Skip to content
2000
image of Genetic Association Between Sleep Traits and Vertigo Risk: A Two-sample Bidirectional Mendelian Randomization Study

Abstract

Background

Observational studies suggest the potential association between sleep traits and vertigo; however, causal evidence remains limited.

Objective

This study aimed to explore the relationship between genetically predicted sleep traits and vertigo with the Mendelian randomization (MR) method.

Methods

Instrumental variables for sleep traits (snoring, sleep duration, insomnia, daytime sleepiness, daytime napping, and chronotype) were adopted from genome-wide association studies (GWAS) data of European ancestry from UK Biobank. The summary-level datasets of vertigo were retrieved from the GWAS of FinnGen. Inverse-variance weighted (IVW) method was adopted as the main analysis.

Results

IVW analysis revealed a significant association between genetically predicted daytime napping (OR = 1.51, 95% CI =1.08-2.12, P = 0.016) and chronotype (OR = 1.13, 95% CI =1.01-1.26, P = 0.033), both of which were associated with an increased risk of vertigo. However, we did not find evidence for a causal effect of snoring, overall sleep duration, long sleep duration, short sleep duration, insomnia, and excessive daytime sleepiness on vertigo. No reverse causality was detected.

Conclusion

Our findings suggest that abnormal sleep patterns may serve as risk factors for vertigo disorders and offer opportunities for the prevention and management of vertigo disorders.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240358943250612115854
2025-07-10
2025-09-14
Loading full text...

Full text loading...

References

  1. Lempert T. Neuhauser H. Epidemiology of vertigo, migraine and vestibular migraine. J. Neurol. 2009 256 3 333 338 10.1007/s00415‑009‑0149‑2 19225823
    [Google Scholar]
  2. Neuhauser H.K. Epidemiology of vertigo. Curr. Opin. Neurol. 2007 20 1 40 46 10.1097/WCO.0b013e328013f432 17215687
    [Google Scholar]
  3. Mueller M. Schuster E. Strobl R. Grill E. Identification of aspects of functioning, disability and health relevant to patients experiencing vertigo: A qualitative study using the international classification of functioning, disability and health. Heal Qual. Life Outcom 2012 10 1 75 10.1186/1477‑7525‑10‑75 22738067
    [Google Scholar]
  4. Casani A.P. Gufoni M. Capobianco S. Current insights into treating vertigo in older adults. Drugs Aging 2021 38 8 655 670 10.1007/s40266‑021‑00877‑z 34159566
    [Google Scholar]
  5. Bouccara D. Rubin F. Bonfils P. Lisan Q. Management of vertigo and dizziness. Rev. Med. Interne 2018 39 11 869 874 10.1016/j.revmed.2018.02.004 29496272
    [Google Scholar]
  6. Strupp M. Dlugaiczyk J. Ertl-Wagner B.B. Rujescu D. Westhofen M. Dieterich M. Vestibular disorders. Dtsch. Arztebl. Int. 2020 117 17 300 310 32530417
    [Google Scholar]
  7. Baloh R.W. Differentiating between peripheral and central causes of vertigo. Otolaryngol. Head Neck Surg. 1998 119 1 55 59 10.1016/S0194‑5998(98)70173‑1 9674515
    [Google Scholar]
  8. Tsai M.S. Lee L.A. Tsai Y.T. Sleep apnea and risk of vertigo: A nationwide population-based cohort study. Laryngoscope 2018 128 3 763 768 10.1002/lary.26789 28771753
    [Google Scholar]
  9. Xue H. Wang B. Meng T. Differences of sleep disorders between vestibular migraine and benign paroxysmal positional vertigo. Front. Psychiatry 2021 12 726038 10.3389/fpsyt.2021.726038 34867516
    [Google Scholar]
  10. Iranfar K. Azad S. Relationship between benign paroxysmal positional vertigo (BPPV) and sleep quality. Heliyon 2022 8 1 e08717 10.1016/j.heliyon.2022.e08717 35059515
    [Google Scholar]
  11. Albathi M. Agrawal Y. Vestibular vertigo is associated with abnormal sleep duration. J. Vestib. Res. 2017 27 2-3 127 135 10.3233/VES‑170617 29064831
    [Google Scholar]
  12. Daghlas I. Vgontzas A. Guo Y. Chasman D.I. Saxena R. Habitual sleep disturbances and migraine: A Mendelian randomization study. Ann. Clin. Transl. Neurol. 2020 7 12 2370 2380 10.1002/acn3.51228 33125193
    [Google Scholar]
  13. Crocker A. Sehgal A. Genetic analysis of sleep. Genes Dev. 2010 24 12 1220 1235 10.1101/gad.1913110 20551171
    [Google Scholar]
  14. Kerber K. The genetics of vertigo. Semin. Neurol. 2006 26 5 484 491 10.1055/s‑2006‑951620 17048149
    [Google Scholar]
  15. Jen J.C. Recent advances in the genetics of recurrent vertigo and vestibulopathy. Curr. Opin. Neurol. 2008 21 1 3 7 10.1097/WCO.0b013e3282f41ca0 18180645
    [Google Scholar]
  16. Ference B.A. Holmes M.V. Smith G.D. Using mendelian randomization to improve the design of randomized trials. Cold Spring Harb. Perspect. Med. 2021 11 7 a040980 10.1101/cshperspect.a040980 33431510
    [Google Scholar]
  17. Campos A.I. García-Marín L.M. Byrne E.M. Martin N.G. Cuéllar-Partida G. Rentería M.E. Insights into the aetiology of snoring from observational and genetic investigations in the UK Biobank. Nat. Commun. 2020 11 1 817 10.1038/s41467‑020‑14625‑1 32060260
    [Google Scholar]
  18. Dashti H.S. Jones S.E. Wood A.R. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 2019 10 1 1100 10.1038/s41467‑019‑08917‑4 30846698
    [Google Scholar]
  19. Lane J.M. Jones S.E. Dashti H.S. Biological and clinical insights from genetics of insomnia symptoms. Nat. Genet. 2019 51 3 387 393 10.1038/s41588‑019‑0361‑7 30804566
    [Google Scholar]
  20. Wang H. Lane J.M. Jones S.E. Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nat. Commun. 2019 10 1 3503 10.1038/s41467‑019‑11456‑7 31409809
    [Google Scholar]
  21. Dashti H.S. Daghlas I. Lane J.M. Genetic determinants of daytime napping and effects on cardiometabolic health. Nat. Commun. 2021 12 1 900 10.1038/s41467‑020‑20585‑3 33568662
    [Google Scholar]
  22. Jones S.E. Lane J.M. Wood A.R. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun. 2019 10 1 343 10.1038/s41467‑018‑08259‑7 30696823
    [Google Scholar]
  23. Kurki M.I. Karjalainen J. Palta P. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 2023 613 7944 508 518 10.1038/s41586‑022‑05473‑8 36653562
    [Google Scholar]
  24. Luo Y.F. Cheng Z.J. Wang Y.F. Unraveling the relationship between high-sensitivity C-reactive protein and frailty: Evidence from longitudinal cohort study and genetic analysis. BMC Geriatr. 2024 24 1 222 10.1186/s12877‑024‑04836‑2 38439017
    [Google Scholar]
  25. Wang H. Zhang F. Zeng J. Genotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK Biobank. Sci. Adv. 2019 5 8 eaaw3538 10.1126/sciadv.aaw3538 31453325
    [Google Scholar]
  26. Sambou M.L. Zhao X. Hong T. Wang N. Dai J. Associations between sleep-behavioral traits and healthspan: A one-sample Mendelian randomization study based on 388,909 participants of the UK-Biobank. J. Affect. Disord. 2024 350 854 862 10.1016/j.jad.2024.01.122 38262521
    [Google Scholar]
  27. Chen X. Zheng Y. Wang J. Resting heart rate and risk of dementia: A Mendelian randomization study in the international genomics of Alzheimer’s Project and UK Biobank. PeerJ 2024 12 e17073 10.7717/peerj.17073 38500529
    [Google Scholar]
  28. Du Z. Wang G. Yan D. Yang F. Bing D. Relationships between the pittsburgh sleep quality index (PSQI) and vertigo outcome. Neurol. Res. 2023 45 4 291 299 10.1080/01616412.2022.2132728 36843003
    [Google Scholar]
  29. Sugaya N. Arai M. Goto F. The effect of sleep disturbance in patients with chronic dizziness. Acta Otolaryngol. 2017 137 1 47 52 10.1080/00016489.2016.1213418 27551863
    [Google Scholar]
  30. Kim S.K. Kim J.H. Jeon S.S. Hong S.M. Relationship between sleep quality and dizziness. PLoS One 2018 13 3 e0192705 10.1371/journal.pone.0192705 29513688
    [Google Scholar]
  31. Zhou Y. Li H. Jia Y. Wu J. Yang J. Liu C. Cyclic alternating pattern in non-rapid eye movement sleep in patients with vestibular migraine. Sleep Med. 2023 101 485 489 10.1016/j.sleep.2022.11.034 36525848
    [Google Scholar]
  32. Davey Smith G. Holmes M.V. Davies N.M. Ebrahim S. Mendel’s laws, Mendelian randomization and causal inference in observational data: Substantive and nomenclatural issues. Eur. J. Epidemiol. 2020 35 2 99 111 10.1007/s10654‑020‑00622‑7 32207040
    [Google Scholar]
  33. Wang J. Liu D. Tian E. Is hearing impairment causally associated with falls? evidence from a two-sample mendelian randomization study. Front. Neurol. 2022 13 876165 10.3389/fneur.2022.876165 35547384
    [Google Scholar]
  34. Aguiar S.A. Barela J.A. Adaptation of sensorimotor coupling in postural control is impaired by sleep deprivation. PLoS One 2015 10 3 e0122340 10.1371/journal.pone.0122340 25799560
    [Google Scholar]
  35. Ma J. Yao Y-J. Ma R-M. Effects of sleep deprivation on human postural control, subjective fatigue assessment and psychomotor performance. J. Int. Med. Res. 2009 37 5 1311 1320 10.1177/147323000903700506 19930836
    [Google Scholar]
  36. Tetych A. Olchowik G. Warchoł J. Investigations concerning the influence of sleep disorders on postural stability in young men. Int. J. Environ. Res. Public Health 2022 19 14 8809 10.3390/ijerph19148809 35886660
    [Google Scholar]
  37. Paillard T. Detrimental effects of sleep deprivation on the regulatory mechanisms of postural balance: A comprehensive review. Front. Hum. Neurosci. 2023 14 1146550 10.3389/fnhum.2023.1146550 37124366
    [Google Scholar]
  38. Quarck G. Ventre J. Etard O. Denise P. Total sleep deprivation can increase vestibulo-ocular responses. J. Sleep Res. 2006 15 4 369 375 10.1111/j.1365‑2869.2006.00550.x 17118093
    [Google Scholar]
  39. Lin B.Y. Young Y.H. Effect of short-duration sleep deprivation on the vestibulo-ocular reflex system evaluated by ocular vestibular-evoked myogenic potential test. Acta Otolaryngol. 2014 134 7 698 703 10.3109/00016489.2014.895039 24834933
    [Google Scholar]
  40. Katzenberger B. Brosch F. Besnard S. Grill E. Chronic vestibular hypofunction is associated with impaired sleep: Results from the dizzyreg patient registry. J. Clin. Med. 2023 12 18 5903 10.3390/jcm12185903 37762845
    [Google Scholar]
  41. Besnard S. Tighilet B. Chabbert C. The balance of sleep: Role of the vestibular sensory system. Sleep Med. Rev. 2018 42 220 228 10.1016/j.smrv.2018.09.001 30293919
    [Google Scholar]
  42. Segal S. Eviatar E. Berenholz L. Is there a relation between acoustic trauma or noise-induced hearing loss and a subsequent appearance of Ménière’s Disease? An epidemiologic study of 17245 cases and a review of the literature. Europ Acad Otol Neurotol 2003 24 3 387 391 [and]. [http://dx.doi.org/10.1097/00129492-200305000-00007
    [Google Scholar]
  43. Sánchez-Sellero I. Soto-Varela A. Relationship between occupational exposure to noise and vibrations and vertigo: A prospective case-control study. J. Clin. Med. 2024 13 22 6650 10.3390/jcm13226650 39597794
    [Google Scholar]
  44. Nageris B.I. Attias J. Feinmesser R. Noise-induced vestibular dysfunction. Noise Health 2000 3 9 45 48 [PMID: 12689442
    [Google Scholar]
  45. Li X. Zhao Z. He J. Shen J. Betahistine mesylate reduces the damage of blue light exposure in Drosophila model. J. Photochem. Photobiol. B 2024 259 113009 10.1016/j.jphotobiol.2024.113009 39141982
    [Google Scholar]
  46. Mun S.K. Oh S.R. Yang B.R. Oh S.H. Chang M. Impact of air pollution on benign paroxysmal positional vertigo incidence: A retrospective study of the citizens of Seoul, South Korea. Environ. Sci. Pollut. Res. Int. 2021 28 25 33382 33389 10.1007/s11356‑021‑13105‑3 33638780
    [Google Scholar]
  47. Zheng J. Xu M. Xu H. Acute effects of ambient air pollution on daily neurology clinic visits for vertigo: A time-series study in Wuhan, China. Environ. Sci. Pollut. Res. Int. 2023 30 20 57707 57716 10.1007/s11356‑023‑26575‑4 36971932
    [Google Scholar]
  48. Neves-Souza R. Costa V. Meneses-Barriviera C. Franco P. Marchiori L. Schultz A. Is there a possible association between dietary habits and benign paroxysmal positional vertigo in the elderly? the importance of diet and counseling. Int. Arch. Otorhinolaryngol. 2015 19 4 293 297 10.1055/s‑0035‑1551551 26491473
    [Google Scholar]
  49. Gunes-Bayir A. Tandogan Z. Gedik-Toker Ö. Yabaci-Tak A. Dadak A. A comparison study of nutritional assessment, diet and physical activity habits, lifestyle and socio-demographic characteristics in individuals with and without dizziness/vertigo. Nutrients 2023 15 18 4055 10.3390/nu15184055 37764839
    [Google Scholar]
  50. Filippopulos F.M. Albers L. Straube A. Vertigo and dizziness in adolescents: Risk factors and their population attributable risk. PLoS One 2017 12 11 e0187819 10.1371/journal.pone.0187819 29131843
    [Google Scholar]
  51. Li S. Wang Z. Liu Y. Risk factors for the recurrence of benign paroxysmal positional vertigo: A systematic review and meta-analysis. Ear Nose Throat J. 2022 101 3 NP112 NP134 10.1177/0145561320943362 32776833
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240358943250612115854
Loading
/content/journals/cmm/10.2174/0115665240358943250612115854
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test