Skip to content
2000
image of The Role of Gut Microbiota in Modulating Inflammation and Insulin Resistance in Type 2 Diabetes Mellitus: Implications for Complication Management

Abstract

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and severe complications, including cardiovascular diseases, neuropathy, retinopathy, and nephropathy. This article examines the role of gut microbiota in modulating inflammation and insulin resistance in type 2 diabetes mellitus (T2DM), as well as its implications for managing complications associated with the disease. We analyzed published literature to elucidate mechanisms linking microbial dysbiosis, impaired gut barrier function, and chronic inflammation to glycemic control and T2DM complications. Key findings suggest that gut microbiota dysbiosis contributes to systemic inflammation and insulin resistance, thereby exacerbating the complications of type 2 diabetes mellitus (T2DM). Therapeutic strategies, such as probiotics, prebiotics, and fecal microbiota transplantation, promise to improve glycemic control and mitigate complications by restoring microbial balance. This review provides a comprehensive framework for understanding the role of the gut microbiota in type 2 diabetes mellitus (T2DM) and highlights potential therapeutic interventions to enhance the management of complications.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240393897250826074023
2025-08-28
2025-11-02
Loading full text...

Full text loading...

References

  1. Saeedi P. Petersohn I. Salpea P. Malanda B. Karuranga S. Unwin N. Colagiuri S. Guariguata L. Motala A.A. Ogurtsova K. Shaw J.E. Bright D. Williams R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019 157 107843 10.1016/j.diabres.2019.107843 31518657
    [Google Scholar]
  2. Mozaffarian D. Kamineni A. Carnethon M. Djoussé L. Mukamal K.J. Siscovick D. Lifestyle risk factors and new-onset diabetes mellitus in older adults: The cardiovascular health study. Arch. Intern. Med. 2009 169 8 798 807 10.1001/archinternmed.2009.21 19398692
    [Google Scholar]
  3. Home P.D. Pacini G. Hepatic dysfunction and insulin insensitivity in type 2 diabetes mellitus: A critical target for insulin‐sensitizing agents. Diabetes Obes. Metab. 2008 10 9 699 718 10.1111/j.1463‑1326.2007.00761.x 17825080
    [Google Scholar]
  4. Forbes J.M. Cooper M.E. Mechanisms of diabetic complications. Physiol. Rev. 2013 93 1 137 188 10.1152/physrev.00045.2011 23303908
    [Google Scholar]
  5. Crasto W. Patel V. Davies M.J. Khunti K. Prevention of microvascular complications of diabetes. Endocrinol. Metab. Clin. North Am. 2021 50 3 431 455 10.1016/j.ecl.2021.05.005 34399955
    [Google Scholar]
  6. Zakir M. Ahuja N. Surksha M.A. Sachdev R. Kalariya Y. Nasir M. Kashif M. Shahzeen F. Tayyab A. Khan M.S.M. Junejo M. Manoj Kumar F. Varrassi G. Kumar S. Khatri M. Mohamad T. moazzam Khan, M.S., Cardiovascular complications of diabetes: From microvascular to macrovascular pathways. Cureus 2023 15 9 45835 37881393
    [Google Scholar]
  7. Evans J.M.M. Wang J. Morris A.D. Comparison of cardiovascular risk between patients with type 2 diabetes and those who had had a myocardial infarction: Cross sectional and cohort studies. BMJ 2002 324 7343 939 942 10.1136/bmj.324.7343.939 11964337
    [Google Scholar]
  8. Viigimaa M. Sachinidis A. Toumpourleka M. Koutsampasopoulos K. Alliksoo S. Titma T. Macrovascular complications of type 2 diabetes mellitus. Curr. Vasc. Pharmacol. 2020 18 2 110 116 10.2174/1570161117666190405165151 30961498
    [Google Scholar]
  9. Shanahan F. Ghosh T.S. O’Toole P.W. The healthy microbiome—What is the definition of a healthy gut microbiome? Gastroenterology 2021 160 2 483 494 10.1053/j.gastro.2020.09.057 33253682
    [Google Scholar]
  10. Pham V.T. Dold S. Rehman A. Bird J.K. Steinert R.E. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr. Res. 2021 95 35 53 10.1016/j.nutres.2021.09.001 34798467
    [Google Scholar]
  11. Mörbe U.M. Jørgensen P.B. Fenton T.M. von Burg N. Riis L.B. Spencer J. Agace W.W. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol. 2021 14 4 793 802 10.1038/s41385‑021‑00389‑4 33753873
    [Google Scholar]
  12. Lu J. Ma K.L. Ruan X.Z. Dysbiosis of gut microbiota contributes to the development of diabetes mellitus. Infect. Microbes Dis. 2019 1 2 43 48 10.1097/IM9.0000000000000011
    [Google Scholar]
  13. Davis C.D. The gut microbiome and its role in obesity. Nutr. Today 2016 51 4 167 174 10.1097/NT.0000000000000167 27795585
    [Google Scholar]
  14. Chae Y.R. Lee Y.R. Kim Y.S. Park H.Y. Diet-induced gut dysbiosis and leaky gut syndrome. J. Microbiol. Biotechnol. 2024 34 4 747 756 10.4014/jmb.2312.12031 38321650
    [Google Scholar]
  15. Lee S.H. Park S.Y. Choi C.S. Insulin resistance: From mechanisms to therapeutic strategies. Diabetes Metab. J. 2022 46 1 15 37 10.4093/dmj.2021.0280 34965646
    [Google Scholar]
  16. Fadaei R. Bagheri N. Heidarian E. Nouri A. Hesari Z. Moradi N. Ahmadi A. Ahmadi R. Serum levels of IL-32 in patients with type 2 diabetes mellitus and its relationship with TNF-α and IL-6. Cytokine 2020 125 154832 10.1016/j.cyto.2019.154832 31479874
    [Google Scholar]
  17. Morcillo Sánchez M. A novel role of the c-Jun NH (2)-Terminal Kinase (JNK) in obesity-associated insulin resistance. Thesis 2021 139
    [Google Scholar]
  18. Esser N. Utzschneider K.M. Kahn S.E. Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia 2020 63 10 2007 2021 10.1007/s00125‑020‑05245‑x 32894311
    [Google Scholar]
  19. Lara-Riegos J.C. Ortiz-López M.G. Peña-Espinoza B.I. Montúfar-Robles I. Peña-Rico M.A. Sánchez-Pozos K. Granados-Silvestre M.A. Menjivar M. Diabetes susceptibility in Mayas: Evidence for the involvement of polymorphisms in HHEX, HNF4α, KCNJ11, PPARγ, CDKN2A/2B, SLC30A8, CDC123/CAMK1D, TCF7L2, ABCA1 and SLC16A11 genes. Gene 2015 565 1 68 75 10.1016/j.gene.2015.03.065 25839936
    [Google Scholar]
  20. Burhans M.S. Hagman D.K. Kuzma J.N. Schmidt K.A. Kratz M. Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus. Compr. Physiol. 2019 9 1 1 58 10.1002/j.2040‑4603.2019.tb00055.x 30549014
    [Google Scholar]
  21. Li S. Shin H.J. Ding E.L. van Dam R.M. Adiponectin levels and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA 2009 302 2 179 188 10.1001/jama.2009.976 19584347
    [Google Scholar]
  22. Huang Y. Wang Z. Ma H. Ji S. Chen Z. Cui Z. Chen J. Tang S. Dysbiosis and implication of the gut microbiota in diabetic retinopathy. Front. Cell. Infect. Microbiol. 2021 11 646348 10.3389/fcimb.2021.646348 33816351
    [Google Scholar]
  23. Topping D.L. Short-chain fatty acids produced by intestinal bacteria. Asia Pac. J. Clin. Nutr. 1996 5 1 15 19 24394459
    [Google Scholar]
  24. Tedelind S. Westberg F. Kjerrulf M. Vidal A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. World J. Gastroenterol. 2007 13 20 2826 2832 10.3748/wjg.v13.i20.2826 17569118
    [Google Scholar]
  25. Wu W. Sun M. Chen F. Cao A.T. Liu H. Zhao Y. Huang X. Xiao Y. Yao S. Zhao Q. Liu Z. Cong Y. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 2017 10 4 946 956 10.1038/mi.2016.114 27966553
    [Google Scholar]
  26. Wang H.X. Wang Y.P. Gut microbiota-brain axis. Chin. Med. J. 2016 129 19 2373 2380 10.4103/0366‑6999.190667 27647198
    [Google Scholar]
  27. Dicks L.M.T. Gut bacteria and neurotransmitters. Microorganisms 2022 10 9 1838 10.3390/microorganisms10091838 36144440
    [Google Scholar]
  28. Mitsuoka T. Establishment of intestinal bacteriology. Biosci. Microbiota Food Health 2014 33 3 99 116 10.12938/bmfh.33.99 25032084
    [Google Scholar]
  29. Afzaal M. Saeed F. Shah Y.A. Hussain M. Rabail R. Socol C.T. Hassoun A. Pateiro M. Lorenzo J.M. Rusu A.V. Aadil R.M. Human gut microbiota in health and disease: Unveiling the relationship. Front. Microbiol. 2022 13 999001 10.3389/fmicb.2022.999001 36225386
    [Google Scholar]
  30. Larsen N. Vogensen F.K. van den Berg F.W.J. Nielsen D.S. Andreasen A.S. Pedersen B.K. Al-Soud W.A. Sørensen S.J. Hansen L.H. Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010 5 2 9085 10.1371/journal.pone.0009085 20140211
    [Google Scholar]
  31. Hasani A. Ebrahimzadeh S. Hemmati F. Khabbaz A. Hasani A. Gholizadeh P. The role of Akkermansia muciniphila in obesity, diabetes and atherosclerosis. J. Med. Microbiol. 2021 70 10 001435 10.1099/jmm.0.001435 34623232
    [Google Scholar]
  32. Qin J. Li Y. Cai Z. Li S. Zhu J. Zhang F. Liang S. Zhang W. Guan Y. Shen D. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012 490 55 60 10.1038/nature11450
    [Google Scholar]
  33. Furet J.P. Kong L.C. Tap J. Poitou C. Basdevant A. Bouillot J.L. Mariat D. Corthier G. Doré J. Henegar C. Rizkalla S. Clément K. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: Links with metabolic and low-grade inflammation markers. Diabetes 2010 59 12 3049 3057 10.2337/db10‑0253 20876719
    [Google Scholar]
  34. Yang C. Lan R. Zhao L. Pu J. Hu D. Yang J. Zhou H. Han L. Ye L. Jin D. Xu J. Liu L. Prevotella copri alleviates hyperglycemia and regulates gut microbiota and metabolic profiles in mice. mSystems 2024 9 7 e00532-24 10.1128/msystems.00532‑24 38934548
    [Google Scholar]
  35. Liu J. Zhou L. Sun L. Ye X. Ma M. Dou M. Shi L. Association between intestinal Prevotella copri abundance and glycemic fluctuation in patients with brittle diabetes. Diabetes Metab. Syndr. Obes. 2023 16 1613 1621 10.2147/DMSO.S412872 37292141
    [Google Scholar]
  36. Kulkarni P. Devkumar P. Chattopadhyay I. Could dysbiosis of inflammatory and anti-inflammatory gut bacteria have an implications in the development of type 2 diabetes? A pilot investigation. BMC Res. Notes 2021 14 1 52 10.1186/s13104‑021‑05466‑2 33549142
    [Google Scholar]
  37. Henke M.T. Kenny D.J. Cassilly C.D. Vlamakis H. Xavier R.J. Clardy J. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc. Natl. Acad. Sci. USA 2019 116 26 12672 12677 10.1073/pnas.1904099116 31182571
    [Google Scholar]
  38. Companys J. Gosalbes M.J. Pla-Pagà L. Calderón-Pérez L. Llauradó E. Pedret A. Valls R.M. Jiménez-Hernández N. Sandoval-Ramirez B.A. del Bas J.M. Caimari A. Rubió L. Solà R. Gut microbiota profile and its association with clinical variables and dietary intake in overweight/obese and lean subjects: A cross-sectional study. Nutrients 2021 13 6 2032 10.3390/nu13062032 34199239
    [Google Scholar]
  39. Gravdal K. Kirste K.H. Grzelak K. Kirubakaran G.T. Leissner P. Saliou A. Casèn C. Exploring the gut microbiota in patients with pre-diabetes and treatment naïve diabetes type 2 - A pilot study. BMC Endocr. Disord. 2023 23 1 179 10.1186/s12902‑023‑01432‑0 37605183
    [Google Scholar]
  40. Karlsson F.H. Tremaroli V. Nookaew I. Bergström G. Behre C.J. Fagerberg B. Nielsen J. Bäckhed F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013 498 7452 99 103 10.1038/nature12198 23719380
    [Google Scholar]
  41. Doumatey A.P. Adeyemo A. Zhou J. Lei L. Adebamowo S.N. Adebamowo C. Rotimi C.N. Gut microbiome profiles are associated with type 2 diabetes in urban Africans. Front. Cell. Infect. Microbiol. 2020 10 63 10.3389/fcimb.2020.00063 32158702
    [Google Scholar]
  42. Singh S.B. Carroll-Portillo A. Lin H.C. Desulfovibrio in the gut: The enemy within? Microorganisms 2023 11 7 1772 10.3390/microorganisms11071772 37512944
    [Google Scholar]
  43. Fernandez-Quintela A. Macarulla M.T. Gómez-Zorita S. González M. Milton-Laskibar I. Portillo M.P. Relationship between changes in microbiota induced by resveratrol and its anti-diabetic effect on type 2 diabetes. Front. Nutr. 2023 9 1084702 10.3389/fnut.2022.1084702 36687699
    [Google Scholar]
  44. Janssen A.W.F. Kersten S. Potential mediators linking gut bacteria to metabolic health: A critical view. J. Physiol. 2017 595 2 477 487 10.1113/JP272476 27418465
    [Google Scholar]
  45. Scheithauer T.P.M. Rampanelli E. Nieuwdorp M. Vallance B.A. Verchere C.B. van Raalte D.H. Herrema H. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front. Immunol. 2020 11 571731 10.3389/fimmu.2020.571731 33178196
    [Google Scholar]
  46. Caetano M.A.F. Castelucci P. Role of short chain fatty acids in gut health and possible therapeutic approaches in inflammatory bowel diseases. World J. Clin. Cases 2022 10 28 9985 10003 10.12998/wjcc.v10.i28.9985 36246826
    [Google Scholar]
  47. Sun M. Wu W. Liu Z. Cong Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 2017 52 1 1 8 10.1007/s00535‑016‑1242‑9 27448578
    [Google Scholar]
  48. Cong J. Zhou P. Zhang R. Intestinal microbiota-derived short chain fatty acids in host health and disease. Nutrients 2022 14 9 1977 10.3390/nu14091977 35565943
    [Google Scholar]
  49. Hu S. Kuwabara R. de Haan B.J. Smink A.M. de Vos P. Acetate and butyrate improve β-cell metabolism and mitochondrial respiration under oxidative stress. Int. J. Mol. Sci. 2020 21 4 1542 10.3390/ijms21041542 32102422
    [Google Scholar]
  50. McMurdie P.J. Stoeva M.K. Justice N. Nemchek M. Sieber C.M.K. Tyagi S. Gines J. Skennerton C.T. Souza M. Kolterman O. Eid J. Increased circulating butyrate and ursodeoxycholate during probiotic intervention in humans with type 2 diabetes. BMC Microbiol. 2022 22 1 19 10.1186/s12866‑021‑02415‑8 34996347
    [Google Scholar]
  51. Birkeland E. Gharagozlian S. Birkeland K.I. Valeur J. Måge I. Rud I. Aas A.M. Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: A randomised controlled trial. Eur. J. Nutr. 2020 59 7 3325 3338 10.1007/s00394‑020‑02282‑5 32440730
    [Google Scholar]
  52. Pussinen P.J. Kopra E. Pietiäinen M. Lehto M. Zaric S. Paju S. Salminen A. Periodontitis and cardiometabolic disorders: The role of lipopolysaccharide and endotoxemia. Periodontol. 2000 2022 89 1 19 40 10.1111/prd.12433 35244966
    [Google Scholar]
  53. Laflamme N. Rivest S. Toll‐like receptor 4: The missing link of the cerebral innate immune response triggered by circulating gram‐negative bacterial cell wall components. FASEB J. 2001 15 1 155 163 10.1096/fj.00‑0339com 11149903
    [Google Scholar]
  54. Rotter V. Nagaev I. Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. J. Biol. Chem. 2003 278 46 45777 45784 10.1074/jbc.M301977200 12952969
    [Google Scholar]
  55. Li H. Wang C. Zhao J. Guo C. JNK downregulation improves olanzapine-induced insulin resistance by suppressing IRS1Ser307 phosphorylation and reducing inflammation. Biomed. Pharmacother. 2021 142 112071 10.1016/j.biopha.2021.112071 34449309
    [Google Scholar]
  56. Salguero M. Al-Obaide M. Singh R. Siepmann T. Vasylyeva T. Dysbiosis of Gram‑negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type�2 diabetic patients with chronic kidney disease. Exp. Ther. Med. 2019 18 5 3461 3469 10.3892/etm.2019.7943 31602221
    [Google Scholar]
  57. Kawamata Y. Fujii R. Hosoya M. Harada M. Yoshida H. Miwa M. Fukusumi S. Habata Y. Itoh T. Shintani Y. Hinuma S. Fujisawa Y. Fujino M. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 2003 278 11 9435 9440 10.1074/jbc.M209706200 12524422
    [Google Scholar]
  58. Raufman J.P. Chen Y. Cheng K. Compadre C. Compadre L. Zimniak P. Selective interaction of bile acids with muscarinic receptors: A case of molecular mimicry. Eur. J. Pharmacol. 2002 457 2-3 77 84 10.1016/S0014‑2999(02)02690‑0 12464352
    [Google Scholar]
  59. Ridlon J.M. Kang D.J. Hylemon P.B. Bajaj J.S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 2014 30 3 332 338 10.1097/MOG.0000000000000057 24625896
    [Google Scholar]
  60. Wahlström A. Kovatcheva-Datchary P. Ståhlman M. Bäckhed F. Marschall H.U. Crosstalk between bile acids and gut microbiota and its impact on farnesoid X receptor signalling. Dig. Dis. 2017 35 3 246 250 10.1159/000450982 28249261
    [Google Scholar]
  61. Reich M. Klindt C. Deutschmann K. Spomer L. Häussinger D. Keitel V. Role of the G protein-coupled bile acid receptor TGR5 in liver damage. Dig. Dis. 2017 35 3 235 240 10.1159/000450917 28249265
    [Google Scholar]
  62. Haeusler R.A. Astiarraga B. Camastra S. Accili D. Ferrannini E. Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes 2013 62 12 4184 4191 10.2337/db13‑0639 23884887
    [Google Scholar]
  63. Shan Z. Sun T. Huang H. Chen S. Chen L. Luo C. Yang W. Yang X. Yao P. Cheng J. Hu F.B. Liu L. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am. J. Clin. Nutr. 2017 106 3 888 894 10.3945/ajcn.117.157107 28724646
    [Google Scholar]
  64. DiNicolantonio J.J. McCarty M. Association of moderately elevated trimethylamine N-oxide with cardiovascular risk: Is TMAO serving as a marker for hepatic insulin resistance. Open Heart 2019 6 1 e000890
    [Google Scholar]
  65. Vondrácek J. Umannová L. Machala M. Interactions of the aryl hydrocarbon receptor with inflammatory mediators: Beyond CYP1A regulation. Curr. Drug Metab. 2011 12 2 89 103 10.2174/138920011795016827 21401513
    [Google Scholar]
  66. Busbee P.B. Rouse M. Nagarkatti M. Nagarkatti P.S. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr. Rev. 2013 71 6 353 369 10.1111/nure.12024 23731446
    [Google Scholar]
  67. Chelakkot C. Ghim J. Ryu S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018 50 8 1 9 10.1038/s12276‑018‑0126‑x 30115904
    [Google Scholar]
  68. Fasano A. All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res 2020 9 F1000 Faculty Rev-69 10.12688/f1000research.20510.1 32051759
    [Google Scholar]
  69. Hansson G.C. Role of mucus layers in gut infection and inflammation. Curr. Opin. Microbiol. 2012 15 1 57 62 10.1016/j.mib.2011.11.002 22177113
    [Google Scholar]
  70. Rogier E. Frantz A. Bruno M. Kaetzel C. Secretory IgA is concentrated in the outer layer of colonic mucus along with gut bacteria. Pathogens 2014 3 2 390 403 10.3390/pathogens3020390 25437806
    [Google Scholar]
  71. Antoni L. Nuding S. Weller D. Gersemann M. Ott G. Wehkamp J. Stange E.F. Human colonic mucus is a reservoir for antimicrobial peptides. J. Crohn’s Colitis 2013 7 12 e652 e664 10.1016/j.crohns.2013.05.006 23787054
    [Google Scholar]
  72. Rosendo-Silva D. Viana S. Carvalho E. Reis F. Matafome P. Are gut dysbiosis, barrier disruption, and endotoxemia related to adipose tissue dysfunction in metabolic disorders? Overview of the mechanisms involved. Intern. Emerg. Med. 2023 18 5 1287 1302 10.1007/s11739‑023‑03262‑3 37014495
    [Google Scholar]
  73. Chowdhury P. Sacks S.H. Sheerin N.S. Toll-like receptors TLR2 and TLR4 initiate the innate immune response of the renal tubular epithelium to bacterial products. Clin. Exp. Immunol. 2006 145 2 346 356 10.1111/j.1365‑2249.2006.03116.x 16879256
    [Google Scholar]
  74. Kim H.J. Kim H. Lee J.H. Hwangbo C. Toll-like receptor 4 (TLR4): New insight immune and aging. Immun. Ageing 2023 20 1 67 10.1186/s12979‑023‑00383‑3 38001481
    [Google Scholar]
  75. Lempesis I.G. Georgakopoulou V.E. Physiopathological mechanisms related to inflammation in obesity and type 2 diabetes mellitus. World J. Exp. Med. 2023 13 3 7 16 10.5493/wjem.v13.i3.7 37396883
    [Google Scholar]
  76. Huang L. Ma Z. Ze X. Zhao X. Zhang M. Lv X. Zheng Y. Liu H. Gut microbiota decreased inflammation induced by chronic unpredictable mild stress through affecting NLRP3 inflammasome. Front. Cell. Infect. Microbiol. 2023 13 1189008 10.3389/fcimb.2023.1189008 37293210
    [Google Scholar]
  77. Yang D. Wang Z. Chen Y. Guo Q. Dong Y. Interactions between gut microbes and NLRP3 inflammasome in the gut-brain axis. Comput. Struct. Biotechnol. J. 2023 21 2215 2227 10.1016/j.csbj.2023.03.017 37035548
    [Google Scholar]
  78. Huang Y.J. Tsai M.S. Panyod S. Liu P.Y. Lu K.H. Weng C.Y. Huang H.S. Hsu C.C. Sheen L.Y. Garlic essential oil ameliorates depression-like behaviors in unpredictable chronic mild stress by modulating the brain NLRP3 inflammasome pathway and influencing the gut barrier and microbiota. Food Funct. 2023 14 15 6998 7010 10.1039/D3FO00270E 37435927
    [Google Scholar]
  79. Yakar B. Onalan E. Kaymaz T. Donder E. Gursu M.F. The role of trimethylamine-N-oxide level in the diagnosis of diabetic retinopathy and the differential diagnosis of diabetic and nondiabetic retinopathy. Arq. Bras. Oftalmol. 2022 87 2 0527 36350906
    [Google Scholar]
  80. Rowan S. Jiang S. Korem T. Szymanski J. Chang M.L. Szelog J. Cassalman C. Dasuri K. McGuire C. Nagai R. Du X.L. Brownlee M. Rabbani N. Thornalley P.J. Baleja J.D. Deik A.A. Pierce K.A. Scott J.M. Clish C.B. Smith D.E. Weinberger A. Avnit-Sagi T. Lotan-Pompan M. Segal E. Taylor A. Involvement of a gut–retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc. Natl. Acad. Sci. USA 2017 114 22 E4472 E4481 10.1073/pnas.1702302114 28507131
    [Google Scholar]
  81. Bu Y. Chan Y.K. Wong H.L. Poon S.H.L. Lo A.C.Y. Shih K.C. Tong L. A review of the impact of alterations in gut microbiome on the immunopathogenesis of ocular diseases. J. Clin. Med. 2021 10 20 4694 10.3390/jcm10204694 34682816
    [Google Scholar]
  82. Liu K. Zou J. Fan H. Hu H. You Z. Causal effects of gut microbiota on diabetic retinopathy: A Mendelian randomization study. Front. Immunol. 2022 13 930318 10.3389/fimmu.2022.930318 36159877
    [Google Scholar]
  83. Liu W. Wang C. Xia Y. Xia W. Liu G. Ren C. Gu Y. Li X. Lu P. Elevated plasma trimethylamine-N-oxide levels are associated with diabetic retinopathy. Acta Diabetol. 2021 58 2 221 229 10.1007/s00592‑020‑01610‑9 33064205
    [Google Scholar]
  84. Li T. Chen Y. Gua C. Li X. Elevated circulating trimethylamine N-oxide levels contribute to endothelial dysfunction in aged rats through vascular inflammation and oxidative stress. Front. Physiol. 2017 8 350 10.3389/fphys.2017.00350 28611682
    [Google Scholar]
  85. Zhang J.Y. Xiao J. Xie B. Barba H. Boachie-Mensah M. Shah R.N. Nadeem U. Spedale M. Dylla N. Lin H. Sidebottom A.M. D’Souza M. Theriault B. Sulakhe D. Chang E.B. Skondra D. Oral metformin inhibits choroidal neovascularization by modulating the gut-retina Axis. Invest. Ophthalmol. Vis. Sci. 2023 64 15 21 21 10.1167/iovs.64.15.21 38108689
    [Google Scholar]
  86. Liu S. Liu J. Xiang J. Yan R. Li S. Fan Q. Lu L. Wu J. Xue Y. Fu T. Liu J. Li Z. Restorative effects of short-chain fatty acids on corneal homeostasis disrupted by antibiotic-induced gut dysbiosis. Am. J. Pathol. 2025 195 4 770 796 10.1016/j.ajpath.2024.11.010 39732390
    [Google Scholar]
  87. Li Y.J. Chen X. Kwan T.K. Loh Y.W. Singer J. Liu Y. Ma J. Tan J. Macia L. Mackay C.R. Chadban S.J. Wu H. Dietary fiber protects against diabetic nephropathy through short-chain fatty acid–mediated activation of G protein–coupled receptors GPR43 and GPR109A. J. Am. Soc. Nephrol. 2020 31 6 1267 1281 10.1681/ASN.2019101029 32358041
    [Google Scholar]
  88. Huang W. Man Y. Gao C. Zhou L. Gu J. Xu H. Wan Q. Long Y. Chai L. Xu Y. Xu Y. Short‐chain fatty acids ameliorate diabetic nephropathy via GPR43‐mediated inhibition of oxidative stress and NF‐κB signaling. Oxid. Med. Cell. Longev. 2020 2020 1 1 21 10.1155/2020/4074832 32831998
    [Google Scholar]
  89. Li Y. Su X. Gao Y. Lv C. Gao Z. Liu Y. Wang Y. Li S. Wang Z. The potential role of the gut microbiota in modulating renal function in experimental diabetic nephropathy murine models established in same environment. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 6 165764 10.1016/j.bbadis.2020.165764 32169506
    [Google Scholar]
  90. Zhao H. Yang C.E. Liu T. Zhang M.X. Niu Y. Wang M. Yu J. The roles of gut microbiota and its metabolites in diabetic nephropathy. Front. Microbiol. 2023 14 1207132 10.3389/fmicb.2023.1207132 37577423
    [Google Scholar]
  91. Kelley N. Jeltema D. Duan Y. He Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 2019 20 13 3328 10.3390/ijms20133328 31284572
    [Google Scholar]
  92. Wang F. Liu C. Ren L. Li Y. Yang H. Yu Y. Xu W. Sanziguben polysaccharides improve diabetic nephropathy in mice by regulating gut microbiota to inhibit the TLR4/NF-κB/NLRP3 signalling pathway. Pharm. Biol. 2023 61 1 427 436 10.1080/13880209.2023.2174145 36772833
    [Google Scholar]
  93. Wu Q. Liu M.C. Yang J. Wang J.F. Zhu Y.H. Lactobacillus rhamnosus GR-1 ameliorates Escherichia coli-induced inflammation and cell damage via attenuation of ASC-independent NLRP3 inflammasome activation. Appl. Environ. Microbiol. 2016 82 4 1173 1182 10.1128/AEM.03044‑15 26655757
    [Google Scholar]
  94. Lu Y.C. Yin L.T. Chang W.T. Huang J.S. Effect of Lactobacillus reuteri GMNL-263 treatment on renal fibrosis in diabetic rats. J. Biosci. Bioeng. 2010 110 6 709 715 10.1016/j.jbiosc.2010.07.006 20691633
    [Google Scholar]
  95. Al-Harbi N.O. Nadeem A. Ahmad S.F. Alotaibi M.R. AlAsmari A.F. Alanazi W.A. Al-Harbi M.M. El-Sherbeeny A.M. Ibrahim K.E. Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signaling in T cells. Int. Immunopharmacol. 2018 58 24 31 10.1016/j.intimp.2018.02.023 29544198
    [Google Scholar]
  96. Everard A. Cani P.D. Gut microbiota and GLP-1. Rev. Endocr. Metab. Disord. 2014 15 3 189 196 10.1007/s11154‑014‑9288‑6 24789701
    [Google Scholar]
  97. Fang Y. Qin M. Zheng Q. Wang K. Han X. Yang Q. Sang X. Cao G. Role of bile acid receptors in the development and function of diabetic nephropathy. Kidney Int. Rep. 2024 9 11 3116 3133 10.1016/j.ekir.2024.08.002 39534198
    [Google Scholar]
  98. Pang L. Lian X. Liu H. Zhang Y. Li Q. Cai Y. Ma H. Yu X. Understanding diabetic neuropathy: Focus on oxidative stress. Oxid. Med. Cell. Longev. 2020 2020 1 1 13 10.1155/2020/9524635 32832011
    [Google Scholar]
  99. Elbarsha A. Hamedh M. Elsaeiti M. Prevalence and risk factors of diabetic peripheral neuropathy in patients with Type 2 diabetes mellitus. Ibnosina J Med Biomed Sci 2019 11 1 25 28 10.4103/ijmbs.ijmbs_3_19
    [Google Scholar]
  100. Xie L. Gan W. Cai G. The causal relationship between gut microbiota and diabetic neuropathy: A bi-directional two-sample Mendelian randomization study. Front. Endocrinol. 2024 15 1402014 10.3389/fendo.2024.1402014 39050567
    [Google Scholar]
  101. Jiang S.Q. Huang Y-H. Ou Y-W. Chen K-Y. Chen J.S. Tang S-B. Tang S-B. Gut microbiota induced abnormal amino acids and their correlation with diabetic retinopathy. Int. J. Ophthalmol. 2024 17 5 883 895 10.18240/ijo.2024.05.13 38766339
    [Google Scholar]
  102. Volodina D.E. Gureev A.P. Shaforostova E.A. Gryaznova M.V. Ignatyeva D.A. Popov V.N. Effect of l-carnitine and mildronate on the mitochondrial metabolism of heart and bacterial composition of the gut microbiome in ageing mice. Life Sci. 2022 293 120333 10.1016/j.lfs.2022.120333 35051422
    [Google Scholar]
  103. Song X. Cui J. Li S. Huang B. Causal relationships between gut microbiota, metabolites, and diabetic nephropathy: Insights from a two-sample mendelian randomization analysis. Int. J. Nephrol. Renovasc. Dis. 2024 17 319 332 10.2147/IJNRD.S489074 39679125
    [Google Scholar]
  104. Du X. Liu J. Xue Y. Kong X. Lv C. Li Z. Huang Y. Wang B. Alteration of gut microbial profile in patients with diabetic nephropathy. Endocrine 2021 73 1 71 84 10.1007/s12020‑021‑02721‑1 33905112
    [Google Scholar]
  105. Carmeliet P. Angiogenesis in health and disease. Nat. Med. 2003 9 6 653 660 10.1038/nm0603‑653 12778163
    [Google Scholar]
  106. Santra S. Basu A.K. Roychowdhury P. Banerjee R. Singhania P. Singh S. Datta U.K. Comparison of left ventricular mass in normotensive type 2 diabetes mellitus patients with that in the nondiabetic population. J. Cardiovasc. Dis. Res. 2011 2 1 50 56 10.4103/0975‑3583.78597 21716753
    [Google Scholar]
  107. Kim M. Oh J. Sakata S. Liang I. Park W. Hajjar R.J. Lebeche D. Role of resistin in cardiac contractility and hypertrophy. J. Mol. Cell. Cardiol. 2008 45 2 270 280 10.1016/j.yjmcc.2008.05.006 18597775
    [Google Scholar]
  108. Regan T.J. Lyons M.M. Ahmed S.S. Levinson G.E. Oldewurtel H.A. Ahmad M.R. Haider B. Evidence for cardiomyopathy in familial diabetes mellitus. J. Clin. Invest. 1977 60 4 885 899 10.1172/JCI108843 893679
    [Google Scholar]
  109. Patil V.C. Shah K.B. Vasani J.D. Shetty P. Patil H.V. Diastolic dysfunction in asymptomatic type 2 diabetes mellitus with normal systolic function. J. Cardiovasc. Dis. Res. 2011 2 4 213 222 10.4103/0975‑3583.89805 22135479
    [Google Scholar]
  110. Nakajima A. Mitomo S. Yuki H. Araki M. Seegers L.M. McNulty I. Lee H. Kuter D. Ishibashi M. Kobayashi K. Dijkstra J. Onishi H. Yabushita H. Matsuoka S. Kawamoto H. Watanabe Y. Tanaka K. Chou S. Naganuma T. Okutsu M. Tahara S. Kurita N. Nakamura S. Das S. Nakamura S. Jang I.K. Gut microbiota and coronary plaque characteristics. J. Am. Heart Assoc. 2022 11 17 026036 10.1161/JAHA.122.026036 36000423
    [Google Scholar]
  111. Tuomisto S. Huhtala H. Martiskainen M. Goebeler S. Lehtimäki T. Karhunen P.J. Age-dependent association of gut bacteria with coronary atherosclerosis: Tampere sudden death study. PLoS One 2019 14 8 0221345 10.1371/journal.pone.0221345 31437200
    [Google Scholar]
  112. Nagendra L. Boro H. Mannar V. Bacterial infections in diabetes. Endotext 2022
    [Google Scholar]
  113. Ahmed K. Choi H.N. Cho S.R. Yim J.E. Association of firmicutes/bacteroidetes ratio with body mass index in korean type 2 diabetes mellitus patients. Metabolites 2024 14 10 518 10.3390/metabo14100518 39452900
    [Google Scholar]
  114. Sarlak Z. Naderi N. Amidi B. Ghorbanzadeh V. Sodium butyrate, a gut microbiota derived metabolite, in type 2 diabetes mellitus and cardiovascular disease: A review. Cardiovasc. Hematol. Agents Med. Chem. 2024 10.2174/0118715257307380240820052940 39206487
    [Google Scholar]
  115. Branchereau M. Burcelin R. Heymes C. The gut microbiome and heart failure: A better gut for a better heart. Rev. Endocr. Metab. Disord. 2019 20 4 407 414 10.1007/s11154‑019‑09519‑7 31705258
    [Google Scholar]
  116. Canani R.B. Costanzo M.D. Leone L. Pedata M. Meli R. Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol. 2011 17 12 1519 1528 10.3748/wjg.v17.i12.1519 21472114
    [Google Scholar]
  117. Tang W.H.W. Kitai T. Hazen S.L. Gut microbiota in cardiovascular health and disease. Circ. Res. 2017 120 7 1183 1196 10.1161/CIRCRESAHA.117.309715 28360349
    [Google Scholar]
  118. Koeth R.A. Wang Z. Levison B.S. Buffa J.A. Org E. Sheehy B.T. Britt E.B. Fu X. Wu Y. Li L. Smith J.D. DiDonato J.A. Chen J. Li H. Wu G.D. Lewis J.D. Warrier M. Brown J.M. Krauss R.M. Tang W.H.W. Bushman F.D. Lusis A.J. Hazen S.L. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013 19 5 576 585 10.1038/nm.3145 23563705
    [Google Scholar]
  119. Tang W.H.W. Wang Z. Li X.S. Fan Y. Li D.S. Wu Y. Hazen S.L. Increased trimethylamine N-oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus. Clin. Chem. 2017 63 1 297 306 10.1373/clinchem.2016.263640 27864387
    [Google Scholar]
  120. Winther S.A. Øllgaard J.C. Tofte N. Tarnow L. Wang Z. Ahluwalia T.S. Jorsal A. Theilade S. Parving H.H. Hansen T.W. Hazen S.L. Pedersen O. Rossing P. Utility of plasma concentration of trimethylamine N-oxide in predicting cardiovascular and renal complications in individuals with type 1 diabetes. Diabetes Care 2019 42 8 1512 1520 10.2337/dc19‑0048 31123156
    [Google Scholar]
  121. Tang W.H.W. Hazen S.L. The gut microbiome and its role in cardiovascular diseases. Circulation 2017 135 11 1008 1010 10.1161/CIRCULATIONAHA.116.024251 28289004
    [Google Scholar]
  122. Wang Z. Klipfell E. Bennett B.J. Koeth R. Levison B.S. DuGar B. Feldstein A.E. Britt E.B. Fu X. Chung Y.M. Wu Y. Schauer P. Smith J.D. Allayee H. Tang W.H.W. DiDonato J.A. Lusis A.J. Hazen S.L. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011 472 7341 57 63 10.1038/nature09922 21475195
    [Google Scholar]
  123. Hiatt W.R. Goldstone J. Smith S.C. Jr McDermott M. Moneta G. Oka R. Newman A.B. Pearce W.H. Atherosclerotic Peripheral Vascular Disease Symposium II: Nomenclature for vascular diseases. Circulation 2008 118 25 2826 2829 10.1161/CIRCULATIONAHA.108.191171 19106403
    [Google Scholar]
  124. Aschner M. Skalny A. Gritsenko V. Kartashova O. Santamaria A. Rocha J. Spandidos D. Zaitseva I. Tsatsakis A. Tinkov A. Role of gut microbiota in the modulation of the health effects of advanced glycation end‑products (Review). Int. J. Mol. Med. 2023 51 5 44 10.3892/ijmm.2023.5247 37052251
    [Google Scholar]
  125. Popkov V.A. Zharikova A.A. Demchenko E.A. Andrianova N.V. Zorov D.B. Plotnikov E.Y. Gut microbiota as a source of uremic toxins. Int. J. Mol. Sci. 2022 23 1 483 10.3390/ijms23010483 35008909
    [Google Scholar]
  126. Carnevale R. Raparelli V. Nocella C. Bartimoccia S. Novo M. Severino A. De Falco E. Cammisotto V. Pasquale C. Crescioli C. Scavalli A.S. Riggio O. Basili S. Violi F. Gut-derived endotoxin stimulates factor VIII secretion from endothelial cells. Implications for hypercoagulability in cirrhosis. J. Hepatol. 2017 67 5 950 956 10.1016/j.jhep.2017.07.002 28716745
    [Google Scholar]
  127. Sheng C. Huang W. Liao M. Yang P. The role of gut microbiota in thromboangiitis obliterans: Cohort and mendelian randomization study. Biomedicines 2024 12 7 1459 10.3390/biomedicines12071459 39062030
    [Google Scholar]
  128. Yu J. Morimoto K. Bao W. Yu Z. Okita Y. Okada K. Glucagon-like peptide-1 prevented abdominal aortic aneurysm development in rats. Surg. Today 2016 46 9 1099 1107 10.1007/s00595‑015‑1287‑z 26658813
    [Google Scholar]
  129. Al-Salami H. Butt G. Fawcett J.P. Tucker I.G. Golocorbin-Kon S. Mikov M. Probiotic treatment reduces blood glucose levels and increases systemic absorption of gliclazide in diabetic rats. Eur. J. Drug Metab. Pharmacokinet. 2008 33 2 101 106 10.1007/BF03191026 18777945
    [Google Scholar]
  130. Gholami A. Dabbaghmanesh M.H. Ghasemi Y. Talezadeh P. Koohpeyma F. Montazeri-Najafabady N. Probiotics ameliorate pioglitazone-associated bone loss in diabetic rats. Diabetol. Metab. Syndr. 2020 12 1 78 10.1186/s13098‑020‑00587‑3
    [Google Scholar]
  131. Wang Y. Dilidaxi D. Wu Y. Sailike J. Sun X. Nabi X. Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice. Biomed. Pharmacother. 2020 125 109914 10.1016/j.biopha.2020.109914 32035395
    [Google Scholar]
  132. Zheng Q.X. Wang H.W. Jiang X.M. Ge L. Lai Y.T. Jiang X.Y. Huang P.P. Chen F. Chen X.Q. Changes in the gut metabolic profile of gestational diabetes mellitus rats following probiotic supplementation. Front. Microbiol. 2022 13 779314 10.3389/fmicb.2022.779314 35464990
    [Google Scholar]
  133. Martinic A. Barouei J. Bendiks Z. Mishchuk D. Heeney D.D. Martin R. Marco M.L. Slupsky C.M. Supplementation of Lactobacillus plantarum improves markers of metabolic dysfunction induced by a high fat diet. J. Proteome Res. 2018 17 8 2790 2802 10.1021/acs.jproteome.8b00282 29931981
    [Google Scholar]
  134. Min Q. Wang Y. Jin T. Zhu L. Wu X. Li Y. Wang Y. Xu N. Analysis of intestinal short-chain fatty acid metabolism profile after probiotics and GLP-1 treatment for type 2 diabetes mellitus. Front. Endocrinol. 2022 13 892127 10.3389/fendo.2022.892127 35846273
    [Google Scholar]
  135. Zhang Q. Yu H. Xiao X. Hu L. Xin F. Yu X. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats. PeerJ 2018 6 4446 10.7717/peerj.4446 29507837
    [Google Scholar]
  136. Li K. Zhang L. Xue J. Yang X. Dong X. Sha L. Lei H. Zhang X. Zhu L. Wang Z. Li X. Wang H. Liu P. Dong Y. He L. Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice. Food Funct. 2019 10 4 1915 1927 10.1039/C8FO02265H 30869673
    [Google Scholar]
  137. Li E. Long X. Liao S. Pang D. Li Q. Zou Y. Effect of mulberry galacto-oligosaccharide isolated from mulberry on glucose metabolism and gut microbiota in a type 2 diabetic mice. J. Funct. Foods 2021 87 104836 10.1016/j.jff.2021.104836
    [Google Scholar]
  138. Zhang J. Wang S. Zeng Z. Qin Y. Shen Q. Li P. Anti-diabetic effects of Bifidobacterium animalis 01 through improving hepatic insulin sensitivity in type 2 diabetic rat model. J. Funct. Foods 2020 67 103843 10.1016/j.jff.2020.103843
    [Google Scholar]
  139. Megur A. Daliri E.B.M. Baltriukienė D. Burokas A. Prebiotics as a tool for the prevention and treatment of obesity and diabetes: Classification and ability to modulate the gut microbiota. Int. J. Mol. Sci. 2022 23 11 6097 10.3390/ijms23116097 35682774
    [Google Scholar]
  140. Aoki R. Kamikado K. Suda W. Takii H. Mikami Y. Suganuma N. Hattori M. Koga Y. A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Sci. Rep. 2017 7 1 43522 10.1038/srep43522 28252037
    [Google Scholar]
  141. Iatcu O.C. Hamamah S. Covasa M. Harnessing prebiotics to improve type 2 diabetes outcomes. Nutrients 2024 16 20 3447 10.3390/nu16203447 39458444
    [Google Scholar]
  142. Aron-Wisnewsky J. Clément K. Nieuwdorp M. Fecal microbiota transplantation: A future therapeutic option for obesity/diabetes? Curr. Diab. Rep. 2019 19 8 51 10.1007/s11892‑019‑1180‑z 31250122
    [Google Scholar]
  143. de Groot P.F. Frissen M.N. de Clercq N.C. Nieuwdorp M. Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes 2017 8 3 253 267 10.1080/19490976.2017.1293224 28609252
    [Google Scholar]
  144. Zhang L. Zhou W. Zhan L. Hou S. Zhao C. Bi T. Lu X. Fecal microbiota transplantation alters the susceptibility of obese rats to type 2 diabetes mellitus. Aging 2020 12 17 17480 17502 10.18632/aging.103756 32920548
    [Google Scholar]
  145. Bastos R.M.C. Simplício-Filho A. Sávio-Silva C. Oliveira L.F.V. Cruz G.N.F. Sousa E.H. Noronha I.L. Mangueira C.L.P. Quaglierini-Ribeiro H. Josefi-Rocha G.R. Rangel É.B. Fecal microbiota transplant in a pre-clinical model of type 2 diabetes mellitus, obesity and diabetic kidney disease. Int. J. Mol. Sci. 2022 23 7 3842 10.3390/ijms23073842 35409202
    [Google Scholar]
  146. Chen L. Guo L. Feng S. Wang C. Cui Z. Wang S. Lu Q. Chang H. Hang B. Snijders A.M. Mao J.H. Lu Y. Ding D. Fecal microbiota transplantation ameliorates type 2 diabetes via metabolic remodeling of the gut microbiota in db/db mice. BMJ Open Diabetes Res. Care 2023 11 3 003282 10.1136/bmjdrc‑2022‑003282 37253485
    [Google Scholar]
  147. Zhang P. Li L. Han X. Li Q. Zhang X. Liu J.J. Wang Y. Fecal microbiota transplantation improves metabolism and gut microbiome composition in db/db mice. Acta Pharmacol. Sin. 2020 41 5 678 685 10.1038/s41401‑019‑0330‑9 31937933
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240393897250826074023
Loading
/content/journals/cmm/10.2174/0115665240393897250826074023
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test