 80 4 600 615 10.1002/ana.24761 27531668
    [Google Scholar]
  34. Halbach M.V. Gispert S. Stehning T. Damrath E. Walter M. Auburger G. Atxn2 knockout and CAG42-Knock-in cerebellum shows similarly dysregulated expression in calcium homeostasis pathway. Cerebellum 2017 16 1 68 81 10.1007/s12311‑016‑0762‑4
    [Google Scholar]
  35. Laffita-Mesa J.M. Bauer P.O. Kourí V. Epigenetics DNA methylation in the core ataxin-2 gene promoter: Novel physiological and pathological implications. Hum. Genet. 2012 131 4 625 638 10.1007/s00439‑011‑1101‑y 22037902
    [Google Scholar]
  36. Nóbrega C. Nascimento-Ferreira I. Onofre I. Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice. PLoS One 2013 8 1 52396 10.1371/journal.pone.0052396 23349684
    [Google Scholar]
  37. Konno A. Shuvaev A.N. Miyake N. Mutant ataxin-3 with an abnormally expanded polyglutamine chain disrupts dendritic development and metabotropic glutamate receptor signaling in mouse cerebellar Purkinje cells. Cerebellum 2014 13 1 29 41 10.1007/s12311‑013‑0516‑5 23955261
    [Google Scholar]
  38. Bettencourt C. Lima M. Machado-joseph disease: From first descriptions to new perspectives. Orphanet J. Rare Dis. 2011 6 1 35 10.1186/1750‑1172‑6‑35 21635785
    [Google Scholar]
  39. Ichikawa Y. Goto J. Hattori M. The genomic structure and expression of MJD, the Machado-Joseph disease gene. J. Hum. Genet. 2001 46 7 413 422 10.1007/s100380170060 11450850
    [Google Scholar]
  40. Bettencourt C. Santos C. Montiel R. Increased transcript diversity: Novel splicing variants of Machado–Joseph Disease gene (ATXN3). Neurogenetics 2010 11 2 193 202 10.1007/s10048‑009‑0216‑y 19714377
    [Google Scholar]
  41. Hansen S.K. Borland H. Hasholt L.F. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.B11. Stem Cell Res. 2016 16 3 589 592 10.1016/j.scr.2016.02.042 27346191
    [Google Scholar]
  42. Maciel P. Costa M.C. Ferro A. Improvement in the molecular diagnosis of Machado-Joseph disease. Arch. Neurol. 2001 58 11 1821 1827 10.1001/archneur.58.11.1821 11708990
    [Google Scholar]
  43. Gan S.R. Ni W. Dong Y. Wang N. Wu Z.Y. Population genetics and new insight into range of CAG repeats of spinocerebellar ataxia type 3 in the Han Chinese population. PLoS One 2015 10 8 0134405 10.1371/journal.pone.0134405 26266536
    [Google Scholar]
  44. Chatterjee A. Saha S. Chakraborty A. The role of the mammalian DNA end-processing enzyme polynucleotide kinase 3′-phosphatase in spinocerebellar ataxia type 3 pathogenesis. PLoS Genet. 2015 11 1 1004749 10.1371/journal.pgen.1004749 25633985
    [Google Scholar]
  45. Gao R. Liu Y. Silva-Fernandes A. Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3. PLoS Genet. 2015 11 1 1004834 10.1371/journal.pgen.1004834 25590633
    [Google Scholar]
  46. Gales L. Cortes L. Almeida C. Towards a structural understanding of the fibrillization pathway in Machado-Joseph’s disease: Trapping early oligomers of non-expanded ataxin-3. J. Mol. Biol. 2005 353 3 642 654 10.1016/j.jmb.2005.08.061 16194547
    [Google Scholar]
  47. Tzvetkov N Breuer P Josephin domain-containing proteins from a variety of species are active de-ubiquitination enzymes. bchm 2007 388 9 973 8 10.1515/BC.2007.107 17696782
    [Google Scholar]
  48. Wen J. Scoles D.R. Facelli J.C. Effects of the enlargement of polyglutamine segments on the structure and folding of ataxin-2 and ataxin-3 prote ins. J. Biomol. Struct. Dyn. 2016 1 16 26861241
    [Google Scholar]
  49. Riess O. Rüb U. Pastore A. Bauer P. Schöls L. SCA3: Neurological features, pathogenesis and animal models. Cerebellum 2008 7 2 125 137 10.1007/s12311‑008‑0013‑4 18418689
    [Google Scholar]
  50. Nijman S.M.B. Luna-Vargas M.P.A. Velds A. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005 123 5 773 786 10.1016/j.cell.2005.11.007 16325574
    [Google Scholar]
  51. Wang Y. Yang X. Ma W. Clinical features and genetic diagnosis of hereditary spinocerebellar ataxia 3. Mol. Med. Rep. 2016 14 4 3731 3734 10.3892/mmr.2016.5707 27600091
    [Google Scholar]
  52. Todi S.V. Winborn B.J. Scaglione K.M. Blount J.R. Travis S.M. Paulson H.L. Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J. 2009 28 4 372 382 10.1038/emboj.2008.289 19153604
    [Google Scholar]
  53. Ferro A. Carvalho A.L. Teixeira-Castro A. NEDD8: A new ataxin-3 interactor. Biochim. Biophys. Acta Mol. Cell Res. 2007 1773 11 1619 1627 10.1016/j.bbamcr.2007.07.012 17935801
    [Google Scholar]
  54. Liu H. Li X. Ning G. The machado–joseph disease deubiquitinase ataxin-3 regulates the stability and apoptotic function of p53. PLoS Biol. 2016 14 11 2000733 10.1371/journal.pbio.2000733 27851749
    [Google Scholar]
  55. Li F. Macfarlan T. Pittman R.N. Chakravarti D. Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J. Biol. Chem. 2002 277 47 45004 45012 10.1074/jbc.M205259200 12297501
    [Google Scholar]
  56. Chou A.H. Chen Y.L. Hu S.H. Chang Y.M. Wang H.L. Polyglutamine-expanded ataxin-3 impairs long-term depression in Purkinje neurons of SCA3 transgenic mouse by inhibiting HAT and impairing histone acetylation. Brain Res. 2014 1583 220 229 10.1016/j.brainres.2014.08.019 25139423
    [Google Scholar]
  57. Singh M.D. Raj K. Sarkar S. Drosophila Myc, a novel modifier suppresses the poly(Q) toxicity by modulating the level of CREB binding protein and histone acetylation. Neurobiol. Dis. 2014 63 48 61 10.1016/j.nbd.2013.11.015 24291519
    [Google Scholar]
  58. Haacke A. Broadley S.A. Boteva R. Tzvetkov N. Hartl F.U. Breuer P. Proteolytic cleavage of polyglutamine-expanded ataxin-3 is critical for aggregation and sequestration of non-expanded ataxin-3. Hum. Mol. Genet. 2006 15 4 555 568 10.1093/hmg/ddi472 16407371
    [Google Scholar]
  59. Berke S.J.S. Schmied F.A.F. Brunt E.R. Ellerby L.M. Paulson H.L. Caspase‐mediated proteolysis of the polyglutamine disease protein ataxin‐3. J. Neurochem. 2004 89 4 908 918 10.1111/j.1471‑4159.2004.02369.x 15140190
    [Google Scholar]
  60. Koch P. Breuer P. Peitz M. Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease. Nature 2011 480 7378 543 546 10.1038/nature10671 22113611
    [Google Scholar]
  61. Takahashi T. Kikuchi S. Katada S. Nagai Y. Nishizawa M. Onodera O. Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum. Mol. Genet. 2008 17 3 345 356 10.1093/hmg/ddm311 17947294
    [Google Scholar]
  62. Seidel K. Siswanto S. Fredrich M. Bouzrou M. den Dunnen W.F. Ozerden I. On the distribution of intranuclear and cytoplasmic aggregates in the brainstem of patients with spinocerebellar ataxia type 2 and 3. Brain Pathol. 2017 27 3 345 355 10.1111/bpa.12412
    [Google Scholar]
  63. Seidel K. Siswanto S. Fredrich M. Polyglutamine aggregation in H untington’s disease and spinocerebellar ataxia type 3: Similar mechanisms in aggregate formation. Neuropathol. Appl. Neurobiol. 2016 42 2 153 166 10.1111/nan.12253 26095752
    [Google Scholar]
  64. Christie N.T.M. Lee A.L. Fay H.G. Gray A.A. Kikis E.A. Novel polyglutamine model uncouples proteotoxicity from aging. PLoS One 2014 9 5 96835 10.1371/journal.pone.0096835 24817148
    [Google Scholar]
  65. Hübener J. Weber J.J. Richter C. Calpain-mediated ataxin-3 cleavage in the molecular pathogenesis of spinocerebellar ataxia type 3 (SCA3). Hum. Mol. Genet. 2013 22 3 508 518 10.1093/hmg/dds449 23100324
    [Google Scholar]
  66. Ikeda H. Yamaguchi M. Sugai S. Aze Y. Narumiya S. Kakizuka A. Expanded polyglutamine in the Machado–Joseph disease protein induces cell death in vitro and in vivo. Nat. Genet. 1996 13 2 196 202 10.1038/ng0696‑196 8640226
    [Google Scholar]
  67. Teixeira-Castro A. Ailion M. Jalles A. Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: Rescue by the DAF-16 and HSF-1 pathways. Hum. Mol. Genet. 2011 20 15 2996 3009 10.1093/hmg/ddr203 21546381
    [Google Scholar]
  68. Burnett B.G. Pittman R.N. The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation. Proc. Natl. Acad. Sci. USA 2005 102 12 4330 4335 10.1073/pnas.0407252102 15767577
    [Google Scholar]
  69. Paulson H.L. Das S.S. Crino P.B. Machado‐Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann. Neurol. 1997 41 4 453 462 10.1002/ana.410410408 9124802
    [Google Scholar]
  70. Mauri P.L. Riva M. Ambu D. Ataxin‐3 is subject to autolytic cleavage. FEBS J. 2006 273 18 4277 4286 10.1111/j.1742‑4658.2006.05419.x 16939621
    [Google Scholar]
  71. Paulson H.L. Perez M.K. Trottier Y. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 1997 19 2 333 344 10.1016/S0896‑6273(00)80943‑5 9292723
    [Google Scholar]
  72. Ramani B. Harris G.M. Huang R. A knockin mouse model of spinocerebellar ataxia type 3 exhibits prominent aggregate pathology and aberrant splicing of the disease gene transcript. Hum. Mol. Genet. 2015 24 5 1211 1224 10.1093/hmg/ddu532 25320121
    [Google Scholar]
  73. Schmidt T. Lindenberg K.S. Krebs A. Protein surveillance machinery in brains with spinocerebellar ataxia type 3: Redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann. Neurol. 2002 51 3 302 310 10.1002/ana.10101 11891825
    [Google Scholar]
  74. Lin C.H. Wu Y.R. Kung P.J. The potential of indole and a synthetic derivative for polyQ aggregation reduction by enhancement of the chaperone and autophagy systems. ACS Chem. Neurosci. 2014 5 10 1063 1074 10.1021/cn500075u 25197952
    [Google Scholar]
  75. Vinatier G. Corsi J.M. Mignotte B. Gaumer S. Quantification of Ataxin-3 and Ataxin-7 aggregates formed in vivo in Drosophila reveals a threshold of aggregated polyglutamine proteins associated with cellular toxicity. Biochem. Biophys. Res. Commun. 2015 464 4 1060 1065 10.1016/j.bbrc.2015.07.071 26210447
    [Google Scholar]
  76. Lin Y. He H. Luo Y. Zhu T. Duan R. Inhibition of transglutaminase exacerbates polyglutamine-induced neurotoxicity by increasing the aggregation of mutant ataxin-3 in an SCA3 Drosophila model. Neurotox. Res. 2015 27 3 259 267 10.1007/s12640‑014‑9506‑8 25501875
    [Google Scholar]
  77. Horimoto Y. Matsumoto M. Akatsu H. Longitudinal study on MRI intensity changes of Machado–Joseph disease: Correlation between MRI findings and neuropathological changes. J. Neurol. 2011 258 9 1657 1664 10.1007/s00415‑011‑5992‑2 21416210
    [Google Scholar]
  78. Ajayi A. Yu X. Lindberg S. Langel Ü. Ström A.L. Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7 (SCA7) model. BMC Neurosci. 2012 13 1 86 10.1186/1471‑2202‑13‑86 22827889
    [Google Scholar]
  79. Goswami A. Dikshit P. Mishra A. Mulherkar S. Nukina N. Jana N.R. Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction. Biochem. Biophys. Res. Commun. 2006 342 1 184 190 10.1016/j.bbrc.2006.01.136 16472774
    [Google Scholar]
  80. Kim S.J. Kim T. Hong S. Rhim H. Kim I.Y. Kang S. Oxidative stimuli affect polyglutamine aggregation and cell death in human mutant ataxin-1-expressing cells. Neurosci. Lett. 2003 348 1 21 24 10.1016/S0304‑3940(03)00657‑8 12893416
    [Google Scholar]
  81. Miyata R. Hayashi M. Tanuma N. Shioda K. Fukatsu R. Mizutani S. Oxidative stress in neurodegeneration in dentatorubral-pallidoluysian atrophy. J. Neurol. Sci. 2008 264 1-2 133 139 10.1016/j.jns.2007.08.025 17949751
    [Google Scholar]
  82. Ramos A. Kazachkova N. Silva F. Maciel P. Silva-Fernandes A. Duarte-Silva S. Differential mtDNA damage patterns in a transgenic mouse model of Machado-Joseph disease (MJD/SCA3). J. Mol. Neurosci. 2015 55 2 449 453 10.1007/s12031‑014‑0360‑1
    [Google Scholar]
  83. Emerit J. Edeas M. Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother. 2004 58 1 39 46 10.1016/j.biopha.2003.11.004
    [Google Scholar]
  84. Evers M.M. Toonen L.J. van Roon-Mom W.M. Ataxin-3 protein and RNA toxicity in spinocerebellar ataxia type 3: Current insights and emerging therapeutic strategies. Mol. Neurobiol. 2014 49 3 1513 1531 24293103
    [Google Scholar]
  85. He Y. Vogelstein B. Velculescu V.E. Papadopoulos N. Kinzler K.W. The antisense transcriptomes of human cells. Science 2008 322 5909 1855 1857 10.1126/science.1163853 19056939
    [Google Scholar]
  86. Carmona V. Cunha-Santos J. Onofre I. Unravelling endogenous microrna system dysfunction as a new pathophysiological mechanism in machado-joseph disease. Mol. Ther. 2017 25 4 1038 1055 10.1016/j.ymthe.2017.01.021 28236575
    [Google Scholar]
  87. Wang C. Peng H. Li J. Ding D. Chen Z. Long Z. Alteration of methylation status in the ATXN3 gene promoter region is linked to the SCA3/MJD. Neurobiol. Aging 2017 53 192 e10 10.1016/j.neurobiolaging.2016.12.014
    [Google Scholar]
  88. Zhuchenko O. Bailey J. Bonnen P. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nat. Genet. 1997 15 1 62 69 10.1038/ng0197‑62 8988170
    [Google Scholar]
  89. Aikawa T. Mogushi K. Iijima-Tsutsui K. Loss of MyD88 alters neuroinflammatory response and attenuates early Purkinje cell loss in a spinocerebellar ataxia type 6 mouse model. Hum. Mol. Genet. 2015 24 17 4780 4791 10.1093/hmg/ddv202 26034136
    [Google Scholar]
  90. Ishida Y. Kawakami H. Kitajima H. Vulnerability of purkinje cells generated from spinocerebellar ataxia type 6 patient-derived iPSCs. Cell Rep. 2016 17 6 1482 1490 10.1016/j.celrep.2016.10.026 27806289
    [Google Scholar]
  91. Damaj L. Lupien-Meilleur A. Lortie A. CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur. J. Hum. Genet. 2015 23 11 1505 1512 10.1038/ejhg.2015.21 25735478
    [Google Scholar]
  92. Tsou W.L. Qiblawi S.H. Hosking R.R. Gomez C.M. Todi S.V. Polyglutamine length-dependent toxicity from α1ACT in Drosophila models of spinocerebellar ataxia type 6. Biol. Open 2016 5 12 1770 1775 10.1242/bio.021667 27979829
    [Google Scholar]
  93. Ishikawa K. Owada K. Ishida K. Cytoplasmic and nuclear polyglutamine aggregates in SCA6 Purkinje cells. Neurology 2001 56 12 1753 1756 10.1212/WNL.56.12.1753 11425948
    [Google Scholar]
  94. Mark M.D. Krause M. Boele H.J. Spinocerebellar ataxia type 6 protein aggregates cause deficits in motor learning and cerebellar plasticity. J. Neurosci. 2015 35 23 8882 8895 10.1523/JNEUROSCI.0891‑15.2015 26063920
    [Google Scholar]
  95. Li L. Saegusa H. Tanabe T. Deficit of heat shock transcription factor 1-heat shock 70 kDa protein 1A axis determines the cell death vulnerability in a model of spinocerebellar ataxia type 6. Genes Cells 2009 14 11 1253 1269 10.1111/j.1365‑2443.2009.01344.x
    [Google Scholar]
  96. Holmberg M. Duyckaerts C. Dürr A. Spinocerebellar ataxia type 7 (SCA7): A neurodegenerative disorder with neuronal intranuclear inclusions. Hum. Mol. Genet. 1998 7 5 913 918 10.1093/hmg/7.5.913 9536097
    [Google Scholar]
  97. Ajayi A. Yu X. Wahlo-Svedin C. Tsirigotaki G. Karlström V. Ström A.L. Altered p53 and NOX1 activity cause bioenergetic defects in a SCA7 polyglutamine disease model. Biochim. Biophys. Acta Bioenerg. 2015 1847 4-5 418 428 10.1016/j.bbabio.2015.01.012 25647692
    [Google Scholar]
  98. Alves S. Marais T. Biferi M.G. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol. Neurodegener. 2016 11 1 58 10.1186/s13024‑016‑0123‑2 27465358
    [Google Scholar]
  99. Scholefield J. Watson L. Smith D. Greenberg J. Wood M.J.A. Allele-specific silencing of mutant Ataxin-7 in SCA7 patient-derived fibroblasts. Eur. J. Hum. Genet. 2014 22 12 1369 1375 10.1038/ejhg.2014.39 24667781
    [Google Scholar]
  100. Yang H. Liu S. He W.T. Zhao J. Jiang L.L. Hu H.Y. Aggregation of polyglutamine-expanded ataxin 7 protein specifically sequesters ubiquitin-specific protease 22 and deteriorates its deubiquitinating function in the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex. J. Biol. Chem. 2015 290 36 21996 22004 10.1074/jbc.M114.631663 26195632
    [Google Scholar]
  101. Tan J.Y. Vance K.W. Varela M.A. Cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7. Nat. Struct. Mol. Biol. 2014 21 11 955 961 10.1038/nsmb.2902 25306109
    [Google Scholar]
  102. Guyenet S.J. Mookerjee S.S. Lin A. Proteolytic cleavage of ataxin-7 promotes SCA7 retinal degeneration and neurological dysfunction. Hum. Mol. Genet. 2015 24 14 3908 3917 10.1093/hmg/ddv121 25859008
    [Google Scholar]
  103. Alves S. Cormier-Dequaire F. Marinello M. The autophagy/lysosome pathway is impaired in SCA7 patients and SCA7 knock-in mice. Acta Neuropathol. 2014 128 5 705 722 10.1007/s00401‑014‑1289‑8 24859968
    [Google Scholar]
  104. Huang S. Yang S. Guo J. Large polyglutamine repeats cause muscle degeneration in SCA17 mice. Cell Rep. 2015 13 1 196 208 10.1016/j.celrep.2015.08.060 26387956
    [Google Scholar]
  105. Shin J.H. Park H. Ehm G.H. The pathogenic role of low range repeats in SCA17. PLoS One 2015 10 8 0135275 10.1371/journal.pone.0135275 26267067
    [Google Scholar]
  106. Lopes-Ramos C.M. Pereira T.C. Dogini D.B. Gilioli R. Lopes-Cendes I. Lithium carbonate and coenzyme Q10 reduce cell death in a cell model of Machado-Joseph disease. Brazilian journal of medical and biological research =. Rev. Bras. Pesqui. Med. Biol. 2016 49 12 5805
    [Google Scholar]
  107. Yang S. Huang S. Gaertig M.A. Li X.J. Li S. Age-dependent decrease in chaperone activity impairs MANF expression, leading to Purkinje cell degeneration in inducible SCA17 mice. Neuron 2014 81 2 349 365 10.1016/j.neuron.2013.12.002 24462098
    [Google Scholar]
  108. Hsu T.C. Wang C.K. Yang C.Y. Deactivation of TBP contributes to SCA17 pathogenesis. Hum. Mol. Genet. 2014 23 25 6878 6893 10.1093/hmg/ddu410 25104854
    [Google Scholar]
  109. Koster M.J.E. Timmers H.T.M. Regulation of anti-sense transcription by Mot1p and NC2 via removal of TATA-binding protein (TBP) from the 3′-end of genes. Nucleic Acids Res. 2015 43 1 143 152 10.1093/nar/gku1263 25432956
    [Google Scholar]
  110. Lee L.C. Chen C.M. Wang P.R. Su M.T. Lee-Chen G.J. Chang C.Y. Role of high mobility group box 1 (HMGB1) in SCA17 pathogenesis. PLoS One 2014 9 12 115809 10.1371/journal.pone.0115809 25549101
    [Google Scholar]
  111. Rüb U. Seidel K. Heinsen H. Vonsattel J.P. den Dunnen W.F. Korf H.W. H untington’s disease (HD): The neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol. 2016 26 6 726 740 10.1111/bpa.12426 27529157
    [Google Scholar]
  112. Guiretti D. Sempere A. Lopez-Atalaya J.P. Ferrer-Montiel A. Barco A. Valor L.M. Specific promoter deacetylation of histone H3 is conserved across mouse models of Huntington’s disease in the absence of bulk changes. Neurobiol. Dis. 2016 89 190 201 10.1016/j.nbd.2016.02.004 26851501
    [Google Scholar]
  113. Bauer P.O. Nukina N. The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J. Neurochem. 2009 110 6 1737 1765 10.1111/j.1471‑4159.2009.06302.x 19650870
    [Google Scholar]
  114. Ross C.A. Tabrizi S.J. Huntington’s disease: From molecular pathogenesis to clinical treatment. Lancet Neurol. 2011 10 1 83 98 10.1016/S1474‑4422(10)70245‑3 21163446
    [Google Scholar]
  115. Harjes P. Wanker E.E. The hunt for huntingtin function: Interaction partners tell many different stories. Trends Biochem. Sci. 2003 28 8 425 433 10.1016/S0968‑0004(03)00168‑3 12932731
    [Google Scholar]
  116. Li S.H. Li X.J. Huntingtin–protein interactions and the pathogenesis of Huntington’s disease. Trends Genet. 2004 20 3 146 154 10.1016/j.tig.2004.01.008 15036808
    [Google Scholar]
  117. Dasgupta S. Fishman M.A. Mahallati H. Reduced levels of proteasome products in a mouse striatal cell model of huntington’s disease. PLoS One 2015 10 12 0145333 10.1371/journal.pone.0145333 26691307
    [Google Scholar]
  118. Gong B. Kielar C. Morton A.J. Temporal separation of aggregation and ubiquitination during early inclusion formation in transgenic mice carrying the Huntington’s disease mutation. PLoS One 2012 7 7 41450 10.1371/journal.pone.0041450 22848498
    [Google Scholar]
  119. Taylor J.P. Hardy J. Fischbeck K.H. Toxic proteins in neurodegenerative disease. Science 2002 296 5575 1991 1995 10.1126/science.1067122 12065827
    [Google Scholar]
  120. Culver B.P. DeClercq J. Dolgalev I. Huntington’s disease protein huntingtin associates with its own mRNA. J. Huntingtons Dis. 2016 5 1 39 51 10.3233/JHD‑150177 26891106
    [Google Scholar]
  121. Nekrasov E.D. Vigont V.A. Klyushnikov S.A. Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Mol. Neurodegener. 2016 11 1 27 10.1186/s13024‑016‑0092‑5 27080129
    [Google Scholar]
  122. Sato T. Miura M. Yamada M. Severe neurological phenotypes of Q129 DRPLA transgenic mice serendipitously created by en masse expansion of CAG repeats in Q76 DRPLA mice. Hum. Mol. Genet. 2009 18 4 723 736 10.1093/hmg/ddn403 19039037
    [Google Scholar]
  123. Yamada M. Tan C.F. Inenaga C. Tsuji S. Takahashi H. Sharing of polyglutamine localization by the neuronal nucleus and cytoplasm in CAG‐repeat diseases. Neuropathol. Appl. Neurobiol. 2004 30 6 665 675 10.1111/j.1365‑2990.2004.00583.x 15541006
    [Google Scholar]
  124. Suzuki Y. Jin C. Yazawa I. Increased aggregation of polyleucine compared with that of polyglutamine in dentatorubral-pallidoluysian atrophy protein. Neurosci. Lett. 2013 552 156 161 10.1016/j.neulet.2013.07.043 23933208
    [Google Scholar]
  125. Suzuki K. Sato T. Yamada M. Takahashi H. Tsuji S. DRPLA: Recent advances in research using transgenic mouse models. Methods Mol. Biol. 2013 1010 277 292 10.1007/978‑1‑62703‑411‑1_18 23754232
    [Google Scholar]
  126. Hayashi Y. Kakita A. Yamada M. Hereditary dentatorubral-pallidoluysian atrophy: Detection of widespread ubiquitinated neuronal and glial intranuclear inclusions in the brain. Acta Neuropathol. 1998 96 6 547 552 10.1007/s004010050933 9845282
    [Google Scholar]
  127. Yamada M. Sato T. Tsuji S. Takahashi H. CAG repeat disorder models and human neuropathology: Similarities and differences. Acta Neuropathol. 2007 115 1 71 86 10.1007/s00401‑007‑0287‑5 17786457
    [Google Scholar]
  128. Chen L. Diao Z. Xu Z. The clinical application of preimplantation genetic diagnosis for the patient affected by congenital contractural arachnodactyly and spinal and bulbar muscular atrophy. J. Assist. Reprod. Genet. 2016 33 11 1459 1466 10.1007/s10815‑016‑0760‑y 27393415
    [Google Scholar]
  129. Bott L.C. Salomons F.A. Maric D. The polyglutamine-expanded androgen receptor responsible for spinal and bulbar muscular atrophy inhibits the APC/CCdh1 ubiquitin ligase complex. Sci. Rep. 2016 6 1 27703 10.1038/srep27703 27312068
    [Google Scholar]
  130. Berger T.R. Montie H.L. Jain P. Legleiter J. Merry D.E. Identification of novel polyglutamine-expanded aggregation species in spinal and bulbar muscular atrophy. Brain Res. 2015 1629 227 238 10.1016/j.brainres.2015.09.033
    [Google Scholar]
  131. Borgia D. Malena A. Spinazzi M. Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Hum. Mol. Genet. 2017 26 6 ddx019 10.1093/hmg/ddx019 28087734
    [Google Scholar]
  132. Heine E.M. Berger T.R. Pluciennik A. Orr C.R. Zboray L. Merry D.E. Proteasome-mediated proteolysis of the polyglutamine-expanded androgen receptor is a late event in spinal and bulbar muscular atrophy (SBMA) pathogenesis. J. Biol. Chem. 2015 290 20 12572 12584 10.1074/jbc.M114.617894 25795778
    [Google Scholar]
  133. Scaramuzzino C. Casci I. Parodi S. Protein arginine methyltransferase 6 enhances polyglutamine-expanded androgen receptor function and toxicity in spinal and bulbar muscular atrophy. Neuron 2015 85 1 88 100 10.1016/j.neuron.2014.12.031 25569348
    [Google Scholar]
  134. Chua J.P. Reddy S.L. Yu Z. Disrupting SUMOylation enhances transcriptional function and ameliorates polyglutamine androgen receptor–mediated disease. J. Clin. Invest. 2015 125 2 831 845 10.1172/JCI73214 25607844
    [Google Scholar]
  135. Cortes C.J. Miranda H.C. Frankowski H. Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nat. Neurosci. 2014 17 9 1180 1189 10.1038/nn.3787 25108912
    [Google Scholar]
  136. Finsterer J. Mishra A. Wakil S. Pennuto M. Soraru G. Mitochondrial implications in bulbospinal muscular atrophy (Kennedy disease). Amyotroph. Lateral Scler. Frontotemporal Degener. 2016 17 1-2 112 118 10.3109/21678421.2015.1089910 26428534
    [Google Scholar]
  137. Keiser M.S. Monteys A.M. Corbau R. Gonzalez-Alegre P. Davidson B.L. RNAi prevents and reverses phenotypes induced by mutant human ataxin‐1. Ann. Neurol. 2016 80 5 754 765 10.1002/ana.24789 27686464
    [Google Scholar]
  138. Rodriguez-Lebron E. Paulson H.L. Allele-specific RNA interference for neurological disease. Gene Ther. 2006 13 6 576 581 10.1038/sj.gt.3302702 16355113
    [Google Scholar]
  139. Miller V.M. Xia H. Marrs G.L. Allele-specific silencing of dominant disease genes. Proc. Natl. Acad. Sci. USA 2003 100 12 7195 7200 10.1073/pnas.1231012100 12782788
    [Google Scholar]
  140. Alves S. Nascimento-Ferreira I. Auregan G. Allele-specific RNA silencing of mutant ataxin-3 mediates neuroprotection in a rat model of Machado-Joseph disease. PLoS One 2008 3 10 3341 10.1371/journal.pone.0003341 18841197
    [Google Scholar]
  141. Tabernero J. Shapiro G.I. LoRusso P.M. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013 3 4 406 417 10.1158/2159‑8290.CD‑12‑0429 23358650
    [Google Scholar]
  142. Liu J. Pendergraff H. Narayanannair K.J. RNA duplexes with abasic substitutions are potent and allele-selective inhibitors of huntingtin and ataxin-3 expression. Nucleic Acids Res. 2013 41 18 8788 8801 10.1093/nar/gkt594 23887934
    [Google Scholar]
  143. Liu J. Yu D. Aiba Y. ss-siRNAs allele selectively inhibit ataxin-3 expression: Multiple mechanisms for an alternative gene silencing strategy. Nucleic Acids Res. 2013 41 20 9570 9583 10.1093/nar/gkt693 23935115
    [Google Scholar]
  144. Fiszer A. Ellison-Klimontowicz M.E. Krzyzosiak W.J. Silencing of genes responsible for polyQ diseases using chemically modified single-stranded siRNAs. Acta Biochim. Pol. 2016 63 4 759 764 27770571
    [Google Scholar]
  145. Miyazaki Y. Du X. Muramatsu S. Gomez C.M. An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron. Sci. Transl. Med. 2016 8 347 347ra94 10.1126/scitranslmed.aaf5660 27412786
    [Google Scholar]
  146. Fiszer A. Wroblewska J. Nowak B. Krzyzosiak W. Mutant CAG repeats effectively targeted by rna interference in SCA7 cells. Genes 2016 7 12 132 10.3390/genes7120132 27999335
    [Google Scholar]
  147. Fink K.D. Deng P. Gutierrez J. Allele-specific reduction of the mutant huntingtin allele using transcription activator-like effectors in human huntington’s disease fibroblasts. Cell Transplant. 2016 25 4 677 686 10.3727/096368916X690863 26850319
    [Google Scholar]
  148. Miniarikova J. Zanella I. Huseinovic A. Design, characterization, and lead selection of therapeutic mirnas targeting huntingtin for development of gene therapy for huntington’s disease. Mol. Ther. Nucleic Acids 2016 5 3 297 10.1038/mtna.2016.7 27003755
    [Google Scholar]
  149. Taniguchi J.B. Kondo K. Fujita K. RpA1 ameliorates symptoms of mutant ataxin-1 knock-in mice and enhances DNA damage repair. Hum. Mol. Genet. 2016 25 20 ddw272 10.1093/hmg/ddw272 28173122
    [Google Scholar]
  150. Pulst S.M. Degenerative ataxias, from genes to therapies. Neurology 2016 86 24 2284 2290 10.1212/WNL.0000000000002777 27298447
    [Google Scholar]
  151. Scoles D.R. Meera P. Schneider M.D. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature 2017 544 7650 362 366 10.1038/nature22044 28405024
    [Google Scholar]
  152. Moore L.R. Rajpal G. Dillingham I.T. Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models. Mol. Ther. Nucleic Acids 2017 7 200 210 10.1016/j.omtn.2017.04.005 28624196
    [Google Scholar]
  153. Hu J. Gagnon K.T. Liu J. Allele-selective inhibition of ataxin-3 (ATX3) expression by antisense oligomers and duplex RNAs. Biol. Chem. 2011 392 4 315 325 10.1515/bc.2011.045 21294677
    [Google Scholar]
  154. Spitali P. Aartsma-Rus A. Splice modulating therapies for human disease. Cell 2012 148 6 1085 1088 10.1016/j.cell.2012.02.014 22424220
    [Google Scholar]
  155. Zalachoras I. Evers M.M. van Roon-Mom W.M.C. Aartsma-Rus A.M. Meijer O.C. Antisense-mediated RNA targeting: Versatile and expedient genetic manipulation in the brain. Front. Mol. Neurosci. 2011 4 10 10.3389/fnmol.2011.00010 21811437
    [Google Scholar]
  156. Toonen L.J.A. Schmidt I. Luijsterburg M.S. van Attikum H. van Roon-Mom W.M.C. Antisense oligonucleotide-mediated exon skipping as a strategy to reduce proteolytic cleavage of ataxin-3. Sci. Rep. 2016 6 1 35200 10.1038/srep35200 27731380
    [Google Scholar]
  157. Curtis H.J. Seow Y. Wood M.J.A. Varela M.A. Knockdown and replacement therapy mediated by artificial mirtrons in spinocerebellar ataxia 7. Nucleic Acids Res. 2017 45 13 7870 7885 10.1093/nar/gkx483 28575281
    [Google Scholar]
  158. Machida K. Shigeta T. Kobayashi A. Masumoto A. Hidaka Y. Imataka H. Cell-free analysis of polyQ-dependent protein aggregation and its inhibition by chaperone proteins. J. Biotechnol. 2016 239 1 8 10.1016/j.jbiotec.2016.09.031 27702574
    [Google Scholar]
  159. Ding Y. Adachi H. Katsuno M. BIIB021, a synthetic Hsp90 inhibitor, induces mutant ataxin-1 degradation through the activation of heat shock factor 1. Neuroscience 2016 327 20 31 10.1016/j.neuroscience.2016.03.064 27058144
    [Google Scholar]
  160. Kampinga H.H. Bergink S. Heat shock proteins as potential targets for protective strategies in neurodegeneration. Lancet Neurol. 2016 15 7 748 759 10.1016/S1474‑4422(16)00099‑5 27106072
    [Google Scholar]
  161. Silva-Fernandes A. Duarte-Silva S. Neves-Carvalho A. Chronic treatment with 17-DMAG improves balance and coordination in a new mouse model of Machado-Joseph disease. Neurotherapeutics 2014 11 2 433 449 10.1007/s13311‑013‑0255‑9 24477711
    [Google Scholar]
  162. Ito N. Kamiguchi K. Nakanishi K. A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner. Biochem. Biophys. Res. Commun. 2016 474 4 626 633 10.1016/j.bbrc.2016.03.152 27133716
    [Google Scholar]
  163. Cushman-Nick M. Bonini N.M. Shorter J. Hsp104 suppresses polyglutamine-induced degeneration post onset in a drosophila MJD/SCA3 model. PLoS Genet. 2013 9 9 1003781 10.1371/journal.pgen.1003781 24039611
    [Google Scholar]
  164. Kung P.J. Tao Y.C. Hsu H.C. Indole and synthetic derivative activate chaperone expression to reduce polyQ aggregation in SCA17 neuronal cell and slice culture models. Drug Des. Devel. Ther. 2014 8 1929 1939 25342886
    [Google Scholar]
  165. Boussicault L. Alves S. Lamazière A. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease. Brain 2016 139 3 953 970 10.1093/brain/awv384 26912634
    [Google Scholar]
  166. Marelli C. Maschat F. The P42 peptide and Peptide-based therapies for Huntington’s disease. Orphanet J. Rare Dis. 2016 11 1 24 10.1186/s13023‑016‑0405‑3 26984770
    [Google Scholar]
  167. Im W. Ban J.J. Chung J.Y. Lee S.T. Chu K. Kim M. Multidrug resistance protein 1 reduces the aggregation of mutant huntingtin in neuronal cells derived from the Huntington’s disease R6/2 model. Sci. Rep. 2015 5 1 16887 10.1038/srep16887 26586297
    [Google Scholar]
  168. Yang S. Chang R. Yang H. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J. Clin. Invest. 2017 127 7 2719 2724 10.1172/JCI92087 28628038
    [Google Scholar]
  169. Baniahmad A. Inhibition of the androgen receptor by antiandrogens in spinobulbar muscle atrophy. J. Mol. Neurosci. 2016 58 3 343 347 10.1007/s12031‑015‑0681‑8
    [Google Scholar]
  170. Milioto C. Malena A. Maino E. Beta-agonist stimulation ameliorates the phenotype of spinal and bulbar muscular atrophy mice and patient-derived myotubes. Sci. Rep. 2017 7 1 41046 10.1038/srep41046 28117338
    [Google Scholar]
  171. Menzies F.M. Huebener J. Renna M. Bonin M. Riess O. Rubinsztein D.C. Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 2010 133 1 93 104 10.1093/brain/awp292 20007218
    [Google Scholar]
  172. Ou Z. Luo M. Niu X. Autophagy promoted the degradation of mutant ATXN3 in neurally differentiated spinocerebellar ataxia-3 human induced pluripotent stem cells. BioMed Res. Int. 2016 2016 1 11 10.1155/2016/6701793 27847820
    [Google Scholar]
  173. Jia D.D. Zhang L. Chen Z. Lithium chloride alleviates neurodegeneration partly by inhibiting activity of GSK3β in a SCA3 Drosophila model. Cerebellum 2013 12 6 892 901 10.1007/s12311‑013‑0498‑3 23812869
    [Google Scholar]
  174. Melo A.R.V. Ramos A. Kazachkova N. Triplet repeat primed PCR (TP-PCR) in molecular diagnostic testing for spinocerebellar ataxia type 3 (SCA3). Mol. Diagn. Ther. 2016 20 6 617 622 10.1007/s40291‑016‑0235‑y 27647319
    [Google Scholar]
  175. Lin C.H. Wu Y.R. Yang J.M. Novel lactulose and melibiose targeting autophagy to reduce PolyQ aggregation in cell models of spinocerebellar ataxia 3. CNS Neurol. Disord. Drug Targets 2016 15 3 351 359 10.2174/1871527314666150821101522 26295831
    [Google Scholar]
  176. Asada A. Yamazaki R. Kino Y. Cyclin-dependent kinase 5 phosphorylates and induces the degradation of ataxin-2. Neurosci. Lett. 2014 563 112 117 10.1016/j.neulet.2014.01.046 24486837
    [Google Scholar]
  177. Wellington C.L. Hayden M.R. Caspases and neurodegeneration: On the cutting edge of new therapeutic approaches. Clin. Genet. 2000 57 1 1 10 10.1034/j.1399‑0004.2000.570101.x 10733228
    [Google Scholar]
  178. Tarlac V. Storey E. Role of proteolysis in polyglutamine disorders. J. Neurosci. Res. 2003 74 3 406 416 10.1002/jnr.10746 14598317
    [Google Scholar]
  179. Di Prospero N.A. Fischbeck K.H. Therapeutics development for triplet repeat expansion diseases. Nat. Rev. Genet. 2005 6 10 756 766 10.1038/nrg1690 16205715
    [Google Scholar]
  180. Li Z. Sheng M. Caspases in synaptic plasticity. Mol. Brain 2012 5 1 15 10.1186/1756‑6606‑5‑15 22583788
    [Google Scholar]
  181. Troy C.M. Salvesen G.S. Caspases on the brain. J. Neurosci. Res. 2002 69 2 145 150 10.1002/jnr.10294 12111795
    [Google Scholar]
  182. Liman J. Deeg S. Voigt A. CDK 5 protects from caspase‐induced Ataxin‐3 cleavage and neurodegeneration. J. Neurochem. 2014 129 6 1013 1023 10.1111/jnc.12684 24548080
    [Google Scholar]
  183. Haacke A. Hartl F.U. Breuer P. Calpain inhibition is sufficient to suppress aggregation of polyglutamine-expanded ataxin-3. J. Biol. Chem. 2007 282 26 18851 18856 10.1074/jbc.M611914200 17488727
    [Google Scholar]
  184. Simões A.T. Gonçalves N. Koeppen A. Calpastatin-mediated inhibition of calpains in the mouse brain prevents mutant ataxin 3 proteolysis, nuclear localization and aggregation, relieving Machado-Joseph disease. Brain 2012 135 8 2428 2439 10.1093/brain/aws177 22843411
    [Google Scholar]
  185. Polanco M.J. Parodi S. Piol D. Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy. Sci. Transl. Med. 2016 8 370 370ra181 10.1126/scitranslmed.aaf9526 28003546
    [Google Scholar]
  186. Weber J.J. Ortiz Rios M.M. Riess O. Clemens L.E. Nguyen H.P. The calpain-suppressing effects of olesoxime in Huntington’s disease. Rare Dis. 2016 4 1 e1153778 10.1080/21675511.2016.1153778
    [Google Scholar]
  187. Gennarino V.A. Singh R.K. White J.J. Pumilio1 haploinsufficiency leads to SCA1-like neurodegeneration by increasing wild-type Ataxin1 levels. Cell 2015 160 6 1087 1098 10.1016/j.cell.2015.02.012 25768905
    [Google Scholar]
  188. Chou A.H. Chen S.Y. Yeh T.H. Weng Y.H. Wang H.L. HDAC inhibitor sodium butyrate reverses transcriptional downregulation and ameliorates ataxic symptoms in a transgenic mouse model of SCA3. Neurobiol. Dis. 2011 41 2 481 488 10.1016/j.nbd.2010.10.019 21047555
    [Google Scholar]
  189. Minamiyama M. Katsuno M. Adachi H. Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet. 2004 13 11 1183 1192 10.1093/hmg/ddh131 15102712
    [Google Scholar]
  190. Hockly E. Richon V.M. Woodman B. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 2003 100 4 2041 2046 10.1073/pnas.0437870100 12576549
    [Google Scholar]
  191. Ferrante R.J. Kubilus J.K. Lee J. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J. Neurosci. 2003 23 28 9418 9427 10.1523/JNEUROSCI.23‑28‑09418.2003 14561870
    [Google Scholar]
  192. Gardian G. Browne S.E. Choi D.K. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J. Biol. Chem. 2005 280 1 556 563 10.1074/jbc.M410210200 15494404
    [Google Scholar]
  193. Ying M. Xu R. Wu X. Sodium butyrate ameliorates histone hypoacetylation and neurodegenerative phenotypes in a mouse model for DRPLA. J. Biol. Chem. 2006 281 18 12580 12586 10.1074/jbc.M511677200 16407196
    [Google Scholar]
  194. Steffan J.S. Bodai L. Pallos J. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001 413 6857 739 743 10.1038/35099568 11607033
    [Google Scholar]
  195. Lei L.F. Yang G.P. Wang J.L. Safety and efficacy of valproic acid treatment in SCA3/MJD patients. Parkinsonism Relat. Disord. 2016 26 55 61 10.1016/j.parkreldis.2016.03.005 26997655
    [Google Scholar]
  196. Jia H. Wang Y. Morris C.D. The effects of pharmacological inhibition of histone deacetylase 3 (HDAC3) in huntington’s disease mice. PLoS One 2016 11 3 0152498 10.1371/journal.pone.0152498 27031333
    [Google Scholar]
  197. Stucki D.M. Ruegsegger C. Steiner S. Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ. Free Radic. Biol. Med. 2016 97 427 440 10.1016/j.freeradbiomed.2016.07.005 27394174
    [Google Scholar]
  198. Guevara-Garcia M. Gil-del Valle L. Velasquez-Perez L. Garcia-Rodriguez J.C. Oxidative stress as a cofactor in spinocerebellar ataxia type 2. Redox Rep. 2012 17 2 84 89 10.1179/1351000212Y.0000000005
    [Google Scholar]
  199. Lo R.Y. Figueroa K.P. Pulst S.M. Coenzyme Q10 and spinocerebellar ataxias. Mov. Disord. 2015 30 2 214 220 10.1002/mds.26088 25449974
    [Google Scholar]
  200. Snijder P.M. Baratashvili M. Grzeschik N.A. Overexpression of cystathionine gamma-lyase suppresses detrimental effects of spinocerebellar ataxia type 3. Mol. Med. 2015 21 1 758 768 10.2119/molmed.2015.00221 26467707
    [Google Scholar]
  201. Chongtham A. Agrawal N. Curcumin modulates cell death and is protective in Huntington’s disease model. Sci. Rep. 2016 6 1 18736 10.1038/srep18736 26728250
    [Google Scholar]
  202. Iida M. Katsuno M. Nakatsuji H. Pioglitazone suppresses neuronal and muscular degeneration caused by polyglutamine-expanded androgen receptors. Hum. Mol. Genet. 2015 24 2 314 329 10.1093/hmg/ddu445 25168383
    [Google Scholar]
  203. Shuvaev A.N. Hosoi N. Sato Y. Yanagihara D. Hirai H. Progressive impairment of cerebellar mGluR signalling and its therapeutic potential for cerebellar ataxia in spinocerebellar ataxia type 1 model mice. J. Physiol. 2016 27440721
    [Google Scholar]
  204. Power E.M. Morales A. Empson R.M. Prolonged Type 1 Metabotropic Glutamate Receptor Dependent Synaptic Signaling Contributes to Spino-Cerebellar Ataxia Type 1. J. Neurosci. 2016 36 18 4910 4916 10.1523/JNEUROSCI.3953‑15.2016 27147646
    [Google Scholar]
  205. Kasumu A.W. Hougaard C. Rode F. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem. Biol. 2012 19 10 1340 1353 10.1016/j.chembiol.2012.07.013 23102227
    [Google Scholar]
  206. Chen X. Tang T.S. Tu H. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J. Neurosci. 2008 28 48 12713 12724 10.1523/JNEUROSCI.3909‑08.2008 19036964
    [Google Scholar]
  207. Lin C.M. Neeru S. Doufas A.G. Dantrolene reduces the threshold and gain for shivering. Anesth. Analg. 2004 98 5 1318 1324 10.1213/01.ANE.0000108968.21212.D7 15105208
    [Google Scholar]
  208. Muehlschlegel S. Rordorf G. Sims J. Effects of a single dose of dantrolene in patients with cerebral vasospasm after subarachnoid hemorrhage: A prospective pilot study. Stroke 2011 42 5 1301 1306 10.1161/STROKEAHA.110.603159 21454813
    [Google Scholar]
  209. Cunha R.A. Agostinho P.M. Chronic caffeine consumption prevents memory disturbance in different animal models of memory decline. J. Alzheimers Dis. 2010 20 s1 S95 S116 10.3233/JAD‑2010‑1408 20182043
    [Google Scholar]
  210. Gonçalves N. Simões A.T. Cunha R.A. de Almeida L.P. Caffeine and adenosine A 2A receptor inactivation decrease striatal neuropathology in a lentiviral‐based model of Machado–Joseph disease. Ann. Neurol. 2013 73 5 655 666 10.1002/ana.23866 23625556
    [Google Scholar]
  211. Popoli P. Blum D. Martire A. Ledent C. Ceruti S. Abbracchio M. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog. Neurobiol. 2007 81 5-6 331 348 10.1016/j.pneurobio.2006.12.005 17303312
    [Google Scholar]
  212. Martínez-Morales P.L. Revilla A. Ocaña I. Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev. 2013 9 5 685 699 10.1007/s12015‑013‑9443‑6 23681704
    [Google Scholar]
  213. Cvetanovic M. Hu Y.S. Opal P. Mutant Ataxin-1 Inhibits Neural Progenitor Cell Proliferation in SCA1. Cerebellum 2016 27306906
    [Google Scholar]
  214. Mieda T. Suto N. Iizuka A. Mesenchymal stem cells attenuate peripheral neuronal degeneration in spinocerebellar ataxia type 1 knockin mice. J. Neurosci. Res. 2016 94 3 246 252 10.1002/jnr.23698 26707550
    [Google Scholar]
  215. Suto N. Mieda T. Iizuka A. Nakamura K. Hirai H. Morphological and functional attenuation of degeneration of peripheral neurons by mesenchymal stem cell‐conditioned medium in spinocerebellar ataxia type 1‐knock‐in mice. CNS Neurosci. Ther. 2016 22 8 670 676 10.1111/cns.12560 27140210
    [Google Scholar]
  216. Marthaler A.G. Schmid B. Tubsuwan A. Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H196. Stem Cell Res. 2016 16 1 162 165 10.1016/j.scr.2015.12.031 27345804
    [Google Scholar]
  217. Golas M.M. Sander B. Use of human stem cells in Huntington disease modeling and translational research. Exp. Neurol. 2016 278 76 90 10.1016/j.expneurol.2016.01.021 26826449
    [Google Scholar]
  218. Grunseich C. Zukosky K. Kats I.R. Stem cell-derived motor neurons from spinal and bulbar muscular atrophy patients. Neurobiol. Dis. 2014 70 12 20 10.1016/j.nbd.2014.05.038 24925468
    [Google Scholar]
  219. Karwacka M. Olejniczak M. Advances in modeling polyglutamine diseases using genome editing tools. Cells 2022 11 3 517 10.3390/cells11030517 35159326
    [Google Scholar]
  220. Evers M.M. Toonen L.J.A. van Roon-Mom W.M.C. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv. Drug Deliv. Rev. 2015 87 90 103 10.1016/j.addr.2015.03.008 25797014
    [Google Scholar]
  221. Toonen L.J.A. Rigo F. van Attikum H. van Roon-Mom W.M.C. Antisense oligonucleotide-mediated removal of the polyglutamine repeat in spinocerebellar ataxia type 3 mice. Mol. Ther. Nucleic Acids 2017 8 232 242 10.1016/j.omtn.2017.06.019 28918024
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240393446250829084646
Loading
/content/journals/cmm/10.2174/0115665240393446250829084646
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test