Skip to content
2000
image of The Mechanosensitive Ion Channel Piezo1 Promotes Obliterative Bronchiolitis through YAP-Dependent Epithelial-to-mesenchymal Transition

Abstract

Introduction

Obliterative bronchiolitis (OB) is a severe and progressive complication characterized by the fibrotic obliteration of small airways, leading to significant morbidity and mortality, particularly in lung transplant recipients. The pathogenesis of OB involves complex cellular processes, among which epithelial-to-mesenchymal transition (EMT) plays a crucial role. This study investigates the role of mechanosensitive ion channel Piezo1 in promoting OB through Yes-associated protein (YAP)-dependent EMT.

Method

Piezo1-induced signal pathway alterations, fibrosis, and EMT-related features were examined in the mouse OB model and BEAS-2B cells. The efficacy of Piezo1 in EMT and OB was explored and validated both and .

Results

Piezo1 was found to be upregulated in OB, and pharmacological inhibition of Piezo1 effectively alleviated EMT and fibrotic deposition. Piezo1 activation stimulated the Ca2+ influx and nuclear translocation of YAP that triggered the transition of epithelial cells into a mesenchymal phenotype, which contributed to airway fibrosis and obstruction. Furthermore, inhibition of YAP or calcium chelation significantly attenuated Piezo1 activation-induced EMT and OB, indicating that YAP and Ca2+ are critical mediators in this process.

Discussion

Piezo1 expression was found to be upregulated in OB, and its activation induced the epithelial-to-mesenchymal transition (EMT) process via a YAP-dependent pathway. Piezo1 could accelerate EMT and the occlusion rate of grafts via Ca2+ influx-dependent YAP activation in OB, suggesting a direct role in facilitating EMT and subsequent fibrotic remodeling in OB.

Conclusion

The present results highlight that Piezo1 promotes OB through a YAP-dependent EMT pathway, suggesting Piezo1 as a novel therapeutic strategy for treating OB and potentially improving outcomes of lung transplant recipients.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240377965250701114255
2025-07-07
2025-09-14
Loading full text...

Full text loading...

/deliver/fulltext/cmm/10.2174/0115665240377965250701114255/BMS-CMM-2024-491.html?itemId=/content/journals/cmm/10.2174/0115665240377965250701114255&mimeType=html&fmt=ahah

References

  1. Barker A.F. Bergeron A. Rom W.N. Hertz M.I. Obliterative bronchiolitis. N. Engl. J. Med. 2014 370 19 1820 1828 10.1056/NEJMra1204664 24806161
    [Google Scholar]
  2. Andersson-Sjöland A. Erjefält J.S. Bjermer L. Eriksson L. Westergren-Thorsson G. Fibrocytes are associated with vascular and parenchymal remodelling in patients with obliterative bronchiolitis. Respir. Res. 2009 10 1 103 10.1186/1465‑9921‑10‑103 19878544
    [Google Scholar]
  3. Willis B.C. Borok Z. Epithelial-mesenchymal transition: Potential role in obliterative bronchiolitis? Thorax 2009 64 9 742 743 10.1136/thx.2009.114413 19717708
    [Google Scholar]
  4. Sato M. Keshavjee S. Liu M. Translational research: Animal models of obliterative bronchiolitis after lung transplantation. Am. J. Transplant. 2009 9 9 1981 1987 10.1111/j.1600‑6143.2009.02770.x 19663891
    [Google Scholar]
  5. Bellon H. Vandermeulen E. Verleden S.E. The effect of immunosuppression on airway integrity. Transplantation 2017 101 12 2855 2861 10.1097/TP.0000000000001809 28471870
    [Google Scholar]
  6. Andersson-Sjöland A. Thiman L. Nihlberg K. Fibroblast phenotypes and their activity are changed in the wound healing process after lung transplantation. J. Heart Lung Transplant. 2011 30 8 945 954 10.1016/j.healun.2011.04.006 21624839
    [Google Scholar]
  7. Vittal R. Fan L. Greenspan D.S. IL-17 induces type V collagen overexpression and EMT via TGF-β-dependent pathways in obliterative bronchiolitis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013 304 6 L401 L414 10.1152/ajplung.00080.2012 23262228
    [Google Scholar]
  8. Borthwick L.A. Parker S.M. Brougham K.A. Epithelial to mesenchymal transition (EMT) and airway remodelling after human lung transplantation. Thorax 2009 64 9 770 777 10.1136/thx.2008.104133 19213777
    [Google Scholar]
  9. Konoeda C. Koinuma D. Morishita Y. Epithelial to mesenchymal transition in murine tracheal allotrans-plantation: An immunohistochemical observation. Transplant. Proc. 2013 45 5 1797 1801 10.1016/j.transproceed.2012.11.024 23769046
    [Google Scholar]
  10. Fröse J. Chen M.B. Hebron K.E. Epithelial-mesenchymal transition induces podocalyxin to promote extravasation via ezrin signaling. Cell Rep. 2018 24 4 962 972 10.1016/j.celrep.2018.06.092 30044991
    [Google Scholar]
  11. Borthwick L.A. McIlroy E.I. Gorowiec M.R. Inflammation and epithelial to mesenchymal transition in lung transplant recipients: Role in dysregulated epithelial wound repair. Am. J. Transplant. 2010 10 3 498 509 10.1111/j.1600‑6143.2009.02953.x 20055810
    [Google Scholar]
  12. Xiao B. Mechanisms of mechanotransduction and physiological roles of PIEZO channels. Nat. Rev. Mol. Cell Biol. 2024 25 11 886 903 10.1038/s41580‑024‑00773‑5 39251883
    [Google Scholar]
  13. Wang Y. Wang J. Zhang J. Stiffness sensing via Piezo1 enhances macrophage efferocytosis and promotes the resolution of liver fibrosis. Sci. Adv. 2024 10 23 eadj3289 10.1126/sciadv.adj3289 38838160
    [Google Scholar]
  14. Zhang J. Li J. Hou Y. Osr2 functions as a biomechanical checkpoint to aggravate CD8+ T cell exhaustion in tumor. Cell 2024 187 13 3409 3426.e24 10.1016/j.cell.2024.04.023 38744281
    [Google Scholar]
  15. Zhong G. Su S. Li J. Activation of Piezo1 promotes osteogenic differentiation of aortic valve interstitial cell through YAP-dependent glutaminolysis. Sci. Adv. 2023 9 22 eadg0478 10.1126/sciadv.adg0478 37267365
    [Google Scholar]
  16. Bagley D.C. Russell T. Ortiz-Zapater E. Broncho-constriction damages airway epithelia by crowding-induced excess cell extrusion. Science 2024 384 6691 66 73 10.1126/science.adk2758 38574138
    [Google Scholar]
  17. Zheng M. Yao Y. Borkar N.A. Piezo channels modulate human lung fibroblast function. Am. J. Physiol. Lung Cell. Mol. Physiol. 2024 327 4 L547 L556 10.1152/ajplung.00356.2023 39189800
    [Google Scholar]
  18. Zhong M. Wu W. Kang H. Alveolar stretch activation of endothelial piezo1 protects adherens junctions and lung vascular barrier. Am. J. Respir. Cell Mol. Biol. 2020 62 2 168 177 10.1165/rcmb.2019‑0024OC 31409093
    [Google Scholar]
  19. Hurrell B.P. Shen S. Li X. Piezo1 channels restrain ILC2s and regulate the development of airway hyperreactivity. J. Exp. Med. 2024 221 5 20231835 10.1084/jem.20231835 38530239
    [Google Scholar]
  20. Luo M. Gu R. Wang C. High stretch associated with mechanical ventilation promotes piezo1-mediated migration of airway smooth muscle cells. Int. J. Mol. Sci. 2024 25 3 1748 10.3390/ijms25031748 38339025
    [Google Scholar]
  21. Friedrich E.E. Hong Z. Xiong S. Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions. Proc. Natl. Acad. Sci. USA 2019 116 26 12980 12985 10.1073/pnas.1902165116 31186359
    [Google Scholar]
  22. Koo J.H. Guan K.L. Interplay between YAP/TAZ and Metabolism. Cell Metab. 2018 28 2 196 206 10.1016/j.cmet.2018.07.010 30089241
    [Google Scholar]
  23. Lange A.W. Sridharan A. Xu Y. Stripp B.R. Perl A.K. Whitsett J.A. Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung. J. Mol. Cell Biol. 2015 7 1 35 47 10.1093/jmcb/mju046 25480985
    [Google Scholar]
  24. Aharonov A. Shakked A. Umansky K.B. ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nat. Cell Biol. 2020 22 11 1346 1356 10.1038/s41556‑020‑00588‑4 33046882
    [Google Scholar]
  25. Malgundkar S.H. Burney I. Al Moundhri M. FAT4 silencing promotes epithelial-to-mesenchymal transition and invasion via regulation of YAP and β-catenin activity in ovarian cancer. BMC Cancer 2020 20 1 374 10.1186/s12885‑020‑06900‑7 32366234
    [Google Scholar]
  26. Gao C. Quan M.Y. Chen Q.J. Yap1-2 isoform is the primary mediator in TGF-β1 induced EMT in pancreatic cancer. Front. Oncol. 2021 11 649290 10.3389/fonc.2021.649290 34094936
    [Google Scholar]
  27. Zeng S.H.G. Xie J.H. Zeng Q.Y. lncRNA PVT1 promotes metastasis of non-small cell lung cancer through EZH2-mediated activation of Hippo/NOTCH1 signaling pathways. Cell J. 2021 23 1 21 31 10.22074/cellj.2021.7010 33650817
    [Google Scholar]
  28. Wang C. Xia T. Jiang K. Apoptosis of the tracheal epithelium can increase the number of recipient bone marrow–derived myofibroblasts in allografts and exacerbate obliterative bronchiolitis after tracheal transplantation in mice. Transplantation 2016 100 9 1880 1888 10.1097/TP.0000000000001230 27163540
    [Google Scholar]
  29. Wang J. Ma Y. Sachs F. Li J. Suchyna T.M. GsMTx4-D is a cardioprotectant against myocardial infarction during ischemia and reperfusion. J. Mol. Cell. Cardiol. 2016 98 83 94 10.1016/j.yjmcc.2016.07.005 27423272
    [Google Scholar]
  30. Liu S. Pan X. Cheng W. Tubeimoside I antagonizes yoda1-evoked piezo1 channel activation. Front. Pharmacol. 2020 11 768 10.3389/fphar.2020.00768 32523536
    [Google Scholar]
  31. Yao Y. Zheng M. Borkar N.A. Role of STIM1 in stretch-induced signaling in human airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2024 327 2 L150 L159 10.1152/ajplung.00370.2023 38771147
    [Google Scholar]
  32. Zhang X. Liu J. Deng X. Bo L. Understanding COVID-19-associated endothelial dysfunction: Role of PIEZO1 as a potential therapeutic target. Front. Immunol. 2024 15 1281263 10.3389/fimmu.2024.1281263 38487535
    [Google Scholar]
  33. Fang X.Z. Li M. Wang Y.X. Mechanosensitive ion channel Piezo1 mediates mechanical ventilation-exacerbated ARDS-associated pulmonary fibrosis. J. Adv. Res. 2023 53 175 186 10.1016/j.jare.2022.12.006 36526145
    [Google Scholar]
  34. Liang G.P. Xu J. Cao L. Piezo1 induced apoptosis of type II pneumocytes during ARDS. Respir. Res. 2019 20 1 118 10.1186/s12931‑019‑1083‑1 31186017
    [Google Scholar]
  35. Wang Z. Chen J. Babicheva A. Endothelial upregulation of mechanosensitive channel Piezo1 in pulmonary hypertension. Am. J. Physiol. Cell Physiol. 2021 321 6 C1010 C1027 10.1152/ajpcell.00147.2021 34669509
    [Google Scholar]
  36. Chen J. Rodriguez M. Miao J. Mechanosensitive channel Piezo1 is required for pulmonary artery smooth muscle cell proliferation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2022 322 5 L737 L760 10.1152/ajplung.00447.2021 35318857
    [Google Scholar]
  37. Porto Ribeiro T. Barbeau S. Baudrimont I. Piezo1 channel activation reverses pulmonary artery vasocons-triction in an early rat model of pulmonary hypertension: The role of Ca2+ influx and Akt-eNOS pathway. Cells 2022 11 15 2349 10.3390/cells11152349 35954193
    [Google Scholar]
  38. Freeberg M.A.T. Perelas A. Rebman J.K. Phipps R.P. Thatcher T.H. Sime P.J. Mechanical feed-forward loops contribute to idiopathic pulmonary fibrosis. Am. J. Pathol. 2021 191 1 18 25 10.1016/j.ajpath.2020.09.008 33031756
    [Google Scholar]
  39. Huang J.Q. Zhang H. Guo X.W. Mechanically activated calcium channel PIEZO1 modulates radiation-induced epithelial-mesenchymal transition by forming a positive feedback with TGF-β1. Front. Mol. Biosci. 2021 8 725275 10.3389/fmolb.2021.725275 34722630
    [Google Scholar]
  40. Diem K. Fauler M. Fois G. Mechanical stretch activates piezo1 in caveolae of alveolar type I cells to trigger ATP release and paracrine stimulation of surfactant secretion from alveolar type II cells. FASEB J. 2020 34 9 12785 12804 10.1096/fj.202000613RRR 32744386
    [Google Scholar]
  41. Jia Q. Yang Y. Chen X. Yao S. Hu Z. Emerging roles of mechanosensitive ion channels in acute lung injury/acute respiratory distress syndrome. Respir. Res. 2022 23 1 366 10.1186/s12931‑022‑02303‑3 36539808
    [Google Scholar]
  42. Jiang L. Zhang Y. Lu D. Mechanosensitive Piezo1 channel activation promotes ventilator-induced lung injury via disruption of endothelial junctions in ARDS rats. Biochem. Biophys. Res. Commun. 2021 556 79 86 10.1016/j.bbrc.2021.03.163 33839418
    [Google Scholar]
  43. Zhou J. Zhou X. Xu R. The degradation of airway epithelial tight junctions in asthma under high airway pressure is probably mediated by Piezo-1. Front. Physiol. 2021 12 637790 10.3389/fphys.2021.637790 33868003
    [Google Scholar]
  44. Kelley B. Zhang E.Y. Khalfaoui L. Piezo channels in stretch effects on developing human airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2023 325 5 L542 L551 10.1152/ajplung.00008.2023 37697925
    [Google Scholar]
  45. Aranda L.C. Ribeiro I.C. Freitas T.O. Enhanced respiratory frequency response to lower limb mechanore-ceptors activation in patients with chronic obstructive pulmonary disease. Med. Sci. Sports Exerc. 2023 55 3 418 429 10.1249/MSS.0000000000003065 36730960
    [Google Scholar]
  46. Renaud-Picard B. Vallière K. Toussaint J. Epithelial-mesenchymal transition and membrane microparticles: Potential implications for bronchiolitis obliterans syndrome after lung transplantation. Transpl. Immunol. 2020 59 101273 10.1016/j.trim.2020.101273 32097721
    [Google Scholar]
  47. Hodge S. Holmes M. Banerjee B. Posttransplant bronchiolitis obliterans syndrome is associated with bronchial epithelial to mesenchymal transition. Am. J. Transplant. 2009 9 4 727 733 10.1111/j.1600‑6143.2009.02558.x 19344464
    [Google Scholar]
  48. Wang J. He Y. Yang G. Li N. Li M. Zhang M. Transient receptor potential canonical 1 channel mediates the mechanical stress induced epithelial mesenchymal transition of human bronchial epithelial (16HBE) cells. Int. J. Mol. Med. 2020 46 1 320 330 10.3892/ijmm.2020.4568 32319532
    [Google Scholar]
  49. He J. Shan S. Li Q. Fang B. Xie Y. Mechanical stretch triggers epithelial-mesenchymal transition in keratinocytes through piezo1 channel. Front. Physiol. 2022 13 745572 10.3389/fphys.2022.745572 35615675
    [Google Scholar]
  50. Bo H. Wu Q. Zhu C. Zheng Y. Cheng G. Cui L. PIEZO1 acts as a cancer suppressor by regulating the ROS / Wnt /β‐catenin axis. Thorac. Cancer 2024 15 12 1007 1016 10.1111/1759‑7714.15278 38494915
    [Google Scholar]
  51. Lopez-Cavestany M. Hahn S.B. Hope J.M. Matrix stiffness induces epithelial-to-mesenchymal transition via Piezo1-regulated calcium flux in prostate cancer cells. iScience 2023 26 4 106275 10.1016/j.isci.2023.106275 36950111
    [Google Scholar]
  52. Li Y. Xu C. Sun B. Zhong F. Cao M. Yang L. Piezo1 promoted hepatocellular carcinoma progression and EMT through activating TGF-β signaling by recruiting Rab5c. Cancer Cell Int. 2022 22 1 162 10.1186/s12935‑022‑02574‑2 35461277
    [Google Scholar]
  53. Ezzo M. Spindler K. Wang J.B. Acute contact with profibrotic macrophages mechanically activates fibroblasts via αvβ3 integrin–mediated engagement of Piezo1. Sci. Adv. 2024 10 43 eadp4726 10.1126/sciadv.adp4726 39441936
    [Google Scholar]
  54. Aykut B. Chen R. Kim J.I. Targeting Piezo1 unleashes innate immunity against cancer and infectious disease. Sci. Immunol. 2020 5 50 eabb5168 10.1126/sciimmunol.abb5168 32826342
    [Google Scholar]
  55. Feng S. Yu Z. Yang Y. Xiong Q. Yan X. Bi Y. Mechanosensitive Piezo1 channels promote neurogenic bladder fibrosis via regulating TGF-β1/smad and Hippo/YAP1 pathways. Exp. Cell Res. 2024 442 1 114218 10.1016/j.yexcr.2024.114218 39178981
    [Google Scholar]
  56. He X. Liu Y. Dai Z. Yoda1 pretreated BMSC derived exosomes accelerate osteogenesis by activating phospho-ErK signaling via Yoda1-mediated signal transmission. J. Nanobiotechnology 2024 22 1 407 10.1186/s12951‑024‑02669‑0 38987801
    [Google Scholar]
  57. Zhan H. Xie D. Yan Z. Fluid shear stress-mediated Piezo1 alleviates osteocyte apoptosis by activating the PI3K/Akt pathway. Biochem. Biophys. Res. Commun. 2024 730 150391 10.1016/j.bbrc.2024.150391 39002199
    [Google Scholar]
  58. Zhong Z. Jiao Z. Yu F.X. The Hippo signaling pathway in development and regeneration. Cell Rep. 2024 43 3 113926 10.1016/j.celrep.2024.113926 38457338
    [Google Scholar]
  59. Moya I.M. Halder G. Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat. Rev. Mol. Cell Biol. 2019 20 4 211 226 10.1038/s41580‑018‑0086‑y 30546055
    [Google Scholar]
  60. Gan D. Tao C. Jin X. Piezo1 activation accelerates osteoarthritis progression and the targeted therapy effect of artemisinin. J. Adv. Res. 2024 62 105 117 10.1016/j.jare.2023.09.040 37758057
    [Google Scholar]
  61. Liu S. Xu X. Fang Z. Piezo1 impairs hepatocellular tumor growth via deregulation of the MAPK-mediated YAP signaling pathway. Cell Calcium 2021 95 102367 10.1016/j.ceca.2021.102367 33610907
    [Google Scholar]
  62. Yang Y.L. Zhou C. Chen Q. YAP1/Piezo1 involve in the dynamic changes of lymphatic vessels in UVR-induced photoaging progress to squamous cell carcinoma. J. Transl. Med. 2023 21 1 820 10.1186/s12967‑023‑04458‑z 37974224
    [Google Scholar]
  63. Han Y. Liu C. Zhang D. Mechanosensitive ion channel Piezo1 promotes prostate cancer development through the activation of the Akt/mTOR pathway and acceleration of cell cycle. Int. J. Oncol. 2019 55 3 629 644 10.3892/ijo.2019.4839 31322184
    [Google Scholar]
  64. Fu Y. Wan P. Zhang J. Targeting mechanosensitive piezo1 alleviated renal fibrosis through p38MAPK-YAP pathway. Front. Cell Dev. Biol. 2021 9 741060 10.3389/fcell.2021.741060 34805150
    [Google Scholar]
  65. Xu H.Q. Guo Z.X. Yan J.F. Fibrotic matrix induces mesenchymal transformation of epithelial cells in oral submucous fibrosis. Am. J. Pathol. 2023 193 9 1208 1222 10.1016/j.ajpath.2023.05.014 37328100
    [Google Scholar]
  66. Dombroski J.A. Hope J.M. Sarna N.S. King M.R. Channeling the force: Piezo1 mechanotransduction in cancer metastasis. Cells 2021 10 11 2815 10.3390/cells10112815 34831037
    [Google Scholar]
  67. Li M. Zhang X. Wang M. Activation of Piezo1 contributes to matrix stiffness‐induced angiogenesis in hepatocellular carcinoma. Cancer Commun. 2022 42 11 1162 1184 10.1002/cac2.12364 36181398
    [Google Scholar]
  68. Thiel G. Schmidt T. Rössler O.G. Ca2+ microdomains, calcineurin and the regulation of gene transcription. Cells 2021 10 4 875 10.3390/cells10040875 33921430
    [Google Scholar]
  69. Man K.N.M. Bartels P. Horne M.C. Hell J.W. Tissue-specific adrenergic regulation of the L-type Ca 2+ channel Ca V 1.2. Sci. Signal. 2020 13 663 eabc6438 10.1126/scisignal.abc6438 33443233
    [Google Scholar]
  70. Tian C. Lyu T. Zhao X. Wang R. Wu Y. Yang D. Piezo1 channel: A global bibliometric analysis from 2010 to 2024. Channels 2024 18 1 2396354 10.1080/19336950.2024.2396354 39282983
    [Google Scholar]
  71. Kinsella J.A. Debant M. Parsonage G. Pharmacology of PIEZO1 channels. Br. J. Pharmacol. 2024 181 23 4714 4732 10.1111/bph.17351 39402010
    [Google Scholar]
  72. Morachevskaya E.A. Sudarikova A.V. Actin dynamics as critical ion channel regulator: ENaC and Piezo in focus. Am. J. Physiol. Cell Physiol. 2021 320 5 C696 C702 10.1152/ajpcell.00368.2020 33471624
    [Google Scholar]
  73. Nourse J.L. Pathak M.M. How cells channel their stress: Interplay between Piezo1 and the cytoskeleton. Semin. Cell Dev. Biol. 2017 71 3 12 10.1016/j.semcdb.2017.06.018 28676421
    [Google Scholar]
  74. Hooglugt A. van der Stoel M.M. Shapeti A. DLC1 promotes mechanotransductive feedback for YAP via RhoGAP-mediated focal adhesion turnover. J. Cell Sci. 2024 137 8 jcs261687 10.1242/jcs.261687 38563084
    [Google Scholar]
  75. Lan Y. Lu J. Zhang S. Piezo1‐mediated mechano-transduction contributes to disturbed flow‐induced atherosclerotic endothelial inflammation. J. Am. Heart Assoc. 2024 13 21 035558 10.1161/JAHA.123.035558 39450718
    [Google Scholar]
  76. Yun J. Hansen S. Morris O. Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling. Nat. Commun. 2023 14 1 156 10.1038/s41467‑022‑35487‑9 36631445
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240377965250701114255
Loading
/content/journals/cmm/10.2174/0115665240377965250701114255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test