Skip to content
2000
image of The Epigenetic Landscape of Hemophilia

Abstract

Hemophilia, a rare inherited bleeding illness that needs to be managed throughout one’s life to stop bleeding episodes and lessen complications. Although the genetic foundation of hemophilia is well documented, recent research has demonstrated that epigenetic pathways can influence the severity of the disease, the effectiveness of treatment, and the occurrence of complications. Advances in epigenetic research have made it possible to better understand the complexities of hemophilia and design suitable and targeted treatments. Emerging advancements as well as challenges are explored within many countries around the globe. Several epigenetic factors influence how the disorder manifests and its severity. Therapeutic interventions are the cornerstone for treating the disorder. The epigenetic regulation of the principal hemophilia genes () is still not fully understood. With the right treatment, preventative strategies, and better healthcare protocols, hemophilia cases in a confined area can be decreased. We explore the intricate blood clotting processes, inheritance patterns, and genetic changes that contribute to hemophilia's pathophysiology. The current understanding of epigenetics in hemophilia is examined in this review, with particular attention paid to non-coding RNAs, histone changes, and DNA methylation.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240400998250909063344
2025-09-30
2025-11-02
Loading full text...

Full text loading...

References

  1. Gong J. Wang H.L. Chang L.J. Molecular therapeutics of hemophilia A and B. Expert Rev. Hematol. 2022 15 5 431 441 10.1080/17474086.2022.2075339 35523283
    [Google Scholar]
  2. Stonebraker J.S. Bolton-Maggs P.H.B. Brooker M. The world federation of hemophilia annual global survey 1999‐2018. Haemophilia 2020 26 4 591 600 10.1111/hae.14012 32497379
    [Google Scholar]
  3. Islam M.N. Biswas A.R. Nazneen H. Clinical profile and demographic characteristics of moderate and severe hemophilia patients in a tertiary care hospital of Bangladesh. Orphanet J. Rare Dis. 2022 17 1 254 10.1186/s13023‑022‑02413‑7 35804421
    [Google Scholar]
  4. Shen M.C. Chang S.P. Lee D.J. Lin W.H. Chen M. Ma G.C. Skewed X-chromosome inactivation and parental gonadal mosaicism are implicated in x-linked recessive female hemophilia patients. Diagnostics (Basel) 2022 12 10 2267 10.3390/diagnostics12102267 36291957
    [Google Scholar]
  5. Shoukat H.M.H. Ghous G. Tarar Z.I. Shoukat M.M. Ajmal N. Skewed Inactivation of x chromosome: A cause of hemophilia manifestation in carrier females. Cureus 2020 12 10 e11216 10.7759/cureus.11216 33269146
    [Google Scholar]
  6. Miller C.H. Bean C.J. Genetic causes of haemophilia in women and girls. Haemophilia 2021 27 2 e164 e179 10.1111/hae.14186 33314404
    [Google Scholar]
  7. Sanchez-Lara P.A. Valentino L.A. Genetics of Hemophilia A and B. Advances in Hemophilia Treatment. Rodríguez-Merchán E.C. Cham Springer International Publishing 2022 11 17 10.1007/978‑3‑030‑93990‑8_2
    [Google Scholar]
  8. Coffin D. Gouider E. Konkle B. The World Federation of Hemophilia World Bleeding Disorders Registry: insights from the first 10,000 patients. Res. Pract. Thromb. Haemost. 2023 7 8 102264 10.1016/j.rpth.2023.102264 38193052
    [Google Scholar]
  9. Chaigneau M. The history of women and hemophilia: a narrative review of evolving beliefs and testing practices. J. Thromb. Haemost. 2024 Dec S1538783624007244 10.1016/j.jtha.2024.12.004 39675566
    [Google Scholar]
  10. Reis L.C. Kaizer W.L. Boquett J.A. Geographic distribution of live births and infant mortality from congenital anomalies in Brazil, 2012–2017. J. Community Genet. 2021 12 3 377 386 10.1007/s12687‑021‑00509‑4 33496933
    [Google Scholar]
  11. Gupta N. Dutta A. Ahmed B. Expert Opinions on the Management of Hemophilia A in India: The Role of Emicizumab. Cureus 2024 16 4 e58941 10.7759/cureus.58941 38725780
    [Google Scholar]
  12. von Mackensen S. Douma Y. Halimeh S. Evaluation of the U.S. Adherence Questionnaires VERITAS-PRO and VERITAS-PRN for Use in Patients with Hemophilia in the German Healthcare System. Hamostaseologie 2020 40 5 621 630 10.1055/a‑1249‑4645 33086407
    [Google Scholar]
  13. Xing S. Batt K. Kuharic M. Evaluation of clinical characteristics, health care resource utilization, and cost outcomes of hemophilia A carriers and noncarriers in the United States: A real-world comparative analysis. J. Manag. Care Spec. Pharm. 2023 29 6 626 634 10.18553/jmcp.2023.29.6.626 37276033
    [Google Scholar]
  14. Noone D. O’Mahony B. Peyvandi F. Makris M. Bok A. Evolution of Haemophilia Care in Europe: 10 years of the principles of care. Orphanet J. Rare Dis. 2020 15 1 184 10.1186/s13023‑020‑01456‑y 32660500
    [Google Scholar]
  15. Angchaisuksiri P. Amurao-Abiera M. Chou S.C. Haemophilia care in Asia: Learning from clinical practice in some Asian countries. Haemophilia 2024 30 3 609 616 10.1111/hae.14998 38523289
    [Google Scholar]
  16. Batran R.A. Kamel M. Bahr A. Khalil A. Elsokary M. Hemophilia A. Economic burden, therapeutic advances, and future forecasts in the Middle East and North Africa region. Thromb. Res. 2024 243 109175 10.1016/j.thromres.2024.109175 39362176
    [Google Scholar]
  17. Torres L. Peñuela O. Forero M.R. Quality of life, self-reported outcomes and impact of education among people with moderate and severe hemophilia A: An integrated perspective from a Latin American country. PLoS One 2023 18 7 e0287972 10.1371/journal.pone.0287972 37410717
    [Google Scholar]
  18. Brown LJ La HA Li J Brunner M Snoke M Kerr AM The societal burden of haemophilia A. I – A snapshot of haemophilia A in Australia and beyond. Haemophilia 2020 26 S5 3 10 (Suppl. 5) 10.1111/hae.14102 32935397
    [Google Scholar]
  19. Byams V R Building the foundation for a communitygenerated national research blueprint for inherited bleeding disorders: Research priorities in health services; diversity, equity, and inclusion; and implementation science. Expert Rev Hematol 2023 16 sup1 87 106 10.1080/17474086.2023.2183836
    [Google Scholar]
  20. Acharjee S. Chauhan S. Pal R. Tomar R.S. Mechanisms of DNA methylation and histone modifications. Prog. Mol. Biol. Transl. Sci. 2023 197 51 92 10.1016/bs.pmbts.2023.01.001
    [Google Scholar]
  21. Evangelidis N. Kotsiou N. Evangelidis P. Genetics and Epigenetics in Acquired Hemophilia A: From Bench to Bedside. Curr. Issues Mol. Biol. 2024 46 6 5147 5160 10.3390/cimb46060309 38920981
    [Google Scholar]
  22. Simioni P. Cagnin S. Sartorello F. Partial F8 gene duplication (factor VIII Padua) associated with high factor VIII levels and familial thrombophilia. Blood 2021 137 17 2383 2393 10.1182/blood.2020008168 33275657
    [Google Scholar]
  23. Chen Z. Zhang Y. Role of Mammalian DNA Methyltransferases in Development. Annu. Rev. Biochem. 2020 89 1 135 158 10.1146/annurev‑biochem‑103019‑102815 31815535
    [Google Scholar]
  24. Dee G. Ryznar R. Dee C. Epigenetic changes associated with different types of stressors and suicide. Cells 2023 12 9 1258 10.3390/cells12091258 37174656
    [Google Scholar]
  25. Zimta A.A. Hotea I. Brinza M. The Possible Non-Mutational Causes of FVIII Deficiency: Non-Coding RNAs and Acquired Hemophilia A. Front. Med. 2021 8 654197 10.3389/fmed.2021.654197 33968959
    [Google Scholar]
  26. Patel S.R. Lundgren T.S. Spencer H.T. Doering C.B. The immune response to the fVIII gene therapy in preclinical models. Front. Immunol. 2020 11 494 10.3389/fimmu.2020.00494 32351497
    [Google Scholar]
  27. Trappl M. Vostatek R. Salzmann M. Hemophilia is associated with accelerated biological aging. Haematologica 2025 10.3324/haematol.2024.286421 40079104
    [Google Scholar]
  28. Peyvandi F. Miri S. Garagiola I. Immune responses to plasma-derived versus recombinant FVIII products. Front. Immunol. 2021 11 591878 10.3389/fimmu.2020.591878 33552050
    [Google Scholar]
  29. Liu W. Lyu C. Wang W. Risk factors for inhibitors in hemophilia A based on RNA‐seq and DNA methylation. Res. Pract. Thromb. Haemost. 2022 6 6 e12794 10.1002/rth2.12794 36090157
    [Google Scholar]
  30. Raman R. Chromatin is a Dynamic Structure. Resonance 2022 27 6 983 1002 10.1007/s12045‑022‑1392‑4
    [Google Scholar]
  31. Millán-Zambrano G. Burton A. Bannister A.J. Schneider R. Histone post-translational modifications — Cause and consequence of genome function. Nat. Rev. Genet. 2022 23 9 563 580 10.1038/s41576‑022‑00468‑7 35338361
    [Google Scholar]
  32. Bure I.V. Nemtsova M.V. Kuznetsova E.B. Histone modifications and non-coding RNAs: Mutual epigenetic regulation and role in pathogenesis. Int. J. Mol. Sci. 2022 23 10 5801 10.3390/ijms23105801 35628612
    [Google Scholar]
  33. Zhang Y. Overview of Histone Modification. Adv. Exp. Med. Biol. 2021 ••• 1 16 10.1007/978‑981‑15‑8104‑5_1
    [Google Scholar]
  34. Liu Y. Huang Q. Du J. Comparative analysis of global transcriptome, proteome and acetylome in house dust mite‐induced murine allergic asthma model. Clin. Transl. Med. 2021 11 11 e590 10.1002/ctm2.590 34841691
    [Google Scholar]
  35. Zhu H. Meng Y. Tong P. Zhang S. Pathological mechanism of joint destruction in haemophilic arthropathy. Mol. Biol. Rep. 2021 48 1 969 974 10.1007/s11033‑020‑06052‑8 33289909
    [Google Scholar]
  36. Rajan P.K. Udoh U.A. Sanabria J.D. The role of histone acetylation-/methylation-mediated apoptotic gene regulation in hepatocellular carcinoma. Int. J. Mol. Sci. 2020 21 23 8894 10.3390/ijms21238894 33255318
    [Google Scholar]
  37. Landmesser U. Poller W. Tsimikas S. Most P. Paneni F. Lüscher T.F. From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases. Eur. Heart J. 2020 41 40 3884 3899 10.1093/eurheartj/ehaa229 32350510
    [Google Scholar]
  38. Jankowska K.I. McGill J. Pezeshkpoor B. Oldenburg J. Atreya C.D. Sauna Z.E. Clinical manifestation of hemophilia A in the absence of mutations in the F8 gene that encodes FVIII: role of microRNAs. Transfusion 2020 60 2 401 413 10.1111/trf.15605 31785023
    [Google Scholar]
  39. Jankowska K.I. Sauna Z.E. Atreya C.D. Role of microRNAs in Hemophilia and Thrombosis in Humans. Int. J. Mol. Sci. 2020 21 10 3598 10.3390/ijms21103598 32443696
    [Google Scholar]
  40. Jankowska K.I. McGill J. Pezeshkpoor B. Oldenburg J. Sauna Z.E. Atreya C.D. Further evidence that micrornas can play a role in hemophilia a disease manifestation: f8 gene downregulation by mir-19b-3p and mir-186-5p. Front. Cell Dev. Biol. 2020 8 669 10.3389/fcell.2020.00669 32850803
    [Google Scholar]
  41. Pandey S. Shreya S. Jain B.P. Post-Transcriptional Gene Regulation in Human Disease. Elsevier 2022 33 53 10.1016/B978‑0‑323‑91305‑8.00018‑1
    [Google Scholar]
  42. La Sala L. Carlini V. Conte C. Metabolic disorders affecting the liver and heart: Therapeutic efficacy of miRNA-based therapies? Pharmacol. Res. 2024 201 107083 10.1016/j.phrs.2024.107083 38309383
    [Google Scholar]
  43. Chakraborty C. Sharma A.R. Sharma G. Lee S.S. Therapeutic advances of miRNAs: A preclinical and clinical update. J. Adv. Res. 2021 28 127 138 10.1016/j.jare.2020.08.012 33364050
    [Google Scholar]
  44. Nalbant E. Akkaya-Ulum Y.Z. Exploring regulatory mechanisms on miRNAs and their implications in inflammation-related diseases. Clin. Exp. Med. 2024 24 1 142 10.1007/s10238‑024‑01334‑y 38958690
    [Google Scholar]
  45. Leuci A. Marano M. Millet M. Deciphering the circulating microRNA signature of hemophilic arthropathy. Thromb. Res. 2024 241 109099 10.1016/j.thromres.2024.109099 39079229
    [Google Scholar]
  46. Jankowska K.I. Chattopadhyay M. Sauna Z.E. Atreya C.D. A Foundational Study for Normal F8-Containing Mouse Models for the miRNA Regulation of Hemophilia A: Identification and Analysis of Mouse miRNAs that Downregulate the Murine F8 Gene. Int. J. Mol. Sci. 2020 21 16 5621 10.3390/ijms21165621 32781510
    [Google Scholar]
  47. Khalilian S. Mohajer Z. Ghafouri-Fard S. Factor VIII as a Novel Biomarker for Diagnosis, Prognosis, and Therapy Prediction in Human Cancer and Other Disorders. Avicenna J. Med. Biotechnol. 2024 16 2 68 80 10.18502/ajmb.v16i2.14857 38618505
    [Google Scholar]
  48. Pipe S.W. Gonen-Yaacovi G. Segurado O.G. Hemophilia A gene therapy: Current and next-generation approaches. Expert Opin. Biol. Ther. 2022 22 9 1099 1115 10.1080/14712598.2022.2002842 34781798
    [Google Scholar]
  49. Luo L. Zheng Q. Chen Z. Hemophilia a patients with inhibitors: Mechanistic insights and novel therapeutic implications. Front. Immunol. 2022 13 1019275 10.3389/fimmu.2022.1019275 36569839
    [Google Scholar]
  50. Faris P. Negri S. Perna A. Rosti V. Guerra G. Moccia F. Therapeutic potential of endothelial colony-forming cells in ischemic disease: Strategies to improve their regenerative efficacy. Int. J. Mol. Sci. 2020 21 19 7406 10.3390/ijms21197406 33036489
    [Google Scholar]
  51. Moratilla A. Sainz de la Maza D. Cadenas Martin M. López-Iglesias P. González-Peramato P. De Miguel M.P. Inhibition of PKCε induces primordial germ cell reprogramming into pluripotency by HIF1&2 upregulation and histone acetylation. Am. J. Stem Cells 2021 10 1 1 17 33815934
    [Google Scholar]
  52. Rezaei H. Motovali-Bashi M. Mowla S.J. MicroRNA and hemophilia-a disease: Bioinformatics prediction and experimental analysis. Cell J. 2021 23 3 341 348 10.22074/cellj.2021.7109 34308578
    [Google Scholar]
  53. Menier C. Meunier S. Porcheddu V. Frequency of natural regulatory T cells specific for factor VIII in the peripheral blood of healthy donors. Eur. J. Immunol. 2024 54 4 2350506 10.1002/eji.202350506 38429238
    [Google Scholar]
  54. Urabe A. Chi S. Minami Y. The immuno-oncology and genomic aspects of dna-hypomethylating therapeutics in acute myeloid leukemia. Int. J. Mol. Sci. 2023 24 4 3727 10.3390/ijms24043727 36835136
    [Google Scholar]
  55. Alayoubi A.M. Khawaji Z.Y. Mohammed M.A. Mercier F.E. CRISPR-Cas9 system: A novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia. Ann. Hematol. 2024 103 6 1805 1817 10.1007/s00277‑023‑05457‑2 37736806
    [Google Scholar]
  56. Bhattacharjee G. Gohil N. Khambhati K. Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. J. Control. Release 2022 343 703 723 10.1016/j.jconrel.2022.02.005 35149141
    [Google Scholar]
  57. Gogia P. Tarantino M. Schramm W. Aledort L. New directions to develop therapies for people with hemophilia. Expert Rev. Hematol. 2023 16 6 417 433 10.1080/17474086.2023.2184341 36891589
    [Google Scholar]
  58. Mancuso ME Apte S Hermans C Managing invasive procedures in haemophilia patients with limited resources, extended half‐life concentrates or non‐replacement therapies in 2022. Haemophilia 2022 28 S4 93 102 (Suppl. 4) 10.1111/hae.14551 35521735
    [Google Scholar]
  59. Nair R.P. Biomedical Product and Materials Evaluation. Elsevier 2022 231 257 10.1016/B978‑0‑12‑823966‑7.00015‑3
    [Google Scholar]
  60. Goedhart T.M.H.J. Janssen A. Mathôt R.A.A. Cnossen M.H. The road to implementation of pharmacokinetic-guided dosing of factor replacement therapy in hemophilia and allied bleeding disorders. Identifying knowledge gaps by mapping barriers and facilitators. Blood Rev. 2023 61 101098 10.1016/j.blre.2023.101098 37321952
    [Google Scholar]
  61. Yoneyama K. Schmitt C. Portron A. Clinical pharmacology of emicizumab for the treatment of hemophilia A. Expert Rev. Clin. Pharmacol. 2023 16 9 775 790 10.1080/17512433.2023.2243213 37529848
    [Google Scholar]
  62. Experimental validation of a predicted microRNA within human FVIII gene. Mol. Biol. Res. Commun. 2021 10 2 10.22099/mbrc.2021.39067.1573
    [Google Scholar]
  63. Brackmann H.H. Schramm W. Oldenburg J. Cano V. Turecek P.L. Négrier C. Origins, development, current challenges and future directions with activated prothrombin complex concentrate for the treatment of patients with congenital haemophilia with inhibitors. Hamostaseologie 2020 40 5 606 620 10.1055/a‑1159‑4273 32717751
    [Google Scholar]
  64. Khan S.U. Khan M.U. Suleman M. Inam A. Din M.A.U. Hemophilia Healing with AAV: Navigating the Frontier of Gene Therapy. Curr. Gene Ther. 2024 24 4 265 277 10.2174/0115665232279893231228065540 38284735
    [Google Scholar]
  65. Valentino L.A. Ozelo M.C. Herzog R.W. A review of the rationale for gene therapy for hemophilia A with inhibitors: One-shot tolerance and treatment? J. Thromb. Haemost. 2023 21 11 3033 3044 10.1016/j.jtha.2023.05.011 37225021
    [Google Scholar]
  66. Srivastava A. Santagostino E. Dougall A. WFH Guidelines for the Management of Hemophilia 3rd edition. Haemophilia 2020 26 S6 1 158 (Suppl. 6) 10.1111/hae.14046 32744769
    [Google Scholar]
  67. Ghaemi A. Moghimi H. Sarrafzadeh M.H. A Comparative Review on the Production of Factor VIII in Human and Non-human Hosts. Curr. Pharm. Des. 2025 31 18 1417 1429 10.2174/0113816128327353241121050134 39810533
    [Google Scholar]
  68. Murphy M.F. Brailsford S.R. Roberts D.J. The United Kingdom Infected Blood Inquiry: Its findings and lessons for the future of transfusion. Blood 2025 145 15 1601 1609 10.1182/blood.2024025976
    [Google Scholar]
  69. Perolla A. Kalaja B. Improving hemophilia care in low- and middle-income countries: Addressing challenges and enhancing quality of life. Cureus 2024 16 6 e62817 10.7759/cureus.62817 39036274
    [Google Scholar]
  70. Mahlangu J Diop S Lavin M Diagnosis and treatment challenges in lower resource countries: State‐of‐the‐art. Haemophilia 2024 30 S3 78 85 (Suppl. 3) 10.1111/hae.14956 38462793
    [Google Scholar]
  71. Mannucci P.M. Hemophilia therapy: The future has begun. Haematologica 2020 105 3 545 553 10.3324/haematol.2019.232132 32060150
    [Google Scholar]
  72. Lawson J.H. Niklason L.E. Roy-Chaudhury P. Challenges and novel therapies for vascular access in haemodialysis. Nat. Rev. Nephrol. 2020 16 10 586 602 10.1038/s41581‑020‑0333‑2 32839580
    [Google Scholar]
  73. Olson T.S. Frost B.F. Duke J.L. Pathogenicity and impact of HLA class I alleles in aplastic anemia patients of different ethnicities. JCI Insight 2022 7 22 e163040 10.1172/jci.insight.163040 36219480
    [Google Scholar]
  74. Tucci F. Galimberti S. Naldini L. Valsecchi M.G. Aiuti A. A systematic review and meta-analysis of gene therapy with hematopoietic stem and progenitor cells for monogenic disorders. Nat. Commun. 2022 13 1 1315 10.1038/s41467‑022‑28762‑2 35288539
    [Google Scholar]
  75. Madrid M. Sumen C. Aivio S. Saklayen N. Autologous induced pluripotent stem cell–based cell therapies: Promise, progress, and challenges. Curr. Protoc. 2021 1 3 e88 10.1002/cpz1.88 33725407
    [Google Scholar]
  76. Li H. Yang Y. Hong W. Huang M. Wu M. Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct. Target. Ther. 2020 5 1 1 10.1038/s41392‑019‑0089‑y 32296011
    [Google Scholar]
  77. Wang S.W. Gao C. Zheng Y.M. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol. Cancer 2022 21 1 57 10.1186/s12943‑022‑01518‑8 35189910
    [Google Scholar]
  78. Burgess S.M. Genome Editing by Targeted Nucleases and the CRISPR/Cas Revolution. The Liver. 1st ed Arias I.M. Alter H.J. Boyer J.L. Wiley 2020 953 964 10.1002/9781119436812.ch71
    [Google Scholar]
  79. Chen Y. Wen R. Yang Z. Chen Z. Genome editing using CRISPR/Cas9 to treat hereditary hematological disorders. Gene Ther. 2022 29 5 207 216 10.1038/s41434‑021‑00247‑9 33750926
    [Google Scholar]
  80. Schep S.J. Schutgens R.E.G. Fischer K. Voorberg J. Boes M. Role of Regulatory Cells in Immune Tolerance Induction in Hemophilia A. HemaSphere 2021 5 5 e557 10.1097/HS9.0000000000000557 33898928
    [Google Scholar]
  81. Varadé J. Magadán S. González-Fernández Á. Human immunology and immunotherapy: Main achievements and challenges. Cell. Mol. Immunol. 2021 18 4 805 828 10.1038/s41423‑020‑00530‑6 32879472
    [Google Scholar]
  82. Di Minno M.N.D. Di Minno A. Calcaterra I. Cimino E. Dell’Aquila F. Franchini M. Enhanced Half-Life Recombinant Factor VIII Concentrates for Hemophilia A: Insights from Pivotal and Extension Studies. Semin. Thromb. Hemost. 2021 47 1 32 42 10.1055/s‑0040‑1718887
    [Google Scholar]
  83. Dwivedi S.D. Yadav S.D. Sahu D. Singh D. Singh M.R. Revolutionizing genetic diagnostics: Innovative techniques for inherited disease detection. Gene Rep. 2024 36 101963 10.1016/j.genrep.2024.101963
    [Google Scholar]
  84. Zhao H. Du C. Yang G. Wang Y. Diagnosis, treatment, and research status of rare diseases related to birth defects. Intractable Rare Dis. Res. 2023 12 3 148 160 10.5582/irdr.2023.01052 37662624
    [Google Scholar]
  85. Lin W. Zhu R. Zhang Z. RNAi targeting heparin cofactor II promotes hemostasis in hemophilia A. Mol. Ther. Nucleic Acids 2021 24 658 668 10.1016/j.omtn.2021.03.022 33996250
    [Google Scholar]
  86. Chernyi N. Gavrilova D. Saruhanyan M. Recent advances in gene therapy for hemophilia: Projecting the perspectives. Biomolecules 2024 14 7 854 10.3390/biom14070854 39062568
    [Google Scholar]
  87. Athar M. Ghita I.S. Albagenny A.A. Targeted next-generation sequencing reveals novel and known variants of thrombophilia associated genes in Saudi patients with venous thromboembolism. Clin. Chim. Acta 2021 519 247 254 10.1016/j.cca.2021.05.012 34015304
    [Google Scholar]
  88. Chiu F.P.C. Doolan B.J. McGrath J.A. Onoufriadis A. A decade of next‐generation sequencing in genodermatoses: the impact on gene discovery and clinical diagnostics. Br. J. Dermatol. 2021 184 4 606 616 10.1111/bjd.19384 32628274
    [Google Scholar]
  89. Leebeek F.W.G. Miesbach W. Gene therapy for hemophilia: A review on clinical benefit, limitations, and remaining issues. Blood 2021 138 11 923 931 10.1182/blood.2019003777 34232980
    [Google Scholar]
  90. Soroka A.B. Feoktistova S.G. Mityaeva O.N. Volchkov P.Y. Gene therapy approaches for the treatment of hemophilia B. Int. J. Mol. Sci. 2023 24 13 10766 10.3390/ijms241310766 37445943
    [Google Scholar]
  91. Lannoy N. Hermans C. Genetic mosaicism in haemophilia: A practical review to help evaluate the risk of transmitting the disease. Haemophilia 2020 26 3 375 383 10.1111/hae.13975 32267612
    [Google Scholar]
  92. Taheri M. Harsij A. Askari A. Pourtavakoli A. Detection of Monogenic Disorders Using Noninvasive Prenatal Screening. Non-invasive Prenatal Screening (NIPS) in Clinical Practice. Rather R.A. Saha S.C. Singapore Springer Nature Singapore 2024 151 178 10.1007/978‑981‑97‑6402‑0_10
    [Google Scholar]
  93. Cheng L. Patients’ and Health Professionals’ Decision-making about Preimplantation Genetic Testing. UNSW Sydney 2023 10.26190/UNSWORKS/24704
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240400998250909063344
Loading
/content/journals/cmm/10.2174/0115665240400998250909063344
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Hemophilia ; non-coding RNAs ; histone modifications ; DNA methylation ; epigenetics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test