Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Alzheimer’s disease (AD) is an age-dependent neurodegenerative disorder and the leading cause of dementia. AD is characterized by the aggregation of amyloid-ß (Aß) peptide, increased levels of tau protein, and loss of redox homeostasis responsible for mitochondrial dysfunction, oxidative stress, and neuroinflammation. Excessive accumulation of toxic Aß plaques activates microglia, which initiates neuroinflammation and consequently accelerates synaptic damage and neuronal loss. Various pro-inflammatory cytokines release, microglia proliferation, reactive astrocyte, and oxidative (reactive oxygen species (ROS) production, level of antioxidant enzymes, redox homeostasis, and lipid peroxidation) stress play a major role in AD. Several studies revealed that nuclear factor erythroid 2-related factor 2 (Nrf2) regulates redox homeostasis and works as an anti-inflammatory in various neurodegenerative disorders. D-Glutamate expression of transcription factor Nrf2 and its genes (glutamate-cysteine ligase catalytic subunit (GCLC), Heme oxygenase-1 (HO-1), and NADPH quinone oxidoreductase I (NQO1)) has been found in AD. Nrf2-HO-1 enhances the expression of antioxidant genes, inhibits microglia-mediated inflammation, and boosts mitochondrial function, suggesting that modulators of this protein may be useful to manage AD. This review focuses on the role of Nrf2 in AD, with a particular emphasis on the various pathways involved in the positive and negative modulation of Nrf2, namely Phos-phoinositide 3-kinase (PI3K), Glycogen synthase kinase-3 (GSK-3), Nuclear factor kappa-B (NF-κB), and p38Mitogen-activated protein kinases (p38MAPK). Also, we have discussed the progress and challenges regarding the Nrf2 activators for AD treatment.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/1566524023666230726145447
2024-01-21
2025-10-01
Loading full text...

Full text loading...

References

  1. LongJ.M. HoltzmanD.M. Alzheimer disease: An update on pathobiology and treatment strategies.Cell2019179231233910.1016/j.cell.2019.09.001 31564456
    [Google Scholar]
  2. JannatS. BalupuriA. AliM.Y. Inhibition of β-site amyloid precursor protein cleaving enzyme 1 and cholinesterases by pterosins via a specific structure−activity relationship with a strong BBB permeability.Exp. Mol. Med.201951211810.1038/s12276‑019‑0205‑7 30755593
    [Google Scholar]
  3. MastersCL Bateman R bK, Rowe CC, et al. Alzheimer’s disease.Nat. Rev. Dis. Primers2015201515059
    [Google Scholar]
  4. TalwarP. SinhaJ. GroverS. Dissecting complex and multifactorial nature of Alzheimer’s disease pathogenesis: A clinical, genomic, and systems biology perspective.Mol. Neurobiol.20165374833486410.1007/s12035‑015‑9390‑0 26351077
    [Google Scholar]
  5. LiC. GötzJ. Tau-based therapies in neurodegeneration: Opportunities and challenges.Nat. Rev. Drug Discov.2017161286388310.1038/nrd.2017.155 28983098
    [Google Scholar]
  6. TeixeiraJ.P. de CastroA.A. SoaresF.V. da CunhaE.F.F. RamalhoT.C. Future therapeutic perspectives into the Alzheimer’s disease targeting the oxidative stress hypothesis.Molecules20192423441010.3390/molecules24234410 31816853
    [Google Scholar]
  7. BuendiaI. MichalskaP. NavarroE. GameiroI. EgeaJ. LeónR. Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases.Pharmacol. Ther.20161578410410.1016/j.pharmthera.2015.11.003 26617217
    [Google Scholar]
  8. ChenB. LuY. ChenY. ChengJ. The role of Nrf2 in oxidative stress-induced endothelial injuries.J. Endocrinol.20152253R83R9910.1530/JOE‑14‑0662 25918130
    [Google Scholar]
  9. EftekharzadehB. MaghsoudiN. KhodagholiF. Stabilization of transcription factor Nrf2 by tBHQ prevents oxidative stress-induced amyloid β formation in NT2N neurons.Biochimie201092324525310.1016/j.biochi.2009.12.001 20026169
    [Google Scholar]
  10. FuM-H. WuC-W. LeeY-C. HungC-Y. ChenI-C. WuK.L. Nrf2 activation attenuates the early suppression of mitochondrial respiration due to the α-synuclein overexpression.Biomed. J.201841316918310.1016/j.bj.2018.02.005 30080657
    [Google Scholar]
  11. BaiR. GuoJ. YeX.Y. XieY. XieT. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease.Ageing Res. Rev.20227710161910.1016/j.arr.2022.101619 35395415
    [Google Scholar]
  12. FengY. WangX. Antioxidant therapies for Alzheimer’s disease.Oxid. Med. Cell. Longev.2012201247293210.1155/2012/472932
    [Google Scholar]
  13. HonigL.S. VellasB. WoodwardM. Trial of solanezumab for mild dementia due to Alzheimer’s disease.N. Engl. J. Med.2018378432133010.1056/NEJMoa1705971 29365294
    [Google Scholar]
  14. KempA. Update on Phase III clinical trials of lanabecestat for Alzheimer’s disease. 2018.2018Available from: https://www.astrazeneca.com/media-centre/press-releases//update-on-phase-iii-clinical-trials-oflanabecestat-for-alzheimers-disease-12062018.html
    [Google Scholar]
  15. CummingsJ.L. CohenS. van DyckC.H. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease.Neurology20189021e1889e189710.1212/WNL.0000000000005550 29695589
    [Google Scholar]
  16. RojoA.I. PajaresM. RadaP. NRF2 deficiency replicates transcriptomic changes in Alzheimer’s patients and worsens APP and TAU pathology.Redox Biol.20171344445110.1016/j.redox.2017.07.006 28704727
    [Google Scholar]
  17. UrunoA. MatsumaruD. RyokeR. Nrf2 suppresses oxidative stress and inflammation in App knock-in Alzheimer’s disease model mice.Mol. Cell. Biol.2020406e00467e1910.1128/MCB.00467‑19 31932477
    [Google Scholar]
  18. SahaS. ButtariB. ProfumoE. TucciP. SasoL.J.F.C.N. A perspective on nrf2 signaling pathway for neuroinflammation: A potential therapeutic target in alzheimer’s and parkinson’s diseases.Front. Cell. Neurosci.202115787258 35126058
    [Google Scholar]
  19. RenP. ChenJ. LiB. Nrf2 ablation promotes Alzheimer’s disease-like pathology in APP/PS1 transgenic mice: The role of neuroinflammation and oxidative stress.Oxid. Med. Cell. Longev.202020203050971
    [Google Scholar]
  20. KaurD. SharmaV. DeshmukhR. Activation of microglia and astrocytes: A roadway to neuroinflammation and Alzheimer’s disease.Inflammopharmacology201927466367710.1007/s10787‑019‑00580‑x 30874945
    [Google Scholar]
  21. LokK ZhaoH ShenH Characterization of the APP/PS1 mouse model of Alzheimer’s disease in senescence accelerated background.Neurosci Lett2013557Pt B848910.1016/j.neulet.2013.10.05124176881
    [Google Scholar]
  22. BahnG. JoD.G. Therapeutic approaches to Alzheimer’s disease through modulation of NRF2.Neuromolecular Med.201921111110.1007/s12017‑018‑08523‑5 30617737
    [Google Scholar]
  23. JoshiG. GanK.A. JohnsonD.A. JohnsonJ.A. Increased Alzheimer’s disease–like pathology in the APP/PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy.Neurobiol. Aging201536266467910.1016/j.neurobiolaging.2014.09.004 25316599
    [Google Scholar]
  24. BrancaC. FerreiraE. NguyenT.V. DoyleK. CaccamoA. OddoS. Genetic reduction of Nrf2 exacerbates cognitive deficits in a mouse model of Alzheimer’s disease.Hum. Mol. Genet.201726244823483510.1093/hmg/ddx361 29036636
    [Google Scholar]
  25. AliT. KimT. RehmanS.U. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease.Mol. Neurobiol.20185576076609310.1007/s12035‑017‑0798‑6 29170981
    [Google Scholar]
  26. HuangQ. ZhangC. DongS. Asafoetida exerts neuroprotective effect on oxidative stress induced apoptosis through PI3K/Akt/GSK3β/Nrf2/HO-1 pathway.Chin. Med.20221718310.1186/s13020‑022‑00630‑7 35794585
    [Google Scholar]
  27. KhanI. SaeedK. JoM.G. KimM.O. 17-β estradiol rescued immature rat brain against glutamate-induced oxidative stress and neurodegeneration via regulating Nrf2/HO-1 and MAP-kinase signaling pathway.Antioxidants202110689210.3390/antiox10060892 34206065
    [Google Scholar]
  28. SharmaV. KaurA. SinghT.G. Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease.Biomed. Pharmacother.202012911037310.1016/j.biopha.2020.110373 32603894
    [Google Scholar]
  29. BrandesM.S. GrayN.E. NRF2 as a therapeutic target in neurodegenerative diseases.ASN Neuro20201210.1177/1759091419899782 31964153
    [Google Scholar]
  30. QuZ. SunJ. ZhangW. YuJ. ZhuangC. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease.Free Radic. Biol. Med.20201598710210.1016/j.freeradbiomed.2020.06.028 32730855
    [Google Scholar]
  31. KaundalR.K. DatusaliaA.K. SharmaS.S. Posttranscriptional regulation of Nrf2 through miRNAs and their role in Alzheimer’s disease.Pharmacol. Res.202217510601810.1016/j.phrs.2021.106018 34863823
    [Google Scholar]
  32. WasikU. MilkiewiczM. Kempinska-PodhorodeckaA. MilkiewiczP. Protection against oxidative stress mediated by the Nrf2/Keap1 axis is impaired in primary biliary cholangitis.Sci. Rep.2017714476910.1038/srep44769 28333129
    [Google Scholar]
  33. SivandzadeF. PrasadS. BhaleraoA. CuculloL. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches.Redox Biol.20192110105910.1016/j.redox.2018.11.017 30576920
    [Google Scholar]
  34. TebayLE RobertsonH DurantST Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease.Free Radic Biol Med.201588Pt B10814610.1016/j.freeradbiomed.2015.06.02126122708
    [Google Scholar]
  35. Villavicencio TejoF. QuintanillaR.A. Contribution of the Nrf2 pathway on oxidative damage and mitochondrial failure in Parkinson and Alzheimer’s disease.Antioxidants2021107106910.3390/antiox10071069 34356302
    [Google Scholar]
  36. ShintoL. QuinnJ. MontineT. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease.J. Alzheimers Dis.201338111112010.3233/JAD‑130722 24077434
    [Google Scholar]
  37. DyskenM.W. SanoM. AsthanaS. Effect of vitamin E and memantine on functional decline in Alzheimer disease: The TEAM-AD VA cooperative randomized trial.JAMA20143111334410.1001/jama.2013.282834 24381967
    [Google Scholar]
  38. NadeemA. SiddiquiN. Al-HarbiN.O. Al-HarbiM.M. AhmadS.F. TLR-7 agonist attenuates airway reactivity and inflammation through Nrf2-mediated antioxidant protection in a murine model of allergic asthma.Int. J. Biochem. Cell Biol.201673536210.1016/j.biocel.2016.02.004 26851512
    [Google Scholar]
  39. PatrunoA. CostantiniE. FerroneA. Short ELF-EMF exposure targets SIRT1/Nrf2/HO-1 signaling in THP-1 cells.Int. J. Mol. Sci.20202119728410.3390/ijms21197284 33023074
    [Google Scholar]
  40. VijayanV. WagenerF.A.D.T.G. ImmenschuhS. The macrophage heme-heme oxygenase-1 system and its role in inflammation.Biochem. Pharmacol.201815315916710.1016/j.bcp.2018.02.010 29452096
    [Google Scholar]
  41. HouY. PengS. LiX. YaoJ. XuJ. FangJ. Honokiol alleviates oxidative stress-induced neurotoxicity via activation of Nrf2.ACS Chem. Neurosci.20189123108311610.1021/acschemneuro.8b00290 29989791
    [Google Scholar]
  42. Pajares CabetasM. Transcription factor NRF2 regulates the expression of autophagy genes2018161
    [Google Scholar]
  43. TangM. JiC. PalloS. RahmanI. JohnsonG.V.W. Nrf2 mediates the expression of BAG3 and autophagy cargo adaptor proteins and tau clearance in an age-dependent manner.Neurobiol. Aging20186312813910.1016/j.neurobiolaging.2017.12.001 29304346
    [Google Scholar]
  44. SongX. LongD. Nrf2 and ferroptosis: A new research direction for neurodegenerative diseases.Front. Neurosci.20201426710.3389/fnins.2020.00267 32372896
    [Google Scholar]
  45. WangC. ChenS. GuoH. Forsythoside a mitigates alzheimer’s-like pathology by inhibiting Ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation.Int. J. Biol. Sci.20221852075209010.7150/ijbs.69714 35342364
    [Google Scholar]
  46. LaneD.J.R. MetselaarB. GreenoughM. BushA.I. AytonS.J. Ferroptosis and NRF2: An emerging battlefield in the neurodegeneration of Alzheimer’s disease.Essays Biochem.202165792594010.1042/EBC20210017 34623415
    [Google Scholar]
  47. IntagliataS. SalernoL. CiaffaglioneV. Heme Oxygenase-2 (HO-2) as a therapeutic target: Activators and inhibitors.Eur. J. Med. Chem.201918311170310.1016/j.ejmech.2019.111703 31550661
    [Google Scholar]
  48. Fernández-FierroA. FunesS.C. RiosM. CoviánC. GonzálezJ. KalergisA.M. Immune modulation by inhibitors of the HO system.Int. J. Mol. Sci.202022129410.3390/ijms22010294 33396647
    [Google Scholar]
  49. NittiM. PirasS. BrondoloL. MarinariU. PronzatoM. FurfaroA. Heme oxygenase 1 in the nervous system: Does it favor neuronal cell survival or induce neurodegeneration?Int. J. Mol. Sci.2018198226010.3390/ijms19082260 30071692
    [Google Scholar]
  50. TanB.L. NorhaizanM.E. LiewW.P.P. Sulaiman RahmanH. Antioxidant and oxidative stress: A mutual interplay in age-related diseases.Front. Pharmacol.20189116210.3389/fphar.2018.01162 30405405
    [Google Scholar]
  51. SiZ. WangX. The neuroprotective and neurodegeneration effects of heme oxygenase-1 in Alzheimer’s disease.J. Alzheimers Dis.20207841259127210.3233/JAD‑200720 33016915
    [Google Scholar]
  52. WangD. HuiY. PengY. Overexpression of heme oxygenase 1 causes cognitive decline and affects pathways for tauopathy in mice.J. Alzheimers Dis.201443251953410.3233/JAD‑140567 25114080
    [Google Scholar]
  53. YinF. SanchetiH. PatilI. CadenasE. Energy metabolism and inflammation in brain aging and Alzheimer’s disease.Free Radic. Biol. Med.201610010812210.1016/j.freeradbiomed.2016.04.200 27154981
    [Google Scholar]
  54. MorroniF. SitaG. GraziosiA. Neuroprotective effect of caffeic acid phenethyl ester in a mouse model of Alzheimer’s disease involves Nrf2/HO-1 pathway.Aging Dis.20189460562210.14336/AD.2017.0903 30090650
    [Google Scholar]
  55. JiaoW. WangY. KongL. CART peptide activates the Nrf2/HO-1 antioxidant pathway and protects hippocampal neurons in a rat model of Alzheimer’s disease.Biochem. Biophys. Res. Commun.201850141016102210.1016/j.bbrc.2018.05.101 29777699
    [Google Scholar]
  56. SchipperH.M. SongW. TavitianA. CressattiM. The sinister face of heme oxygenase-1 in brain aging and disease.Prog. Neurobiol.2019172407010.1016/j.pneurobio.2018.06.008 30009872
    [Google Scholar]
  57. WangY. LiQ. HuoL. WangY. WangH. Pharmacological modulation of Nrf2/HO-1 signalling pathway as a therapeutic target of Parkinson’s disease.Front. Pharmacol.20215613120
    [Google Scholar]
  58. SantanaD.A. SmithM.A.C. ChenE.S. Histone modifications in Alzheimer’s disease.Genes202314234710.3390/genes14020347 36833274
    [Google Scholar]
  59. ZhaoF. ZhangJ. ChangN. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer’s disease.Eur. J. Pharmacol.201882411010.1016/j.ejphar.2018.01.046 29382536
    [Google Scholar]
  60. CaiH Cong W, Ji S, Rothman S, Maudsley S, Martin B. Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders.Curr. Alzheimer Res.20129151710.2174/156720512799015064 22329649
    [Google Scholar]
  61. SchmidlinC.J. DodsonM.B. MadhavanL. ZhangD.D. Redox regulation by NRF2 in aging and disease.Free Radic. Biol. Med.201913470270710.1016/j.freeradbiomed.2019.01.016 30654017
    [Google Scholar]
  62. HayesJ.D. Dinkova-KostovaA.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism.Trends Biochem. Sci.201439419921810.1016/j.tibs.2014.02.002 24647116
    [Google Scholar]
  63. LongH.Z. ChengY. ZhouZ.W. LuoH.Y. WenD.D. GaoL.C. PI3K/AKT signal pathway: A target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease.Front. Pharmacol.20211264863610.3389/fphar.2021.648636 33935751
    [Google Scholar]
  64. YiS. ChenS. XiangJ. Genistein exerts a cell-protective effect via Nrf2/HO-1//PI3K signaling in Ab25-35-induced Alzheimer’s disease models in vitro.Folia Histochem. Cytobiol.2021591495610.5603/FHC.a2021.0006 33605427
    [Google Scholar]
  65. FangY. OuS. WuT. Lycopene alleviates oxidative stress via the PI3K/Akt/Nrf2pathway in a cell model of Alzheimer’s disease.PeerJ20208e930810.7717/peerj.9308 32551202
    [Google Scholar]
  66. YangW. LiuY. XuQ-Q. XianY-F. LinZ-X. ulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/Akt/GSK-3β pathway in experimental models of Alzheimer’s disease.Oxid. Med. Cell. Longev.20202020475419510.1155/2020/4754195 32963694
    [Google Scholar]
  67. YoonJ.H. YounK. JunM. Protective effect of sargahydroquinoic acid against Aβ25–35-evoked damage via PI3K/Akt mediated Nrf2 antioxidant defense system.Biomed. Pharmacother.202114411227110.1016/j.biopha.2021.112271 34619494
    [Google Scholar]
  68. MengM. ZhangL. AiD. WuH. PengW. β-Asarone ameliorates β-Amyloid–induced neurotoxicity in PC12 cells by activating P13K/Akt/Nrf2 signaling pathway.Front. Pharmacol.20211265995510.3389/fphar.2021.659955 34040526
    [Google Scholar]
  69. ZhaoM. TangX. GongD. XiaP. WangF. XuS. Bungeanum improves cognitive dysfunction and neurological deficits in D-galactose-induced aging mice via activating PI3K/Akt/Nrf2 signaling pathway.Front. Pharmacol.2020117110.3389/fphar.2020.00071 32158388
    [Google Scholar]
  70. Ghasemi-TarieR. KiasalariZ. FakourM. Nobiletin prevents amyloid β1-40-induced cognitive impairment via inhibition of neuroinflammation and oxidative/nitrosative stress.Metab. Brain Dis.20223751337134910.1007/s11011‑022‑00949‑y 35294678
    [Google Scholar]
  71. Abd-ElhakimY.M. HashemM.M. Abo-EL-Sooud K, Hassan BA, Elbohi KM, Al-Sagheer AA. Effects of Co-exposure of nanoparticles and metals on different organisms: A review.Toxics202191128410.3390/toxics9110284 34822675
    [Google Scholar]
  72. XuJ. ZhouL. WengQ. XiaoL. LiQ. Curcumin analogues attenuate Aβ25-35-induced oxidative stress in PC12 cells via Keap1/Nrf2/HO-1 signaling pathways.Chem. Biol. Interact.201930517117910.1016/j.cbi.2019.01.010 30946834
    [Google Scholar]
  73. RenJ. LiL. WangY. ZhaiJ. ChenG. HuK. Gambogic acid induces heme oxygenase-1 through Nrf2 signaling pathway and inhibits NF-κB and MAPK activation to reduce inflammation in LPS-activated RAW264.7 cells.Biomed. Pharmacother.201910955556210.1016/j.biopha.2018.10.112 30399591
    [Google Scholar]
  74. SotolongoK. GhisoJ. RostagnoA. Nrf2 activation through the PI3K/GSK-3 axis protects neuronal cells from Aβ-mediated oxidative and metabolic damage.Alzheimers Res. Ther.20201211310.1186/s13195‑019‑0578‑9 31931869
    [Google Scholar]
  75. GriebelG. StemmelinJ. Lopez-GranchaM. The selective GSK3 inhibitor, SAR502250, displays neuroprotective activity and attenuates behavioral impairments in models of neuropsychiatric symptoms of Alzheimer’s disease in rodents.Sci. Rep.2019911804510.1038/s41598‑019‑54557‑5 31792284
    [Google Scholar]
  76. RongH. LiangY. NiuY. Rosmarinic acid attenuates β-amyloid-induced oxidative stress via Akt/GSK-3β/Fyn-mediated Nrf2 activation in PC12 cells.Free Radic. Biol. Med.201812011412310.1016/j.freeradbiomed.2018.03.028 29555592
    [Google Scholar]
  77. CuadradoA. KüglerS. Lastres-BeckerI. Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy.Redox Biol.20181452253410.1016/j.redox.2017.10.010 29121589
    [Google Scholar]
  78. KheiriG. DolatshahiM. RahmaniF. RezaeiN. Role of p38/MAPKs in Alzheimer’s disease: Implications for amyloid beta toxicity targeted therapy.Rev. Neurosci.201830193010.1515/revneuro‑2018‑0008 29804103
    [Google Scholar]
  79. SeoJ. KimB. OhJ. KimJ.S. Soybean-derived phytoalexins improve cognitive function through activation of Nrf2/HO-1 signaling pathway.Int. J. Mol. Sci.201819126810.3390/ijms19010268 29337893
    [Google Scholar]
  80. WangY-J. WangX-Y. HaoX-Y. Ethanol extract of centipeda minima exerts antioxidant and neuroprotective effects via activation of the Nrf2 signaling pathway.Oxid. Med. Cell. Longev.20192019942103710.1155/2019/9421037
    [Google Scholar]
  81. ChanY.C. LeeI.T. WangM.F. YehW.C. LiangB.C. Tempeh attenuates cognitive deficit, antioxidant imbalance, and amyloid β of senescence-accelerated mice by modulating Nrf2 expression via MAPK pathway.J. Funct. Foods20185011211910.1016/j.jff.2018.09.023
    [Google Scholar]
  82. Saad El-DinS. RashedL. MedhatE. Active form of vitamin D analogue mitigates neurodegenerative changes in Alzheimer’s disease in rats by targeting Keap1/Nrf2 and MAPK-38p/ERK signaling pathways.Steroids202015610858610.1016/j.steroids.2020.108586 31982424
    [Google Scholar]
  83. KwatraM. AhmedS. GawaliB. PandaS.R. NaiduV.G.M. Hesperidin alleviates chronic restraint stress and lipopolysaccharide-induced Hippocampus and Frontal cortex damage in mice: Role of TLR4/NF-κB, p38 MAPK/JNK, Nrf2/ARE signaling.Neurochem. Int.202014010483510.1016/j.neuint.2020.104835 32853749
    [Google Scholar]
  84. ParkJ. WetzelI. MarriottI. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease.Nat. Neurosci.201821794195110.1038/s41593‑018‑0175‑4 29950669
    [Google Scholar]
  85. KwonH.J. ChaM.Y. KimD. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease.ACS Nano20161022860287010.1021/acsnano.5b08045 26844592
    [Google Scholar]
  86. KongD. YanY. HeX-Y. Effects of resveratrol on the mechanisms of antioxidants and estrogen in Alzheimer’s disease.BioMed Res. Int.20192019898375210.1155/2019/8983752
    [Google Scholar]
  87. BoasS.M. JoyceK.L. CowellR.M. The NRF2-dependent transcriptional regulation of antioxidant defense pathways: Relevance for cell type-specific vulnerability to neurodegeneration and therapeutic intervention.Antioxidants2021111810.3390/antiox11010008 35052512
    [Google Scholar]
  88. KimD.H. LimH. LeeD. Thrombospondin-1 secreted by human umbilical cord blood-derived mesenchymal stem cells rescues neurons from synaptic dysfunction in Alzheimer’s disease model.Sci. Rep.20188135410.1038/s41598‑017‑18542‑0 29321508
    [Google Scholar]
  89. HeY. RuganzuJ.B. ZhengQ. Silencing of LRP1 exacerbates inflammatory response via TLR4/NF-κB/MAPKs signaling pathways in APP/PS1 transgenic mice.Mol. Neurobiol.20205793727374310.1007/s12035‑020‑01982‑7 32572761
    [Google Scholar]
  90. Griñán-FerréC. Marsal-GarcíaL. Bellver-SanchisA. Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β-Amyloid plaques in an early-onset Alzheimer’s disease mouse model.Aging20191123115911160810.18632/aging.102558 31804189
    [Google Scholar]
  91. PuD. ZhaoY. ChenJ. Protective effects of sulforaphane on cognitive impairments and AD-like lesions in diabetic mice are associated with the upregulation of Nrf2 transcription activity.Neuroscience2018381354510.1016/j.neuroscience.2018.04.017 29684505
    [Google Scholar]
  92. BajpaiV.K. AlamM.B. QuanK.T. Antioxidant efficacy and the upregulation of Nrf2-mediated HO-1 expression by (+)-lariciresinol, a lignan isolated from Rubia philippinensis, through the activation of p38.Sci. Rep.2017714603510.1038/srep46035 28378774
    [Google Scholar]
  93. ZhouY. XieN. LiL. ZouY. ZhangX. DongM. Puerarin alleviates cognitive impairment and oxidative stress in APP/PS1 transgenic mice.Int. J. Neuropsychopharmacol.201417463564410.1017/S146114571300148X 24345484
    [Google Scholar]
  94. AminF.U. ShahS.A. KimM.O. Vanillic acid attenuates Aβ1-42-induced oxidative stress and cognitive impairment in mice.Sci. Rep.2017714075310.1038/srep40753 28098243
    [Google Scholar]
  95. LiptonS.A. RezaieT. NutterA. Therapeutic advantage of pro-electrophilic drugs to activate the Nrf2/ARE pathway in Alzheimer’s disease models.Cell Death Dis.2016712e2499e910.1038/cddis.2016.389 27906174
    [Google Scholar]
  96. LiZ. ChenX. ZhangY. Protective roles of Amanita caesarea polysaccharides against Alzheimer’s disease via Nrf2 pathway.Int. J. Biol. Macromol.2019121293710.1016/j.ijbiomac.2018.09.216 30290256
    [Google Scholar]
  97. CuiY. MaS. ZhangC. Pharmacological activation of the Nrf2 pathway by 3H-1, 2-dithiole-3-thione is neuroprotective in a mouse model of Alzheimer disease.Behav. Brain Res.201833621922610.1016/j.bbr.2017.09.011 28887195
    [Google Scholar]
  98. PaunkovA. ChartoumpekisD.V. ZirosP.G. SykiotisG.P. A bibliometric review of the Keap1/Nrf2 pathway and its related antioxidant compounds.Antioxidants20198935310.3390/antiox8090353 31480567
    [Google Scholar]
  99. TapiasV. JainuddinS. AhujaM. Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy.Hum. Mol. Genet.201827162874289210.1093/hmg/ddy201 29860433
    [Google Scholar]
  100. HouT.T. YangH.Y. WangW. WuQ.Q. TianY.R. JiaJ.P. Sulforaphane inhibits the generation of amyloid-β oligomer and promotes spatial learning and memory in Alzheimer’s disease (PS1V97L) transgenic mice.J. Alzheimers Dis.20186241803181310.3233/JAD‑171110 29614663
    [Google Scholar]
  101. ScuderiS.A. ArdizzoneA. PaternitiI. EspositoE. CampoloM. Antioxidant and anti-inflammatory effect of Nrf2 inducer dimethyl fumarate in neurodegenerative diseases.Antioxidants20209763010.3390/antiox9070630 32708926
    [Google Scholar]
  102. BaiF. ZhangB. HouY. Xanthohumol analogues as potent Nrf2 activators against oxidative stress mediated damages of PC12 cells.ACS Chem. Neurosci.20191062956296610.1021/acschemneuro.9b00171 31116948
    [Google Scholar]
  103. AlipourM. NabaviS.M. ArabL. Stem cell therapy in Alzheimer’s disease: Possible benefits and limiting drawbacks.Mol. Biol. Rep.20194611425144610.1007/s11033‑018‑4499‑7 30565076
    [Google Scholar]
  104. ChenW. HuY. JuD. Gene therapy for neurodegenerative disorders: Advances, insights and prospects.Acta Pharm. Sin. B20201081347135910.1016/j.apsb.2020.01.015 32963936
    [Google Scholar]
  105. UpadhayayS. MehanS. Targeting Nrf2/HO-1 anti-oxidant signaling pathway in the progression of multiple sclerosis and influences on neurological dysfunctions.Brain Disord.2021310001910.1016/j.dscb.2021.100019
    [Google Scholar]
  106. MengX. ZhangC. GuoY. TBHQ attenuates neurotoxicity induced by methamphetamine in the VTA through the Nrf2/HO-1 and PI3K/AKT signaling pathways.Oxid. Med. Cell. Longev.2020202011310.1155/2020/8787156 32351675
    [Google Scholar]
  107. GranadoN. Lastres-BeckerI. Ares-SantosS. Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum.Glia201159121850186310.1002/glia.21229 21882243
    [Google Scholar]
  108. MannC.L.A. DaviesM.B. BoggildM.D. Glutathione S-transferase polymorphisms in MS: Their relationship to disability.Neurology200054355255710.1212/WNL.54.3.552 10680782
    [Google Scholar]
  109. RojoA.I. InnamoratoN.G. Martín-MorenoA.M. De CeballosM.L. YamamotoM. CuadradoA. Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease.Glia201058558859810.1002/glia.20947 19908287
    [Google Scholar]
  110. VickersN.J. Animal communication: When i’m calling you, will you answer too?Curr. Biol.20172714R713R71510.1016/j.cub.2017.05.064 28743020
    [Google Scholar]
  111. InnamoratoN.G. JazwaA. RojoA.I. Different susceptibility to the Parkinson’s toxin MPTP in mice lacking the redox master regulator Nrf2 or its target gene heme oxygenase-1.PLoS One201057e1183810.1371/journal.pone.0011838 20676377
    [Google Scholar]
  112. FulopG.A. KissT. TarantiniS. Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation.Geroscience2018405-651352110.1007/s11357‑018‑0047‑6 30470983
    [Google Scholar]
  113. SigfridssonE. MarangoniM. HardinghamG.E. HorsburghK. FowlerJ.H. Deficiency of Nrf2 exacerbates white matter damage and microglia/macrophage levels in a mouse model of vascular cognitive impairment.J. Neuroinflammation202017136710.1186/s12974‑020‑02038‑2 33261626
    [Google Scholar]
  114. Morales PantojaI.E. HuC. Perrone-BizzozeroN.I. ZhengJ. BizzozeroO.A. Nrf2-dysregulation correlates with reduced synthesis and low glutathione levels in experimental autoimmune encephalomyelitis.J. Neurochem.2016139464065010.1111/jnc.13837 27579494
    [Google Scholar]
  115. MuramatsuH. KatsuokaF. ToideK. ShimizuY. FurusakoS. YamamotoM. Nrf2 deficiency leads to behavioral, neurochemical and transcriptional changes in mice.Genes Cells2013181083990810.1111/gtc.12083 23890231
    [Google Scholar]
  116. ZweigJ.A. CarusoM. BrandesM.S. GrayN.E. Loss of NRF2 leads to impaired mitochondrial function, decreased synaptic density and exacerbated age-related cognitive deficits.Exp. Gerontol.202013111076710.1016/j.exger.2019.110767 31843395
    [Google Scholar]
  117. LiuL. KellyM.G. YangX.R. Nrf2 deficiency exacerbates cognitive impairment and reactive microgliosis in a lipopolysaccharide-induced neuroinflammatory mouse model.Cell. Mol. Neurobiol.20204071185119710.1007/s10571‑020‑00807‑4 32170572
    [Google Scholar]
  118. AhmadA.S. ZhuangH. DoréS. Heme oxygenase-1 protects brain from acute excitotoxicity.Neuroscience200614141703170810.1016/j.neuroscience.2006.05.035 16828975
    [Google Scholar]
  119. ChenK. GunterK. MainesM.D. Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death.J. Neurochem.200075130431310.1046/j.1471‑4159.2000.0750304.x 10854275
    [Google Scholar]
/content/journals/cmm/10.2174/1566524023666230726145447
Loading
/content/journals/cmm/10.2174/1566524023666230726145447
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): GSK-3; HO-1; NF-κB; p38MAPK; PI3K; ROS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test