Skip to content
2000
image of A Comparative Review of Methods for Detecting Epidermal Growth Factor Receptor Mutations in Cell-free DNA from Lung Cancer Patients

Abstract

Background

Lung cancer remains the leading cause of cancer-related mortality. Determining the T790M resistance variants and epidermal growth factor receptor (EGFR) mutations is crucial for personalized treatment, especially when using targeted therapies.

Objective

This review article aims to comprehensively compare some of the various diagnostic techniques associated with liquid biopsies, such as cell-free DNA (cfDNA) for T790M and EGFR mutant identification. It also aims to evaluate their pertinence in clinical settings, as well as their sensitivity and specificity to determine how effectively they monitor treatment response and resistance.

Methods

A literature search was conducted using databases including PubMed, Scopus, and Web of Science. The keyword list included “EGFR mutations,” “T790M resistance,” “liquid biopsy,” “COLD PCR,” “NGS,” “ddPCR,” “BEAMing,” and other methods. The effect of these studies on diagnostic technologies for identifying EGFR mutations was assessed in terms of clinical practice, methodological accuracy, and significance. Sensitivity, specificity, clinical applicability, cost analysis, turnaround times, and ease of integration into clinical workflows were used as parameters for evaluation based on the literature.

Results

There are advantages and disadvantages to cfDNA monitoring strategies for treatment response and resistance, as well as to the assessment of sensitivity, specificity, and clinical applicability for identifying EGFR mutations.

Conclusion

Advanced techniques such as COLD-PCR, LC-MS, qPCR, NGS sequencing, Sanger sequencing, PNA microarrays, the Allele-Specific Competitive Extension (ASCE) real-time PCR assay, and nanopore technology are necessary for personalized lung cancer management. However, depending on the objective of the work, the suitable method should be selected based on its benefits and drawbacks.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240374769250703232841
2025-07-08
2025-10-16
Loading full text...

Full text loading...

References

  1. Luo J. Shen L. Zheng D. Diagnostic value of circulating free DNA for the detection of EGFR mutation status in NSCLC: A systematic review and meta-analysis. Sci. Rep. 2014 4 1 6269 10.1038/srep06269 25201768
    [Google Scholar]
  2. Liu H.E. Vuppalapaty M. Wilkerson C. Detection of EGFR mutations in cfDNA and CTCs, and comparison to tumor tissue in non-small-cell-lung-cancer (NSCLC) patients. Front. Oncol. 2020 10 572895 10.3389/fonc.2020.572895 33117705
    [Google Scholar]
  3. Qin L. Beier F. EGFR signaling: Friend or foe for cartilage? JBMR Plus 2019 3 2 e10177 10.1002/jbm4.10177 30828691
    [Google Scholar]
  4. Uribe M.L. Marrocco I. Yarden Y. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance. Cancers 2021 13 11 2748 10.3390/cancers13112748 34206026
    [Google Scholar]
  5. Wee P. Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 2017 9 5 52 10.3390/cancers9050052 28513565
    [Google Scholar]
  6. Zhang Z. Stiegler A.L. Boggon T.J. Kobayashi S. Halmos B. EGFR-mutated lung cancer: A paradigm of molecular oncology. Oncotarget 2010 1 7 497 514 10.18632/oncotarget.186 21165163
    [Google Scholar]
  7. Sharma S.V. Bell D.W. Settleman J. Haber D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 2007 7 3 169 181 10.1038/nrc2088 17318210
    [Google Scholar]
  8. Yu H.A. Arcila M.E. Rekhtman N. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res. 2013 19 8 2240 2247 10.1158/1078‑0432.CCR‑12‑2246 23470965
    [Google Scholar]
  9. Koulouris A. Tsagkaris C. Corriero A.C. Metro G. Mountzios G. Resistance to TKIs in EGFR-mutated non-small cell lung cancer: From mechanisms to new therapeutic strategies. Cancers 2022 14 14 3337 10.3390/cancers14143337 35884398
    [Google Scholar]
  10. Ahmad I. Patel H.M. From challenges to solutions: A review of fourth-generation EGFR tyrosine kinase inhibitors to overcome the C797S triple mutation in non-small cell lung cancer. Eur. J. Med. Chem. 2025 284 117178 10.1016/j.ejmech.2024.117178 39724727
    [Google Scholar]
  11. Ren F. Fei Q. Qiu K. Zhang Y. Zhang H. Sun L. Liquid biopsy techniques and lung cancer: Diagnosis, monitoring and evaluation. J. Exp. Clin. Cancer Res. 2024 43 1 96 10.1186/s13046‑024‑03026‑7 38561776
    [Google Scholar]
  12. Telekes A. Horváth A. The role of cell-free DNA in cancer treatment decision making. Cancers 2022 14 24 6115 10.3390/cancers14246115 36551600
    [Google Scholar]
  13. Pandey S. Yadav P. Liquid biopsy in cancer management: Integrating diagnostics and clinical applications. Pract. Lab. Med. 2025 43 e00446 10.1016/j.plabm.2024.e00446 39839814
    [Google Scholar]
  14. Noor J. Chaudhry A. Noor R. Batool S. Advancements and applications of liquid biopsies in oncology: A narrative review. Cureus 2023 15 7 e42731 10.7759/cureus.42731 37654932
    [Google Scholar]
  15. O’Leary C. Gasper H. Sahin K.B. Epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC). Pharmaceuticals 2020 13 10 273 10.3390/ph13100273 32992872
    [Google Scholar]
  16. Bordi P. Del Re M. Danesi R. Tiseo M. Circulating DNA in diagnosis and monitoring EGFR gene mutations in advanced non-small cell lung cancer. Transl. Lung Cancer Res. 2015 4 5 584 597 26629427
    [Google Scholar]
  17. Adhit K.K. Wanjari A. Menon S. K S. Liquid biopsy: An evolving paradigm for non-invasive disease diagnosis and monitoring in medicine. Cureus 2023 15 12 e50176 10.7759/cureus.50176 38192931
    [Google Scholar]
  18. Venetis K. Cursano G. Pescia C. D’Ercole M. Porta F.M. Blanco M.C. Liquid biopsy: Cell-free DNA based analysis in breast cancer. J Liq Biopsy 2023 100002
    [Google Scholar]
  19. Liu S. Wang J. Current and future perspectives of cell-free DNA in liquid biopsy. Curr. Issues Mol. Biol. 2022 44 6 2695 2709 10.3390/cimb44060184 35735625
    [Google Scholar]
  20. Lopez-Valcarcel M. Lopez-Campos F. Zafra J. Liquid biopsy to personalize treatment for metastatic prostate cancer. Am. J. Transl. Res. 2024 16 5 1531 1549 10.62347/DICU9510 38883349
    [Google Scholar]
  21. Moser T. Kühberger S. Lazzeri I. Vlachos G. Heitzer E. Bridging biological cfDNA features and machine learning approaches. Trends Genet. 2023 39 4 285 307 10.1016/j.tig.2023.01.004 36792446
    [Google Scholar]
  22. Barbosa A. Peixoto A. Pinto P. Pinheiro M. Teixeira M.R. Potential clinical applications of circulating cell-free DNA in ovarian cancer patients. Expert Rev. Mol. Med. 2018 20 e6 10.1017/erm.2018.5 30558693
    [Google Scholar]
  23. Xu F. Wu J. Xue C. Comparison of different methods for detecting epidermal growth factor receptor mutations in peripheral blood and tumor tissue of non-small cell lung cancer as a predictor of response to gefitinib. OncoTargets Ther. 2012 5 439 447 23251095
    [Google Scholar]
  24. Xu T. Kang X. You X. Cross-platform comparison of four leading technologies for detecting EGFR mutations in circulating tumor DNA from non-small cell lung carcinoma patient plasma. Theranostics 2017 7 6 1437 1446 10.7150/thno.16558 28529628
    [Google Scholar]
  25. Zhou Q. Yang J.J. Chen Z.H. Serial cfDNA assessment of response and resistance to EGFR-TKI for patients with EGFR-L858R mutant lung cancer from a prospective clinical trial. J. Hematol. Oncol. 2016 9 1 86 10.1186/s13045‑016‑0316‑8 27619632
    [Google Scholar]
  26. Bustamante Alvarez J.G. Janse S. Owen D.H. Treatment of non–small-cell lung cancer based on circulating cell-free DNA and impact of variation allele frequency. Clin. Lung Cancer 2021 22 4 e519 e527 10.1016/j.cllc.2020.11.007 33414052
    [Google Scholar]
  27. Su K.Y. Tseng J.S. Liao K.M. Mutational monitoring of EGFR T790M in cfDNA for clinical outcome prediction in EGFR-mutant lung adenocarcinoma. PLoS One 2018 13 11 e0207001 10.1371/journal.pone.0207001 30444875
    [Google Scholar]
  28. Wu Y.L. Sequist L.V. Hu C.P. EGFR mutation detection in circulating cell-free DNA of lung adenocarcinoma patients: Analysis of LUX-Lung 3 and 6. Br. J. Cancer 2017 116 2 175 185 10.1038/bjc.2016.420 28006816
    [Google Scholar]
  29. Xu H. Baidoo A.A.H. Su S. A comparison of EGFR mutation status in tissue and plasma cell-free DNA detected by ADx-ARMS in advanced lung adenocarcinoma patients. Transl. Lung Cancer Res. 2019 8 2 135 143 10.21037/tlcr.2019.03.10 31106124
    [Google Scholar]
  30. Thress K.S. Paweletz C.P. Felip E. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non–small cell lung cancer harboring EGFR T790M. Nat. Med. 2015 21 6 560 562 10.1038/nm.3854 25939061
    [Google Scholar]
  31. Jimenez Rodriguez B. Diaz Córdoba G. Garrido Aranda A. Detection of TP53 and PIK3CA mutations in circulating tumor DNA using next-generation sequencing in the screening process for early breast cancer diagnosis. J. Clin. Med. 2019 8 8 1183 10.3390/jcm8081183 31394872
    [Google Scholar]
  32. Chan R.H. Lin P.C. Chen S.H. Clinical utility of a cell-free DNA assay in patients with colorectal cancer. Front. Oncol. 2021 11 589673 10.3389/fonc.2021.589673 33816227
    [Google Scholar]
  33. Garrido-Navas M.C. García-Díaz A. Molina-Vallejo M.P. The polemic diagnostic role of tp53 mutations in liquid biopsies from breast, colon and lung cancers. Cancers 2020 12 11 3343 33198130
    [Google Scholar]
  34. Lee J.K. Sivakumar S. Schrock A.B. Comprehensive pan-cancer genomic landscape of KRAS altered cancers and real-world outcomes in solid tumors. NPJ Precis. Oncol. 2022 6 1 91 10.1038/s41698‑022‑00334‑z 36494601
    [Google Scholar]
  35. Zhang T. Wan B. Zhao Y. Treatment of uncommon EGFR mutations in non-small cell lung cancer: new evidence and treatment. Transl. Lung Cancer Res. 2019 8 3 302 316 10.21037/tlcr.2019.04.12 31367543
    [Google Scholar]
  36. Cecchini M. Sokol E. Vasan N. Pavlick D.C. Huang R.S. Pelletier M. Molecular characteristics of advanced colorectal cancer and multi-hit PIK3CA mutations. American Society of Clinical Oncology 2022 10.1200/JCO.2022.40.16_suppl.3535
    [Google Scholar]
  37. Pu W. Wang F. Li K. Novel method for detection of PIK3CA mutations in circulating tumor DNA of patients with colorectal cancer. Appl. Biochem. Biotechnol. 2023 195 12 7821 7831 37093531
    [Google Scholar]
  38. Keraite I. Alvarez-Garcia V. Garcia-Murillas I. PIK3CA mutation enrichment and quantitation from blood and tissue. Sci. Rep. 2020 10 1 17082 33051521
    [Google Scholar]
  39. Nelson B.E. Roszik J. Janku F. BRAF v600E–mutant cancers treated with vemurafenib alone or in combination with everolimus, sorafenib, or crizotinib or with paclitaxel and carboplatin (VEM-PLUS) study. NPJ Precis. Oncol. 2023 7 1 19 10.1038/s41698‑022‑00341‑0 36801912
    [Google Scholar]
  40. Douvdevani A. Bernstein-Molho R. Asraf K. Doolman R. Laitman Y. Friedman E. Circulating cell-free DNA (cfDNA) levels in BRCA1 and BRCA2 mutation carriers: A preliminary study. Cancer Biomark. 2020 28 3 269 273 10.3233/CBM‑190718 32280079
    [Google Scholar]
  41. Klein-Scory S. Ladigan-Badura S. Mika T. Liquid biopsy based HER2 amplification status in gastric cancer patients indicates clinical response. Heliyon 2023 9 11 e21339 10.1016/j.heliyon.2023.e21339 38027576
    [Google Scholar]
  42. Lee J. Franovic A. Rich T. Shiotsu Y. Raymond V. Lanman R. Cell-free DNA (cfDNA) landscape in ERBB2 (HER2)-amplified Asian cancer patient population. Ann. Oncol. 2018 29 ix114 ix115
    [Google Scholar]
  43. Li X. Zhou C. Comparison of cross-platform technologies for EGFR T790M testing in patients with non-small cell lung cancer. Oncotarget 2017 8 59 100801 100818 10.18632/oncotarget.19007 29246024
    [Google Scholar]
  44. Cho S.M. Lee H.S. Jeon S. Cost-effectiveness analysis of three diagnostic strategies for the detection of EGFR mutation in advanced non-small cell lung cancer. Ann. Lab. Med. 2023 43 6 605 613 10.3343/alm.2023.43.6.605 37387493
    [Google Scholar]
  45. Zuo Z. Jabbar K.J. COLD-PCR: Applications and advantages. Clinical Applications of PCR 2016 17 25
    [Google Scholar]
  46. Castellanos-Rizaldos E. Milbury C.A. Makrigiorgos G.M. Enrichment of mutations in multiple DNA sequences using COLD-PCR in emulsion. PLoS One 2012 7 12 e51362 10.1371/journal.pone.0051362 23236486
    [Google Scholar]
  47. Milbury C.A. Li J. Liu P. Makrigiorgos G.M. COLD-PCR: Improving the sensitivity of molecular diagnostics assays. Expert Rev. Mol. Diagn. 2011 11 2 159 169 10.1586/erm.10.115 21405967
    [Google Scholar]
  48. Mairinger F.D. Vollbrecht C. Streubel A. The “COLD-PCR approach” for early and cost-effective detection of tyrosine kinase inhibitor resistance mutations in EGFR-positive non-small cell lung cancer. Appl. Immunohistochem. Mol. Morphol. 2014 22 2 114 118 10.1097/PDM.0b013e31829a638d 24517913
    [Google Scholar]
  49. Milbury C.A. Li J. Makrigiorgos G.M. COLD-PCR-enhanced high-resolution melting enables rapid and selective identification of low-level unknown mutations. Clin. Chem. 2009 55 12 2130 2143 10.1373/clinchem.2009.131029 19815609
    [Google Scholar]
  50. Viljoen GJ Molecular diagnostic PCR handbook. 2005
    [Google Scholar]
  51. Xiang Z. Wan R. Zou B. Highly sensitive and specific real-time PCR by employing serial invasive reaction as a sequence identifier for quantifying EGFR mutation abundance in cfDNA. Anal. Bioanal. Chem. 2018 410 26 6751 6759 10.1007/s00216‑018‑1316‑z 30128808
    [Google Scholar]
  52. Dono M. De Luca G. Lastraioli S. Tag-based next generation sequencing: A feasible and reliable assay for EGFR T790M mutation detection in circulating tumor DNA of non small cell lung cancer patients. Mol. Med. 2019 25 1 15 31029076
    [Google Scholar]
  53. Keppens C. Palma J.F. Das P.M. Detection of EGFR variants in plasma: A multilaboratory comparison of a real-time PCR EGFR mutation test in Europe. J. Mol. Diagn. 2018 20 4 483 494 10.1016/j.jmoldx.2018.03.006 29704571
    [Google Scholar]
  54. Bennett C.W. Berchem G. Kim Y.J. El-Khoury V. Cell-free DNA and next-generation sequencing in the service of personalized medicine for lung cancer. Oncotarget 2016 7 43 71013 71035 10.18632/oncotarget.11717 27589834
    [Google Scholar]
  55. Gedvilait V, Schveigert D, Cic nas S. Cell-free DNA in non-small cell lung cancer. Acta Med. Litu. 2017 24 2 138 144 10.6001/actamedica.v24i2.3495 28845132
    [Google Scholar]
  56. Mondelo-Macía P. García-González J. Abalo A. Plasma cell-free DNA and circulating tumor cells as prognostic biomarkers in small cell lung cancer patients. Transl. Lung Cancer Res. 2022 11 10 1995 2009 10.21037/tlcr‑22‑273 36386449
    [Google Scholar]
  57. Silveira C. Sousa A.C. Janeiro A. Detection and quantification of EGFR T790M mutation in liquid biopsies by droplet digital PCR. Transl. Lung Cancer Res. 2021 10 3 1200 1208 10.21037/tlcr‑20‑1010 33889502
    [Google Scholar]
  58. Steendam C.M.J. Atmodimedjo P. de Jonge E. Plasma cell-free DNA testing of patients with EGFR mutant non–small-cell lung cancer: Droplet digital PCR versus next-generation sequencing compared with tissue-based results. JCO Precis. Oncol. 2019 3 3 1 9 10.1200/PO.18.00401 35100738
    [Google Scholar]
  59. Pender A. Garcia-Murillas I. Rana S. Efficient genotyping of KRAS mutant non-small cell lung cancer using a multiplexed droplet digital PCR approach. PLoS One 2015 10 9 e0139074 10.1371/journal.pone.0139074 26413866
    [Google Scholar]
  60. Yoshida R. Sasaki T. Umekage Y. Highly sensitive detection of ALK resistance mutations in plasma using droplet digital PCR. BMC Cancer 2018 18 1 1136 10.1186/s12885‑018‑5031‑0 30453899
    [Google Scholar]
  61. Williamson D.F.K. Marris S.R.N. Rojas-Rudilla V. Detection of EGFR mutations in non-small cell lung cancer by droplet digital PCR. PLoS One 2022 17 2 e0264201 10.1371/journal.pone.0264201 35202431
    [Google Scholar]
  62. Watanabe M. Kawaguchi T. Isa S. Ultra-sensitive detection of the pretreatment EGFR T790M mutation in non–small cell lung cancer patients with an EGFR-activating mutation using droplet digital PCR. Clin. Cancer Res. 2015 21 15 3552 3560 10.1158/1078‑0432.CCR‑14‑2151 25882755
    [Google Scholar]
  63. Cheng C. Fei Z. Xiao P. Methods to improve the accuracy of next-generation sequencing. Front. Bioeng. Biotechnol. 2023 11 982111 10.3389/fbioe.2023.982111 36741756
    [Google Scholar]
  64. Jiang H. Chen X. Huang F. Validation of a highly sensitive Sanger sequencing in detecting EGFR mutations from circulating tumor DNA in patients with lung cancers. Clin. Chim. Acta 2022 536 98 103 10.1016/j.cca.2022.08.030 36154839
    [Google Scholar]
  65. Helman E. Nguyen M. Karlovich C.A. Despain D. Choquette A.K. Spira A.I. Cell-free DNA next-generation sequencing prediction of response and resistance to third-generation EGFR inhibitor. Clin. Lung Cancer 2018 19 6 518 530 10.1016/j.cllc.2018.07.008
    [Google Scholar]
  66. McCourt C.M. McArt D.G. Mills K. Validation of next generation sequencing technologies in comparison to current diagnostic gold standards for BRAF, EGFR and KRAS mutational analysis. PLoS One 2013 8 7 e69604 10.1371/journal.pone.0069604 23922754
    [Google Scholar]
  67. Esposito Abate R. Frezzetti D. Maiello M.R. Next generation sequencing-based profiling of cell free DNA in patients with advanced non-small cell lung cancer: Advantages and pitfalls. Cancers 2020 12 12 3804 33348595
    [Google Scholar]
  68. Lettig L. Sahnane N. Pepe F. EGFR T790M detection rate in lung adenocarcinomas at baseline using droplet digital PCR and validation by ultra-deep next generation sequencing. Transl. Lung Cancer Res. 2019 8 5 584 592 10.21037/tlcr.2019.09.18 31737495
    [Google Scholar]
  69. Jing C. Mao X. Wang Z. Next generation sequencing based detection of EGFR, KRAS, BRAF, NRAS, PIK3CA, Her 2 and TP53 mutations in patients with non small cell lung cancer. Mol. Med. Rep. 2018 18 2 2191 2197 10.3892/mmr.2018.9210 29956783
    [Google Scholar]
  70. Léonce C. Guerriau C. Chalabreysse L. Comparison and validation of rapid molecular testing methods for theranostic epidermal growth factor receptor alterations in lung cancer: Idylla versus digital droplet PCR. Int. J. Mol. Sci. 2023 24 21 15684 10.3390/ijms242115684 37958668
    [Google Scholar]
  71. Janke F. Angeles A.K. Riediger A.L. Longitudinal monitoring of cell-free DNA methylation in ALK-positive non-small cell lung cancer patients. Clin. Epigenetics 2022 14 1 163 10.1186/s13148‑022‑01387‑4 36461127
    [Google Scholar]
  72. Oketch D.J.A. Giulietti M. Piva F. Copy number variations in pancreatic cancer: from biological significance to clinical utility. Int. J. Mol. Sci. 2023 25 1 391 10.3390/ijms25010391 38203561
    [Google Scholar]
  73. Xu X. Xing S. Xu M. Highly sensitive and specific screening of EGFR mutation using a PNA microarray-based fluorometric assay based on rolling circle amplification and graphene oxide. RSC Advances 2019 9 66 38298 38308 10.1039/C9RA06758B 35540182
    [Google Scholar]
  74. Singh R.R. Next-generation sequencing in high-sensitive detection of mutations in tumors: Challenges, advances, and applications. J. Mol. Diagn. 2020 22 8 994 1007 10.1016/j.jmoldx.2020.04.213 32480002
    [Google Scholar]
  75. Romero A. Jantus-Lewintre E. García-Peláez B. Comprehensive cross platform comparison of methods for non invasive EGFR mutation testing: Results of the RING observational trial. Mol. Oncol. 2021 15 1 43 56 10.1002/1878‑0261.12832 33107189
    [Google Scholar]
  76. Garcia J. Wozny A.S. Geiguer F. Profiling of circulating tumor DNA in plasma of non small cell lung cancer patients, monitoring of epidermal growth factor receptor p.T790M mutated allelic fraction using beads, emulsion, amplification, and magnetics companion assay and evaluation in future application in mimicking circulating tumor cells. Cancer Med. 2019 8 8 3685 3697 10.1002/cam4.2244 31112372
    [Google Scholar]
  77. Kalendar R. Shustov A.V. Akhmetollayev I. Kairov U. Designing allele-specific competitive-extension PCR-based assays for high-throughput genotyping and gene characterization. Front. Mol. Biosci. 2022 9 773956 10.3389/fmolb.2022.773956 35300118
    [Google Scholar]
  78. Meriçöz Ç.A. Önder S. Güler G. The comparison of real-time PCR and mutation-specific immunohistochemistry in EGFR mutation analysis of non-small cell lung carcinomas. Hitit Med J 2024 6 2 117 125 10.52827/hititmedj.1351295
    [Google Scholar]
  79. Krug A.K. Enderle D. Karlovich C. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. Ann. Oncol. 2018 29 3 700 706 10.1093/annonc/mdx765 29216356
    [Google Scholar]
  80. Skronski M Langfort R Jagus P Szpechcinski A Maszkowska-Kopij K Orlowski T. Allele-specific real-time PCR detection of EGFR exon 19 and 21 mutations in various clinical non-small cell lung cancer specimens. Eur Respir J 2014 44 Suppl 58
    [Google Scholar]
  81. van Eijk R. Licht J. Schrumpf M. Rapid KRAS, EGFR, BRAF and PIK3CA mutation analysis of fine needle aspirates from non-small-cell lung cancer using allele-specific qPCR. PLoS One 2011 6 3 e17791 10.1371/journal.pone.0017791 21408138
    [Google Scholar]
  82. Akkhasutthikun P. Kaewsapsak P. Nimsamer P. Tissue and plasma-based highly sensitive blocker displacement amplicon nanopore sequencing for egfr mutations in lung cancer. Cancer Res. Treat. 2024 56 2 455 463 10.4143/crt.2023.1108 37986562
    [Google Scholar]
  83. Martignano F. Munagala U. Crucitta S. Nanopore sequencing from liquid biopsy: Analysis of copy number variations from cell-free DNA of lung cancer patients. Mol. Cancer 2021 20 1 32 10.1186/s12943‑021‑01327‑5 33579306
    [Google Scholar]
  84. Katsman E. Orlanski S. Martignano F. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing. Genome Biol. 2022 23 1 158 10.1186/s13059‑022‑02710‑1 35841107
    [Google Scholar]
  85. van der Pol Y. Tantyo N.A. Evander N. Real time analysis of the cancer genome and fragmentome from plasma and urine cell free DNA using nanopore sequencing. EMBO Mol. Med. 2023 15 12 e17282 10.15252/emmm.202217282 37942753
    [Google Scholar]
  86. Chen X M Roozbahani G, Ye Z, et al. Label-free detection of DNA mutations by nanopore analysis. ACS Appl. Mater. Interfaces 2018 10 14 11519 11528 10.1021/acsami.7b19774 29537824
    [Google Scholar]
  87. Sharma V.K. Vouros P. Glick J. Mass spectrometric based analysis, characterization and applications of circulating cell free DNA isolated from human body fluids. Int. J. Mass Spectrom. 2011 304 2-3 172 183 10.1016/j.ijms.2010.10.003 21765648
    [Google Scholar]
  88. Chowdhury G. Guengerich F.P. Liquid chromatography mass spectrometry analysis of DNA polymerase reaction products. Curr. Protoc. Nucleic Acid Chem. 2011 47 1 7 16 10.1002/0471142700.nc0716s47
    [Google Scholar]
  89. Wang K. Peng Z. Lin X. Nian W. Zheng X. Wu J. Electrochemical biosensors for circulating tumor DNA detection. Biosensors 2022 12 8 649 10.3390/bios12080649 36005048
    [Google Scholar]
  90. Yang X. Liao M. Zhang H. An electrochemiluminescence resonance energy transfer biosensor for the detection of circulating tumor DNA from blood plasma. iScience 2021 24 9 103019 10.1016/j.isci.2021.103019 34522862
    [Google Scholar]
  91. Ondraskova K. Sebuyoya R. Moranova L. Electrochemical biosensors for analysis of DNA point mutations in cancer research. Anal. Bioanal. Chem. 2023 415 6 1065 1085 10.1007/s00216‑022‑04388‑7 36289102
    [Google Scholar]
  92. Wang Y.H. Song Z. Hu X.Y. Wang H.S. Circulating tumor DNA analysis for tumor diagnosis. Talanta 2021 228 122220 10.1016/j.talanta.2021.122220 33773726
    [Google Scholar]
  93. Motamedi M. Hashemzadeh Chaleshtori M. Ghasemi S. Mokarian F. Plasma level of miR-21 and miR-451 in primary and recurrent breast cancer patients. Breast Cancer 2019 11 293 301 10.2147/BCTT.S224333
    [Google Scholar]
  94. Rezakhani L. Rahmati S. Ghasemi S. Alizadeh M. Alizadeh A. A comparative study of the effects of crab derived exosomes and doxorubicin in 2 & 3-dimensional in vivo models of breast cancer. Chem. Phys. Lipids 2022 243 105179 10.1016/j.chemphyslip.2022.105179 35150707
    [Google Scholar]
  95. Balmaña M. Pancreatic cancer markers based on aberrant glycosylation of serum proteins. 2016 Available from https://www.tesisenred.net/handle/10803/392636#page=1
    [Google Scholar]
  96. Zhang S. Zhu L. Xia B. Epidermal growth factor receptor (EGFR) T790M mutation identified in plasma indicates failure sites and predicts clinical prognosis in non small cell lung cancer progression during first generation tyrosine kinase inhibitor therapy: A prospective observational study. Cancer Commun. 2018 38 1 1 14 10.1186/s40880‑018‑0303‑2 29789021
    [Google Scholar]
  97. Okuma H.S. Koizumi F. Hirakawa A. Clinical and microarray analysis of breast cancers of all subtypes from two prospective preoperative chemotherapy studies. Br. J. Cancer 2016 115 4 411 419 10.1038/bjc.2016.184 27415010
    [Google Scholar]
  98. Oellerich M. Schütz E. Beck J. Using circulating cell-free DNA to monitor personalized cancer therapy. Crit. Rev. Clin. Lab. Sci. 2017 54 3 205 218 10.1080/10408363.2017.1299683 28393575
    [Google Scholar]
  99. Garcia J. Forestier J. Dusserre E. Cross-platform comparison for the detection of RAS mutations in cfDNA (ddPCR Biorad detection assay, BEAMing assay, and NGS strategy). Oncotarget 2018 9 30 21122 21131 10.18632/oncotarget.24950 29765524
    [Google Scholar]
  100. Perkins G. Lu H. Garlan F. Taly V. Droplet-based digital PCR. Adv. Clin. Chem. 2017 79 43 91 10.1016/bs.acc.2016.10.001 28212714
    [Google Scholar]
  101. Attoye B. Baker M.J. Thomson F. Pou C. Corrigan D.K. Optimisation of an electrochemical DNA sensor for measuring KRAS G12D and G13D point mutations in different tumour types. Biosensors 2021 11 2 42 10.3390/bios11020042 33562505
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240374769250703232841
Loading
/content/journals/cmm/10.2174/0115665240374769250703232841
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Lung cancer ; T790M resistance ; mutation detection ; cfDNA ; EGFR mutations ; liquid biopsy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test