Skip to content
2000
image of A Comprehensive Bibliometric Investigation on Antimicrobials from Fungal Origins with a Biotechnological Perspective

Abstract

Interest in fungal research has increased in recent years due to its relevance in producing bioactive compounds, which serve as promising sources of bacteriostatic and fungistatic agents. Their use represents a significant alternative to traditional antibiotics, minimizing the risks associated with microbial resistance. In this context, the present work aimed to: assess the volume of annual publications on the subject and identify key players, analyze the collaboration network among researchers, and check the patents filed on this topic For this purpose, the Bibliometrix R-package, as well as scientific metadata from the Web of Science and Scopus databases, were used (n=506). In total, 256 sources, authors (n=2,526), keywords (n=1,812), and references (n=19,315), from 1989 to 2023, were analyzed. The academic debate on the subject has been promoted by India (29%), the United Kingdom (UK) (7%), China (6%), and the United States of America (USA) (6%). The authors identified as the most cited were Liu J (n = 142), followed by Jesu Arockiaraj (n = 106). A knowledge predominance of publications focusing on the life science disciplines. The most prolific institutions were the National Research Center (n=20) and the University of Pittsburgh (n=13). The most cited journals were the World Journal of Microbiology & Biotechnology (n=719) and Applied Microbiology and Biotechnology (n=661). Finally, the United States Patent and Trademark Office represented 85% of the patents filed on the subject (n=28,303). Collectively, the findings herein can guide researchers and biotechnology industries in identifying the most relevant sources for antimicrobial biotechnology.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240372278250630073325
2025-08-26
2025-11-02
Loading full text...

Full text loading...

References

  1. Lopes F.C. Production and analysis of secondary metabolites of Filamentous Fungi. Dissertation, Federal University of Rio Grande do Sul 2011
    [Google Scholar]
  2. Fadiji A.E. Babalola O.O. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front. Bioeng. Biotechnol. 2020 8 467 10.3389/fbioe.2020.00467 32500068
    [Google Scholar]
  3. Shankar A. Sharma K.K. Fungal secondary metabolites in food and pharmaceuticals in the era of multi-omics. Appl. Microbiol. Biotechnol. 2022 106 9-10 3465 3488 10.1007/s00253‑022‑11945‑8 35546367
    [Google Scholar]
  4. Jain K.K. Kumar A. Shankar A. Pandey D. Chaudhary B. Sharma K.K. De novo transcriptome assembly and protein profiling of copper-induced lignocellulolytic fungus Ganoderma lucidum MDU-7 reveals genes involved in lignocellulose degradation and terpenoid biosynthetic pathways. Genomics 2020 112 1 184 198 10.1016/j.ygeno.2019.01.012 30695716
    [Google Scholar]
  5. Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 1929 10 3 226
    [Google Scholar]
  6. Hussain H. Al-Sadi A.M. Schulz B. Steinert M. Khan A. Green I.R. Ahmed I. A fruitful decade for fungal polyketides from 2007 to 2016: Antimicrobial activity, chemotaxonomy and chemodiversity. Future Med. Chem. 2017 9 14 1631 1648 10.4155/fmc‑2017‑0028 28884584
    [Google Scholar]
  7. Cragg GM Grothaus PG Newman DJ Natural products in drug discovery: recent advances. In: Plant bioactives and drug discovery: principles, practice, and perspectives 2012 10.1002/9781118260005
    [Google Scholar]
  8. Paul S. Joshi S.R. Industrial perspectives of fungi. Industrial Microbiology and Biotechnology. Singapore Springer Singapore 2022 81 105
    [Google Scholar]
  9. Sahu N. Merényi Z. Bálint B. Striking features of soft and white rot of basidiomycetes in wood decay omics data of two Armillaria species. Microorganisms 2021 91 149 10.4014/jmb.1608.08008 33440901
    [Google Scholar]
  10. Mokrani S. Nabti E. Heavy metal resistance and bioremediation capacity of rhizospheric strain biorpaz3 pseudomonas azotoformans endowed with antifungal activities and multiabiotic stress tolerance in in vitro trials. SN Appl. Sci. 2020 2
    [Google Scholar]
  11. Li G. De Oliveira D.M.P. Walker M.J. The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J. Inorg. Biochem. 2022 227 111661 34896767
    [Google Scholar]
  12. Report: Antimicrobial resistance. 2023 Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  13. Report: Drug-resistant infections: A threat to our economic future. 2017 Available from: https://openknowledge.worldbank.org/handle/10986/26707
  14. Murray C.J. Ikuta K.S. Sharara F. Swetschinski L. Aguilar G.R. Gray A. Tasak N. Antimicrobial Resistance Collaborators Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022 399 10325 629 655 10.1016/S0140‑6736(21)02724‑0 35065702
    [Google Scholar]
  15. Rai N. Kumari Keshri P. Verma A. Kamble S.C. Mishra P. Barik S. Kumar Singh S. Gautam V. Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology 2021 12 3 139 159 10.1080/21501203.2020.1870579 34552808
    [Google Scholar]
  16. Clark E.A. Walker N. Ford D.C. Molecular recognition of chymotrypsin by the serine protease inhibitor ecotin from Yersinia pestis. J. Biol. Chem. 2011 286 27 24015 24022 10.1074/jbc.M111.225730 21531711
    [Google Scholar]
  17. Stubben C.J. Duffield M.L. Cooper I.A. Ford D.C. Gans J.D. Karlyshev A.V. Lingard B. Oyston P.C. de Rochefort A. Song J. Wren B.W. Titball R.W. Wolinsky M. Steps toward broad-spectrum therapeutics: Discovering virulence-associated genes present in diverse human pathogens. BMC Genomics 2009 10 501 10.1186/1471‑2164‑10‑501 19874620
    [Google Scholar]
  18. Xiao Z. Zhao Q. Li W. Gao L. Liu G. Strain improvement of Trichoderma harzianum for enhanced biocontrol capacity: Strategies and prospects. Front. Microbiol. 2023 14 1146210 10.3389/fmicb.2023.1146210 37125207
    [Google Scholar]
  19. Feng S. Dong P. Jin L. Li Z. Complete genome sequence data of a newly isolated Streptomyces violascens strain A10, a potential biological control agent for fungal and oomycete diseases. Plant Dis. 2022 106 9 2498 2501 10.1094/PDIS‑11‑21‑2561‑A 35895328
    [Google Scholar]
  20. Sajer B.H. Alshehri W.A. Alghamdi S.S. Suliman R.S. Albejad A. Hakmi H. Aspergillus species from the sabkha marsh: Potential antimicrobial and anticancer agents revealed through molecular and pharmacological analysis. Biologics 2024 18 207 228 10.2147/BTT.S472491 39130166
    [Google Scholar]
  21. Sweany R.R. Cary J.W. Jaynes J.M. Rajasekaran K. Broad-spectrum antimicrobial activity of synthetic peptides GV185 and GV187. Plant Dis. 2023 107 10 3211 3221 10.1094/PDIS‑11‑22‑2572‑RE 36947838
    [Google Scholar]
  22. Sanchez Armengol E Harmanci M Laffleur F. Current strategies to determine antifungal and antimicrobial activity of natural compounds. Microbiol Res 2021 252 126867 10.1016/j.micres.2021.126867
    [Google Scholar]
  23. Strobel G. Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 2003 67 4 491 502 10.1128/MMBR.67.4.491‑502.2003 14665674
    [Google Scholar]
  24. Strobel G.A. Endophytes as sources of bioactive products. Microbes Infect. 2003 5 6 535 544 10.1016/S1286‑4579(03)00073‑X 12758283
    [Google Scholar]
  25. Stierle A. Strobel G. Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993 260 5105 214 216 10.1126/science.8097061 8097061
    [Google Scholar]
  26. Amer B. Baidoo E.E. Biotecnologia orientada por ômicas para aplicações industriais. Front. Bioeng. Biotechnol. 2021 9 613307 10.3389/fbioe.2021.613307 33708762
    [Google Scholar]
  27. El-Elimat T. Figueroa M. Ehrmann B.M. Cech N.B. Pearce C.J. Oberlies N.H. High-resolution MS, MS/MS, and UV database of fungal secondary metabolites as a dereplication protocol for bioactive natural products. J. Nat. Prod. 2013 76 9 1709 1716 10.1021/np4004307 23947912
    [Google Scholar]
  28. Ahmad A. Elisha I.L. van Vuuren S. Viljoen A. Volatile phenolics: A comprehensive review of the anti-infective properties of an important class of essential oil constituents. Phytochemistry 2021 190 112864 10.1016/j.phytochem.2021.112864 34311279
    [Google Scholar]
  29. ABCD-USP Web of science database presents new interface and features. 2023 Available from: https://www.abcd.usp.br/noticias/base-de-dados-web-of-science/
  30. Perez-Gilbe R.H. Scopus: A comprehensive and reliable multidisciplinary abstract and citation database. 2023 Available from: https://www.elsevier.com/en-us/products/scopus
  31. R: A Language and Environment for Statistical Computing. Vienna, Austria R Foundation for Statistical Computing 2024
    [Google Scholar]
  32. Aria M. Cuccurullo C. bibliometrix : An R-tool for comprehensive science mapping analysis. J. Informetrics 2017 11 4 959 975 10.1016/j.joi.2017.08.007
    [Google Scholar]
  33. Schaer P. Applied informetrics for digital libraries: An overview of foundations, problems and current approaches. Historical Social Research. Hist. Soz. Forsch. 2013 267 281
    [Google Scholar]
  34. Kim J. Lee S. Patent databases for innovation studies: A comparative analysis of USPTO, EPO, JPO and KIPO. Technol. Forecast. Soc. Change 2015 92 332 345 10.1016/j.techfore.2015.01.009
    [Google Scholar]
  35. Rezghi Rami M. Meskini M. Ebadi Sharafabad B. Fungal-mediated nanoparticles for industrial applications: Synthesis and mechanism of action. J. Infect. Public Health 2024 17 10 102536 10.1016/j.jiph.2024.102536 39276432
    [Google Scholar]
  36. Prasad R. Fungal nanobionics: Principles and applications. Singapore Springer 2018 10.1007/978‑981‑10‑8666‑3
    [Google Scholar]
  37. Pranckutė R. Web of science (WoS) and scopus: The titans of bibliographic information in today’s academic world. Publ. MDPI 2021 9 1 12 10.3390/publications9010012
    [Google Scholar]
  38. Yadav R.N. Chitara M.K. Zaidi N.W. Khan A.I. Singh U.S. Singh H.B. Novel facets and challenges in the management of phytopathogens using myconanoparticles. Int. J. Curr. Microbiol. Appl. Sci. 2018 7 12 3296 3308 10.20546/ijcmas.2018.712.381
    [Google Scholar]
  39. Deacon J. Introduction: The fungi and fungal activities. Fungal Biol. 2005 1 15
    [Google Scholar]
  40. Zhu J. Liu W. A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics 2020 123 1 321 335
    [Google Scholar]
  41. Abramo G. Revisiting the scientometric conceptualization of impact and its measurement. J. Informetrics 2018 12 590 597 10.1016/j.joi.2018.05.001
    [Google Scholar]
  42. Li K. Rollins J. Yan E. Web of Science use in published research and review papers 1997–2017: A selective, dynamic, cross-domain, content-based analysis. Scientometrics 2018 115 1 1 20 10.1007/s11192‑017‑2622‑5 29527070
    [Google Scholar]
  43. Agarwal A. Durairajanayagam D. Tatagari S. Esteves S. Harlev A. Henkel R. Roychoudhury S. Homa S. Puchalt N. Ramasamy R. Majzoub A. Ly K. Tvrda E. Assidi M. Kesari K. Sharma R. Banihani S. Ko E. Abu-Elmagd M. Gosalvez J. Bashiri A. Bibliometrics: Tracking research impact by selecting the appropriate metrics. Asian J. Androl. 2016 18 2 296 309 10.4103/1008‑682X.171582 26806079
    [Google Scholar]
  44. Baas J. Schotten M. Plume A. Côté G. Karimi R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quant. Sci. Stud. 2020 1 1 377 386 10.1162/qss_a_00019
    [Google Scholar]
  45. Harzing A.W. Alakangas S. Google scholar, scopus and the web of science: A longitudinal and cross-disciplinary comparison. Scientometrics 2016 106 2 787 804 10.1007/s11192‑015‑1798‑9
    [Google Scholar]
  46. Suay I. Arenal F. Asensio F.J. Basilio A. Cabello M.A. Díez M.T. García J.B. del Val A.G. Gorrochategui J. Hernández P. Peláez F. Vicente M.F. Screening of basidiomycetes for antimicrobial activities. Antonie van Leeuwenhoek 2000 78 2 129 140 10.1023/A:1026552024021 11204765
    [Google Scholar]
  47. Humboldt-Dachroeden S. Rubin O. Sylvester Frid-Nielsen S. The state of One Health research across disciplines and sectors – A bibliometric analysis. One Health 2020 10 100146 10.1016/j.onehlt.2020.100146 32835067
    [Google Scholar]
  48. Gusenbauer M. Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases. Scientometrics 2019 118 1 177 214 10.1007/s11192‑018‑2958‑5
    [Google Scholar]
  49. Waltman L. A literature review on citation impact indicators. J. Informetrics 2016 10 2 365 391 10.1016/j.joi.2016.02.007
    [Google Scholar]
  50. Ghorbani B.D. Bibliometrix: Science mapping analysis with r biblioshiny based on web of science in applied linguistics. A scientometrics research perspective in applied linguistics. Cham Springer Nature Switzerland 2024 197 234 10.1007/978‑3‑031‑51726‑6_8
    [Google Scholar]
  51. Okhovati M. Sharifpoor E. Aazami M. Zolala F. Hamzehzadeh M. Novice and experienced users’ search performance and satisfaction with Web of Science and Scopus. J. Librarian. Inform. Sci. 2017 49 4 359 367 10.1177/0961000616656234
    [Google Scholar]
  52. Alara J.A. Alara O.R. An overview of the global alarming increase of multiple drug resistant: A major challenge in clinical diagnosis. Infect. Disord. Drug Targets 2024 24 3 e250723219043 10.2174/1871526523666230725103902 37909431
    [Google Scholar]
  53. UNEP Antimicrobial resistance: A global threat, UN environment programme (UNEP). 2022 Available from: https://www.unep.org/exploretopics/chemicalswaste/whatwedo/emergingissues/antimicrobial-resistance-global-threat
  54. Zanutto-Elgui M. Souza V.J. Do Prado D. Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases silvernano biohybride material synthesis characterization and application in water purification. Food Chemistry Bioresource Technology 2019 278 124
    [Google Scholar]
  55. Thokala P.D. Kamil D. Toppo R.S. Silver nanoparticles production by Aspergillus niger and their antibacterial efficacy against Xanthomonas citri and Ralstonia solanacearum. J. Environ. Biol. 2018 39 4 493 499 10.22438/jeb/39/4/MRN‑489
    [Google Scholar]
  56. Clift B.C. Batlle I.C. Bekker S. Qualitative Researcher Vulnerability 2023 10.4324/9781003349266
    [Google Scholar]
  57. UNESCO Science Report: The race against time for smarter development. 2024 Available from: https://www.unesco.org/en/articles/unesco-science-report-race-against-time-smarter-development
  58. 60. UNESCO Science Report: The race against time for smarter development. 2021 Available from: https://www.unesco.org/reports/science/2021/en
  59. Fonseca B.P.F. Sampaio R.B. Fonseca M.V.A. Zicker F. Co-authorship network analysis in health research: Method and potential use. Health Res. Policy Syst. 2016 14 1 34 10.1186/s12961‑016‑0104‑5 27138279
    [Google Scholar]
  60. Safón V. Inter-ranking reputational effects: An analysis of the Academic Ranking of World Universities (ARWU) and the Times Higher Education World University Rankings (THE) reputational relationship. Scientometrics 2019 121 2 897 915 10.1007/s11192‑019‑03214‑9
    [Google Scholar]
  61. Lim M.A. The building of weak expertise: The work of global university rankers. High. Educ. 2018 75 3 415 430 10.1007/s10734‑017‑0147‑8
    [Google Scholar]
  62. Lim M.A. Williams Øerberg J. Active instruments: On the use of university rankings in developing national systems of higher education. Policy Reviews in Higher Education 2017 1 1 91 108 10.1080/23322969.2016.1236351
    [Google Scholar]
  63. Haddawy P. Hassan S.U. Abbey C.W. Lee I.B. Uncovering fine-grained research excellence: The global research benchmarking system. J. Informetrics 2017 11 2 389 406 10.1016/j.joi.2017.02.004
    [Google Scholar]
  64. Moed H.F. A critical comparative analysis of five world university rankings. Scientometrics 2017 110 2 967 990 10.1007/s11192‑016‑2212‑y
    [Google Scholar]
  65. Frenken K. Heimeriks G.J. Hoekman J. What drives university research performance? An analysis using the CWTS Leiden Ranking data. J. Informetrics 2017 11 3 859 872 10.1016/j.joi.2017.06.006
    [Google Scholar]
  66. Leydesdorff L. Wouters P. Bornmann L. Professional and citizen bibliometrics: Complementarities and ambivalences in the development and use of indicators—a state-of-the-art report. Scientometrics 2016 109 3 2129 2150 10.1007/s11192‑016‑2150‑8 27942086
    [Google Scholar]
  67. Ghaffari F. Ebadi M. Mollaei S. Isolation and molecular identification of endophytic fungi associated with Ziziphora tenuior L. and their biological potential. S. Afr. J. Bot. 2023 161 358 364 10.1016/j.sajb.2023.08.024
    [Google Scholar]
  68. Sousa M.D.B. Pereira M.L. Cruz F.P.N. Romano L.H. Albuquerque Y.R. Correia R.O. Oliveira F.M. Primo F.L. Baptista-Neto Á. Sousa C.P. Anibal F.F. Moraes L.A.B. Badino A.C. Red biocolorant from endophytic Talaromyces minnesotensis: production, properties, and potential applications. Appl. Microbiol. Biotechnol. 2023 107 11 3699 3716 10.1007/s00253‑023‑12491‑7 37083969
    [Google Scholar]
  69. Kumar C.G. Mongolla P. Pombala S. Bandi S. Babu K.S. Ramakrishna K.V.S. Biological evaluation of 3-hydroxybenzyl alcohol, an extrolite produced by Aspergillus nidulans strain KZR-132. J. Appl. Microbiol. 2017 122 6 1518 1528 10.1111/jam.13450 28314049
    [Google Scholar]
  70. Rao M.P.N. Xiao M. Li W.J. Fungal and bacterial pigments: Secondary metabolites with wide applications. Microbiol Frontal 2017 8 1 13
    [Google Scholar]
  71. Gupta R. Kumari A. Syal P. Singh Y. Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Prog. Lipid Res. 2015 57 40 54 10.1016/j.plipres.2014.12.001 25573113
    [Google Scholar]
  72. Kelly S.L. Kelly D.E. Microbial cytochromes P450: Biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013 368 1612 20120476 10.1098/rstb.2012.0476 23297358
    [Google Scholar]
  73. Glazer A.N. Nikaido H. Microbial biotechnology: Fundamentals of applied microbiology. Cambridge University Press 2007 10.1017/CBO9780511811227
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240372278250630073325
Loading
/content/journals/cmm/10.2174/0115665240372278250630073325
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: bibliometric analysis ; perspective ; biotechnology ; Antimicrobial activity ; R-package ; fungi
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test