Skip to content
2000
image of Regulatory Mechanisms of CHD7 and PAX4 Gene Mutations on Proliferation and Apoptosis in Chondrocytes

Abstract

Introduction

Mutations in Chromodomain Helicase DNA Binding Protein 7 (CHD7) and Paired Box Gene 4 (PAX4) are critical for normal cartilage development and are implicated through their impact on chondrocyte functions. This study examines how these genetic alterations specifically modulate Tumor protein p53 (p53) expression to affect cellular proliferation and apoptosis, shedding light on potential therapeutic targets for mitigating developmental anomalies in cartilage.

Method

Using Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated protein 9 (Cas9), specific mutations were introduced into CHD7 and PAX4 in chondrocytes. Subsequent analyses included 5-ethynyl-2'-deoxyuridine (EdU) assay for proliferation, Terminal deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) staining for apoptosis, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot alongside co-immunoprecipitation (Co-IP) to evaluate expression levels and protein interactions.

Result

Mutations in CHD7 and PAX4 resulted in decreased proliferation and increased apoptosis in chondrocytes. Notably, these mutations disrupted the interaction between the mutant proteins and p53, leading to altered expression of apoptotic regulators such as Bcl2-associated X protein (Bax), B-cell lymphoma 2 (Bcl2), indicating activation of p53-dependent apoptotic pathways.

Discussion

This study elucidates the core molecular mechanism by which mutations in the CHD7 and PAX4 genes disrupt their interaction with p53, leading to aberrant activation of the p53-dependent apoptotic pathway. These findings provide a new theoretical basis and potential intervention strategies for developing p53 pathway-targeted therapies to treat related cartilage developmental disorders. Future research should focus on in vivo validation and mechanistic refinement.

Conclusion

The study reveals that CHD7 and PAX4 mutations exacerbate the apoptotic pathways in chondrocytes by enhancing the activity of p53, leading to decreased cell proliferation and increased apoptosis. These findings underscore the mutations’ profound impact on cartilage cell dynamics and highlight the therapeutic potential of targeting p53 to correct the cellular imbalances caused by these genetic changes in cartilage-related developmental disorders.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240388187250731190634
2025-10-10
2025-10-18
Loading full text...

Full text loading...

References

  1. Andrews J. Kopacz A.A. Hohman M.H. Ear Microtia. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  2. Su-Genyk P. Quatela O. Quatela V. Our evolution of approaches to microtia reconstruction. Facial Plast. Surg. Clin. North Am. 2024 32 1 105 125 10.1016/j.fsc.2023.09.002 37981407
    [Google Scholar]
  3. Truong M.T. Liu Y.C.C. Kohn J. Integrated microtia and aural atresia management. Front. Surg. 2022 9 944223 10.3389/fsurg.2022.944223 36636584
    [Google Scholar]
  4. Alexander N.L. McLennan A. Silva R.C. Hosek K. Liu Y.C.C. Vertebral anomalies in microtia patients at a tertiary pediatric care center. Otolaryngol. Head Neck Surg. 2023 169 2 367 373 10.1002/ohn.289 36805618
    [Google Scholar]
  5. Yang R. Chu H. Yue H. BMP signaling maintains auricular chondrocyte identity and prevents microtia development by inhibiting protein kinase A. eLife 2024 12 RP91883 10.7554/eLife.91883.3 38690987
    [Google Scholar]
  6. Zhou L. Ding R. Li B. Cartilage engineering using chondrocyte cell sheets and its application in reconstruction of microtia. Int. J. Clin. Exp. Pathol. 2015 8 1 73 80 25755694
    [Google Scholar]
  7. Al-Sulaimani A.K. Al-Khabori M.S. Haridi K.M. Al-Busaidi S.S. Prevalence and characteristics of microtia in Oman: 37 years analysis. J. Plast. Reconstr. Aesthet. Surg. 2023 76 292 294 10.1016/j.bjps.2022.10.047 36509652
    [Google Scholar]
  8. Breuer M. Rummler M. Singh J. CHD7 regulates craniofacial cartilage development via controlling HTR2B expression. J. Bone Miner. Res. 2024 39 4 498 512 10.1093/jbmr/zjae024 38477756
    [Google Scholar]
  9. Sun Y. Kumar S.R. Wong C.E.D. Craniofacial and cardiac defects in chd7 zebrafish mutants mimic CHARGE syndrome. Front. Cell Dev. Biol. 2022 10 1030587 10.3389/fcell.2022.1030587 36568983
    [Google Scholar]
  10. Asad Z. Pandey A. Babu A. Rescue of neural crest-derived phenotypes in a zebrafish CHARGE model by Sox10 downregulation. Hum. Mol. Genet. 2016 25 16 3539 3554 10.1093/hmg/ddw198 27418670
    [Google Scholar]
  11. Ganaha A. Tono T. Kaname T. Suprameatal cochlear implantation in a charge patient with a novel CHD7 variant and kallmann syndrome phenotype: A case report. Otol. Neurotol. 2017 38 7 990 995 10.1097/MAO.0000000000001481 28609304
    [Google Scholar]
  12. Wieczorek D. Gener B. González M.J.M. Microcephaly, microtia, preauricular tags, choanal atresia and developmental delay in three unrelated patients: A mandibulofacial dysostosis distinct from Treacher Collins syndrome. Am. J. Med. Genet. A. 2009 149A 5 837 843 10.1002/ajmg.a.32747 19334086
    [Google Scholar]
  13. van Ravenswaaij-Arts C.M. Hefner M. Blake K. Martin D.M. CHD7 Disorder. GeneReviews®. Seattle (WA). Adam M.P. Feldman J. Mirzaa G.M. Pagon R.A. Wallace S.E. Amemiya A. Seattle University of Washington 2025 20301296
    [Google Scholar]
  14. Liu C. Xiong Q. Li Q. CHD7 regulates bone-fat balance by suppressing PPAR-γ signaling. Nat. Commun. 2022 13 1 1989 10.1038/s41467‑022‑29633‑6 35418650
    [Google Scholar]
  15. Nie J. Ueda Y. Solivais A.J. Hashino E. CHD7 regulates otic lineage specification and hair cell differentiation in human inner ear organoids. Nat. Commun. 2022 13 1 7053 10.1038/s41467‑022‑34759‑8 36396635
    [Google Scholar]
  16. Corsten-Janssen N. Scambler P.J. Clinical and molecular effects of CHD7 in the heart. Am. J. Med. Genet. C. Semin. Med. Genet. 2017 175 4 487 495 10.1002/ajmg.c.31590 29088513
    [Google Scholar]
  17. Ko J. Fonseca V.A. Wu H. Pax4 in Health and Diabetes. Int. J. Mol. Sci. 2023 24 9 8283 10.3390/ijms24098283 37175989
    [Google Scholar]
  18. Lau H.H. Krentz N.A.J. Abaitua F. PAX4 loss of function increases diabetes risk by altering human pancreatic endocrine cell development. Nat. Commun. 2023 14 1 6119 10.1038/s41467‑023‑41860‑z 37777536
    [Google Scholar]
  19. Napolitano T. Avolio F. Courtney M. Pax4 acts as a key player in pancreas development and plasticity. Semin. Cell Dev. Biol. 2015 44 107 114 10.1016/j.semcdb.2015.08.013 26319183
    [Google Scholar]
  20. Lorenzo P. Juárez-Vicente F. Cobo-Vuilleumier N. García-Domínguez M. Gauthier B. The diabetes-linked transcription factor PAX4: From gene to functional consequences. Genes (Basel) 2017 8 3 101 10.3390/genes8030101 28282933
    [Google Scholar]
  21. Xu L. Xu C. Zhou S. PAX4 promotes PDX1-induced differentiation of mesenchymal stem cells into insulin-secreting cells. Am. J. Transl. Res. 2017 9 3 874 886 28386318
    [Google Scholar]
  22. Kooptiwut S. Plengvidhya N. Chukijrungroat T. Defective PAX4 R192H transcriptional repressor activities associated with maturity onset diabetes of the young and early onset-age of type 2 diabetes. J. Diabetes Complications 2012 26 4 343 347 10.1016/j.jdiacomp.2012.03.025 22521316
    [Google Scholar]
  23. Engeland K. Cell cycle regulation: P53-p21-RB signaling. Cell Death Differ. 2022 29 5 946 960 10.1038/s41418‑022‑00988‑z 35361964
    [Google Scholar]
  24. Chen J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med. 2016 6 3 a026104 10.1101/cshperspect.a026104 26931810
    [Google Scholar]
  25. Hafner A. Bulyk M.L. Jambhekar A. Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 2019 20 4 199 210 10.1038/s41580‑019‑0110‑x 30824861
    [Google Scholar]
  26. Kastan M.B. Canman C.E. Leonard C.J. P53, cell cycle control and apoptosis: Implications for cancer. Cancer Metastasis Rev. 1995 14 1 3 15 10.1007/BF00690207 7606818
    [Google Scholar]
  27. Liu J. Zhang C. Wang J. Hu W. Feng Z. The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int. J. Mol. Sci. 2020 21 21 8387 10.3390/ijms21218387 33182266
    [Google Scholar]
  28. Karimian A. Ahmadi Y. Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst.) 2016 42 63 71 10.1016/j.dnarep.2016.04.008 27156098
    [Google Scholar]
  29. Van Nostrand J.L. Brady C.A. Jung H. Inappropriate p53 activation during development induces features of charge syndrome. Nature 2014 514 7521 228 232 10.1038/nature13585 25119037
    [Google Scholar]
  30. Zhang X. Zhou Y. Shi Z. Integrated analysis of genes encoding ATP‐dependent chromatin remodellers identifies CHD7 as a potential target for colorectal cancer therapy. Clin. Transl. Med. 2022 12 7 e953 10.1002/ctm2.953 35789070
    [Google Scholar]
  31. Wei S.J. Schell J.R. Chocron E.S. Ketogenic diet induces p53-dependent cellular senescence in multiple organs. Sci. Adv. 2024 10 20 eado1463 10.1126/sciadv.ado1463 38758782
    [Google Scholar]
  32. Singh B.K. Tripathi M. Sandireddy R. Tikno K. Zhou J. Yen P.M. Decreased autophagy and fuel switching occur in a senescent hepatic cell model system. Aging (Albany NY) 2020 12 14 13958 13978 10.18632/aging.103740 32712601
    [Google Scholar]
  33. Yuan F. Zhang S. Sun Q. Hsa_circ_0072309 enhances autophagy and TMZ sensitivity in glioblastoma. CNS Neurosci. Ther. 2022 28 6 897 912 10.1111/cns.13821 35212145
    [Google Scholar]
  34. Abad-Jiménez Z. López-Domènech S. García-Gargallo C. Roux-en-Y gastric bypass modulates AMPK, autophagy and inflammatory response in leukocytes of obese patients. Biomedicines 2022 10 2 430 10.3390/biomedicines10020430 35203639
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240388187250731190634
Loading
/content/journals/cmm/10.2174/0115665240388187250731190634
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test