Skip to content
2000
image of Roles of Exosomes in Cancer Pathogenesis, Progression, and Therapy Resistance

Abstract

Cancer is a major health concern worldwide, and there have been numerous efforts to fully understand the mechanism of cancer pathogenesis and develop effective treatments. In this context, exosomes play a crucial role in the detection and management of cancer. Exosomes are extracellular vesicles that share components with their parent cells and mediate intercellular communication, especially in cancer patients. Exosomal cargo, which includes proteins, lipids, and RNAs, has been extensively investigated due to its potential significance in cancer. Exosomes play a crucial role in cancer biology, as they have been demonstrated to alter the tumor microenvironment and facilitate communication between the tumor and its host. Exosomal composition is influenced by packaging and secretion processes, which can affect the function, distribution, and uptake of cargo in target cells. Exosome-mediated communication within the tumor microenvironment suggests that variations in endocytosis and plasma membrane remodeling, which are specific to cancer, are partly responsible for the abnormal exosomal process in cancer. Numerous processes, including the modification of the tumor microenvironment, the promotion of angiogenesis, metastasis, and invasion, as well as the regulation of tumor cells' immune escape, are thought to be facilitated by exosomes in the development and progression of cancers originating from various tissues. Exosomal components have the ability to mediate immune responses against cancer and aid in the development of cancer cell resistance to treatments and medications. This study aims to provide a concise review of exosome composition, the processes involved in their synthesis, their roles in cancer development, progression, and metastasis, as well as their ability to evade immune surveillance and contribute to resistance against cancer-related drugs and therapies. Therefore, we conducted an extensive search across numerous academic databases, including Scopus, PubMed, ScienceDirect, Crossref, and Google Scholar, using the keywords “cancer,” “exosomes,” “progression,” “metastasis,” “therapy resistance,” etc. The retrieved literature was critically analyzed. This knowledge may contribute to more effective cancer treatment in the future by informing potential therapeutic applications.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240374643250902181706
2025-10-10
2025-10-18
Loading full text...

Full text loading...

References

  1. Chhikara B.S. Parang K. Global cancer statistics 2022: The trends projection analysis. Chem Biol Lett 2023 10 1 451
    [Google Scholar]
  2. Fisher R. Pusztai L. Swanton C. Cancer heterogeneity: Implications for targeted therapeutics. Br. J. Cancer 2013 108 3 479 485 10.1038/bjc.2012.581 23299535
    [Google Scholar]
  3. Huang T. Deng C.X. Current progresses of exosomes as cancer diagnostic and prognostic biomarkers. Int. J. Biol. Sci. 2019 15 1 1 11 10.7150/ijbs.27796 30662342
    [Google Scholar]
  4. Liu W. Ma Z. Kang X. Current status and outlook of advances in exosome isolation. Anal. Bioanal. Chem. 2022 414 24 7123 7141 10.1007/s00216‑022‑04253‑7 35962791
    [Google Scholar]
  5. Sidhom K. Obi P.O. Saleem A. A review of exosomal isolation methods: Is size exclusion chromatography the best option? Int. J. Mol. Sci. 2020 21 18 6466 10.3390/ijms21186466 32899828
    [Google Scholar]
  6. Müller Bark J. Kulasinghe A. Amenábar J.M. Punyadeera C. Exosomes in cancer. Advances in Clinical Chemistry. Elsevier 2021 1 40
    [Google Scholar]
  7. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  8. Chen J. Li P. Zhang T. Review on strategies and technologies for exosome isolation and purification. Front. Bioeng. Biotechnol. 2022 9 811971 10.3389/fbioe.2021.811971 35071216
    [Google Scholar]
  9. Jella K.K. Nasti T.H. Li Z. Malla S.R. Buchwald Z.S. Khan M.K. Exosomes, their biogenesis and role in inter-cellular communication, tumor microenvironment and cancer immunotherapy. Vaccines 2018 6 4 69 10.3390/vaccines6040069 30261592
    [Google Scholar]
  10. Mimeault M. Batra S.K. Molecular biomarkers of cancer stem/progenitor cells associated with progression, metastases, and treatment resistance of aggressive cancers. Cancer Epidemiol. Biomarkers Prev. 2014 23 2 234 254 10.1158/1055‑9965.EPI‑13‑0785 24273063
    [Google Scholar]
  11. van Niel G. Porto-Carreiro I. Simoes S. Raposo G. Exosomes: A common pathway for a specialized function. J. Biochem. 2006 140 1 13 21 10.1093/jb/mvj128 16877764
    [Google Scholar]
  12. Dai J. Su Y. Zhong S. Exosomes: Key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther. 2020 5 1 145 10.1038/s41392‑020‑00261‑0 32759948
    [Google Scholar]
  13. Hannafon B. Ding W.Q. Intercellular communication by exosome-derived microRNAs in cancer. Int. J. Mol. Sci. 2013 14 7 14240 14269 10.3390/ijms140714240 23839094
    [Google Scholar]
  14. Xu J. Liao K. Zhou W. Exosomes regulate the transformation of cancer cells in cancer stem cell homeostasis. Stem Cells Int. 2018 2018 1 16 10.1155/2018/4837370 30344611
    [Google Scholar]
  15. Risha Y. Minic Z. Ghobadloo S.M. Berezovski M.V. The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers. Sci. Rep. 2020 10 1 13572 10.1038/s41598‑020‑70393‑4 32782317
    [Google Scholar]
  16. Liu X. Li Y. Chen C. Exosomal EphA2 promotes tumor metastasis of triple-negative breast cancer by damaging endothelial barrier. Clin. Exp. Metastasis 2023 40 1 105 116 10.1007/s10585‑022‑10194‑3 36380015
    [Google Scholar]
  17. Tutanov O. Proskura K. Kamyshinsky R. Shtam T. Tsentalovich Y. Tamkovich S. Proteomic profiling of plasma and total blood exosomes in breast cancer: A potential role in tumor progression, diagnosis, and prognosis. Front. Oncol. 2020 10 580891 10.3389/fonc.2020.580891
    [Google Scholar]
  18. Scognamiglio I. Cocca L. Puoti I. Exosomal microRNAs synergistically trigger stromal fibroblasts in breast cancer. Mol. Ther. Nucleic Acids 2022 28 17 31 10.1016/j.omtn.2022.02.013 35317202
    [Google Scholar]
  19. Wang X. Qian T. Bao S. Circulating exosomal miR‐363‐5p inhibits lymph node metastasis by downregulating PDGFB and serves as a potential noninvasive biomarker for breast cancer. Mol. Oncol. 2021 15 9 2466 2479 10.1002/1878‑0261.13029 34058065
    [Google Scholar]
  20. Shen S. Song Y. Zhao B. Cancer-derived exosomal miR-7641 promotes breast cancer progression and metastasis. Cell Commun. Signal. 2021 19 1 20 10.1186/s12964‑020‑00700‑z 33618729
    [Google Scholar]
  21. Na-Er A. Xu Y-Y. Liu Y-H. Gan Y-J. Upregulation of serum exosomal SUMO1P3 predicts unfavorable prognosis in triple negative breast cancer. Eur. Rev. Med. Pharmacol. Sci. 2021 25 1 154 160 10.26355/eurrev_202101_24379 33506903
    [Google Scholar]
  22. Szajnik M. Derbis M. Lach M. Patalas P. Michalak M. Drzewiecka H. Exosomes in plasma of patients with ovarian carcinoma: Potential biomarkers of tumor progression and response to therapy. Gynecol. Obstet. (Sunnyvale) 2013 Suppl. 4 3 10.4172/2161‑0932.S4‑003 24466501
    [Google Scholar]
  23. Zhang W. Ou X. Wu X. Proteomics profiling of plasma exosomes in epithelial ovarian cancer: A potential role in the coagulation cascade, diagnosis and prognosis. Int. J. Oncol. 2019 54 5 1719 1733 10.3892/ijo.2019.4742 30864689
    [Google Scholar]
  24. Yang L. Wu H. Zhu Y. Chen X. Chen Y. Plasma exosomal caveolin-1 predicts Poor Prognosis in Ovarian Cancer. J. Cancer 2021 12 16 5005 5012 10.7150/jca.58762 34234869
    [Google Scholar]
  25. Wang S. Song X. Wang K. Plasma exosomal miR-320d, miR-4479, and miR-6763-5p as diagnostic biomarkers in epithelial ovarian cancer. Front. Oncol. 2022 12 986343 10.3389/fonc.2022.986343 36591520
    [Google Scholar]
  26. Zhu Z. Chen Z. Wang M. Detection of plasma exosomal miRNA-205 as a biomarker for early diagnosis and an adjuvant indicator of ovarian cancer staging. J. Ovarian Res. 2022 15 1 27 10.1186/s13048‑022‑00961‑x 35183243
    [Google Scholar]
  27. Lai Y. Dong L. Jin H. Li H. Sun M. Li J. Exosome long non-coding RNA SOX2-OT contributes to ovarian cancer malignant progression by miR-181b-5p/SCD1 signaling. Aging (Albany NY) 2021 13 20 23726 23738 10.18632/aging.203645 34690112
    [Google Scholar]
  28. Liu J. Yoo J. Ho J.Y. Plasma-derived exosomal miR-4732-5p is a promising noninvasive diagnostic biomarker for epithelial ovarian cancer. J. Ovarian Res. 2021 14 1 59 10.1186/s13048‑021‑00814‑z 33910598
    [Google Scholar]
  29. Tang X. Liu S. Liu Y. Circulating serum exosomal aHIF is a novel prognostic predictor for epithelial ovarian cancer. OncoTargets Ther. 2019 12 7699 7711 10.2147/OTT.S220533 31571921
    [Google Scholar]
  30. Zhang W. Su X. Li S. Liu Z. Wang Q. Zeng H. Low serum exosomal miR-484 expression predicts unfavorable prognosis in ovarian cancer. Cancer Biomark. 2020 27 4 485 491 10.3233/CBM‑191123 32065786
    [Google Scholar]
  31. Niu L. Song X. Wang N. Xue L. Song X. Xie L. Tumor‐derived exosomal proteins as diagnostic biomarkers in non‐small cell lung cancer. Cancer Sci. 2019 110 1 433 442 10.1111/cas.13862 30407700
    [Google Scholar]
  32. Jeong H. Choi B.H. Park J. GCC2 as a new early diagnostic biomarker for non-small cell lung cancer. Cancers 2021 13 21 5482 10.3390/cancers13215482 34771645
    [Google Scholar]
  33. Chanteloup G. Cordonnier M. Isambert N. Monitoring HSP70 exosomes in cancer patients’ follow up: A clinical prospective pilot study. J. Extracell. Vesicles 2020 9 1 1766192 10.1080/20013078.2020.1766192 32595915
    [Google Scholar]
  34. Liu S. Tian W. Ma Y. Li J. Yang J. Li B. Serum exosomal proteomics analysis of lung adenocarcinoma to discover new tumor markers. BMC Cancer 2022 22 1 279 10.1186/s12885‑022‑09366‑x 35291954
    [Google Scholar]
  35. Zheng B. Song X. Wang L. Plasma exosomal tRNA‐derived fragments as diagnostic biomarkers in non-small cell lung cancer. Front. Oncol. 2022 12 1037523 10.3389/fonc.2022.1037523 36387119
    [Google Scholar]
  36. Zhang Z.J. Song X.G. Xie L. Circulating serum exosomal miR-20b-5p and miR-3187-5p as efficient diagnostic biomarkers for early-stage non-small cell lung cancer. Exp. Biol. Med. (Maywood) 2020 245 16 1428 1436 10.1177/1535370220945987 32741216
    [Google Scholar]
  37. Tao Y. Tang Y. Yang Z. Exploration of serum exosomal LncRNA TBILA and AGAP2-AS1 as promising biomarkers for diagnosis of non-small cell lung cancer. Int. J. Biol. Sci. 2020 16 3 471 482 10.7150/ijbs.39123 32015683
    [Google Scholar]
  38. Xiong D. Wang C. Yang Z. Han F. Zhan H. Clinical significance of serum-derived exosomal LINC00917 in patients with non-small cell lung cancer. Front. Genet. 2021 12 728763 10.3389/fgene.2021.728763 35003204
    [Google Scholar]
  39. Gharib A.F. Eed E.M. Khalifa A.S. Value of serum miRNA-96-5p and miRNA-99a-5p as diagnostic biomarkers for hepatocellular carcinoma. Int. J. Gen. Med. 2022 15 2427 2436 10.2147/IJGM.S354842 35264879
    [Google Scholar]
  40. Chen S. Mao Y. Chen W. Serum exosomal miR-34a as a potential biomarker for the diagnosis and prognostic of hepatocellular carcinoma. J. Cancer 2022 13 5 1410 1417 10.7150/jca.57205 35371309
    [Google Scholar]
  41. Liu X. Cheng D. Cui M. Exosome marker proteins of tumor-associated fibroblasts and exosome-derived miR-92a-3p act as potential biomarkers for liver cancer. Crit. Rev. Eukaryot. Gene Expr. 2022 32 1 49 57 10.1615/CritRevEukaryotGeneExpr.2021039570 35377980
    [Google Scholar]
  42. Niu L.J. Zhang Y.M. Huang T. Sun X.F. Luo S.X. Exosomal microRNA-155 as a biomarker for hepatic fibrosis diagnosis and progression. Ann. Transl. Med. 2021 9 2 137 7 10.21037/atm‑20‑7787 33569439
    [Google Scholar]
  43. Wang Q. Wang G. Niu L. Zhao S. Li J. Zhang Z. Exosomal miR-1290 promotes angiogenesis of hepatocellular carcinoma via targeting SMEK1. J. Oncol. 2021 2021 6617700 10.1155/2021/6617700 33564307
    [Google Scholar]
  44. Fründt T. Krause L. Hussey E. Diagnostic and prognostic value of miR-16, miR-146a, miR-192 and miR-221 in exosomes of hepatocellular carcinoma and liver cirrhosis patients. Cancers 2021 13 10 2484 10.3390/cancers13102484 34069692
    [Google Scholar]
  45. Sun L. Xu M. Zhang G. Dong L. Wu J. Wei C. Identification of circulating exosomal miR-101 and miR-125b panel act as a potential biomarker for hepatocellular carcinoma. Int. J. Genomics 2021 2021 1326463 10.1155/2021/1326463 34988221
    [Google Scholar]
  46. Muhammad Yusuf A.N. Raja Ali R.A. Muhammad Nawawi K.N. Mokhtar N.M. Potential biomarkers in NASH-induced liver cirrhosis with hepatocellular carcinoma: A preliminary work on roles of exosomal miR-182, miR-301a, and miR-373. Malays. J. Pathol. 2020 42 3 377 384 33361718
    [Google Scholar]
  47. Hao X. Xin R. Dong W. Decreased serum exosomal miR-320a expression is an unfavorable prognostic factor in patients with hepatocellular carcinoma. J. Int. Med. Res. 2020 48 4 0300060519896144 10.1177/0300060519896144 32339037
    [Google Scholar]
  48. Yokota Y. Noda T. Okumura Y. Serum exosomal miR‐638 is a prognostic marker of HCC via downregulation of VE‐cadherin and ZO‐1 of endothelial cells. Cancer Sci. 2021 112 3 1275 1288 10.1111/cas.14807 33426736
    [Google Scholar]
  49. Zhao S. Li J. Zhang G. Exosomal miR-451a functions as a tumor suppressor in hepatocellular carcinoma by targeting LPIN1. Cell. Physiol. Biochem. 2019 53 1 19 35 10.33594/000000118 31162914
    [Google Scholar]
  50. Kim S.S. Baek G.O. Ahn H.R. Serum small extracellular vesicle‐derived LINC00853 as a novel diagnostic marker for early hepatocellular carcinoma. Mol. Oncol. 2020 14 10 2646 2659 10.1002/1878‑0261.12745 32525601
    [Google Scholar]
  51. Yao Z. Jia C. Tai Y. Serum exosomal long noncoding RNAs lnc-FAM72D-3 and lnc-EPC1-4 as diagnostic biomarkers for hepatocellular carcinoma. Aging (Albany NY) 2020 12 12 11843 11863 10.18632/aging.103355 32554864
    [Google Scholar]
  52. Wang Y. Pei L. Yue Z. Jia M. Wang H. Cao L.L. The potential of serum exosomal hsa_circ_0028861 as the novel diagnostic biomarker of HBV-Derived hepatocellular cancer. Front. Genet. 2021 12 703205 10.3389/fgene.2021.703205 34367259
    [Google Scholar]
  53. Fu H. Yang H. Zhang X. Exosomal TRIM3 is a novel marker and therapy target for gastric cancer. J. Exp. Clin. Cancer Res. 2018 37 1 162 10.1186/s13046‑018‑0825‑0 30031392
    [Google Scholar]
  54. He J. Wu J. Dong S. Xu J. Wang J. Zhou X. Exosome-encapsulated miR-31, miR-192, and miR-375 serve as clinical biomarkers of gastric cancer. J. Oncol. 2023 2023 7335456 10.1155/2023/7335456 36844871
    [Google Scholar]
  55. Zheng G.D. Xu Z.Y. Hu C. Exosomal miR-590-5p in serum as a biomarker for the diagnosis and prognosis of gastric cancer. Front. Mol. Biosci. 2021 8 636566 10.3389/fmolb.2021.636566 33681295
    [Google Scholar]
  56. Zhou H. Shen W. Zou H. Lv Q. Shao P. Circulating exosomal long non-coding RNA H19 as a potential novel diagnostic and prognostic biomarker for gastric cancer. J. Int. Med. Res. 2020 48 7 0300060520934297 10.1177/0300060520934297 32660285
    [Google Scholar]
  57. Shi Y. Wang Z. Zhu X. Exosomal miR-1246 in serum as a potential biomarker for early diagnosis of gastric cancer. Int. J. Clin. Oncol. 2020 25 1 89 99 10.1007/s10147‑019‑01532‑9 31506750
    [Google Scholar]
  58. Yun J. Han S.B. Kim H.J. Exosomal miR-181b-5p downregulation in ascites serves as a potential diagnostic biomarker for gastric cancer-associated malignant ascites. J. Gastric Cancer 2019 19 3 301 314 10.5230/jgc.2019.19.e27 31598373
    [Google Scholar]
  59. Kumata Y. Iinuma H. Suzuki Y. Tsukahara D. Midorikawa H. Igarashi Y. Exosome-encapsulated microRNA-23b as a minimally invasive liquid biomarker for the prediction of recurrence and prognosis of gastric cancer patients in each tumor stage. Oncol. Rep. 2018 40 1 319 330 10.3892/or.2018.6418 29749537
    [Google Scholar]
  60. Zhou Q. Li H. Jing J. Yuan Y. Sun L. Evaluation of C5orf66-AS1 as a potential biomarker for predicting early gastric cancer and its role in gastric carcinogenesis. OncoTargets Ther. 2020 13 2795 2805 10.2147/OTT.S239965 32308414
    [Google Scholar]
  61. Piao H. Guo S. Wang Y. Zhang J. Exosomal long non-coding RNA CEBPA-AS1 inhibits tumor apoptosis and functions as a non-invasive biomarker for diagnosis of gastric cancer. OncoTargets Ther. 2020 13 1365 1374 10.2147/OTT.S238706
    [Google Scholar]
  62. Xu H. Zhou J. Tang J. Identification of serum exosomal lncRNA MIAT as a novel diagnostic and prognostic biomarker for gastric cancer. J. Clin. Lab. Anal. 2020 34 8 23323 10.1002/jcla.23323 32274858
    [Google Scholar]
  63. Zhao R. Zhang Y. Zhang X. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol. Cancer 2018 17 1 68 10.1186/s12943‑018‑0817‑x 29486794
    [Google Scholar]
  64. Sun B. Li Y. Zhou Y. Circulating exosomal CPNE3 as a diagnostic and prognostic biomarker for colorectal cancer. J. Cell. Physiol. 2019 234 2 1416 1425 10.1002/jcp.26936 30078189
    [Google Scholar]
  65. Liu W. Yang D. Chen L. Plasma exosomal miRNA-139-3p is a novel biomarker of colorectal cancer. J. Cancer 2020 11 16 4899 4906 10.7150/jca.45548 32626537
    [Google Scholar]
  66. Zhang N. Zhang P.P. Huang J.J. Reduced serum exosomal miR-874 expression predicts poor prognosis in colorectal cancer. Eur. Rev. Med. Pharmacol. Sci. 2020 24 2 664 672 10.26355/eurrev_202001_20043 32016967
    [Google Scholar]
  67. Sun L. Liu X. Pan B. Serum exosomal miR-122 as a potential diagnostic and prognostic biomarker of colorectal cancer with liver metastasis. J. Cancer 2020 11 3 630 637 10.7150/jca.33022 31942186
    [Google Scholar]
  68. Min L. Chen L. Liu S. Loss of circulating exosomal miR-92b is a novel biomarker of colorectal cancer at early stage. Int. J. Med. Sci. 2019 16 9 1231 1237 10.7150/ijms.34540 31588188
    [Google Scholar]
  69. Fu F. Jiang W. Zhou L. Chen Z. Circulating exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal cancer. Transl. Oncol. 2018 11 2 221 232 10.1016/j.tranon.2017.12.012 29367070
    [Google Scholar]
  70. Peng Z.Y. Gu R.H. Yan B. Downregulation of exosome‐encapsulated miR‐548c‐5p is associated with poor prognosis in colorectal cancer. J. Cell. Biochem. 2019 120 2 1457 1463 10.1002/jcb.27291 30171732
    [Google Scholar]
  71. Liu X. Pan B. Sun L. Circulating exosomal miR-27a and miR-130a act as novel diagnostic and prognostic biomarkers of colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 2018 27 7 746 754 10.1158/1055‑9965.EPI‑18‑0067 29739748
    [Google Scholar]
  72. Tsukamoto M. Iinuma H. Yagi T. Matsuda K. Hashiguchi Y. Circulating exosomal MicroRNA-21 as a biomarker in each tumor stage of colorectal cancer. Oncology 2017 92 6 360 370 10.1159/000463387 28376502
    [Google Scholar]
  73. Liu C. Eng C. Shen J. Serum exosomal miR-4772-3p is a predictor of tumor recurrence in stage II and III colon cancer. Oncotarget 2016 7 46 76250 76260 10.18632/oncotarget.12841 27788488
    [Google Scholar]
  74. Yan S. Jiang Y. Liang C. Exosomal miR‐6803‐5p as potential diagnostic and prognostic marker in colorectal cancer. J. Cell. Biochem. 2018 119 5 4113 4119 10.1002/jcb.26609 29240249
    [Google Scholar]
  75. Wang J. Yan F. Zhao Q. Circulating exosomal miR-125a-3p as a novel biomarker for early-stage colon cancer. Sci. Rep. 2017 7 1 4150 10.1038/s41598‑017‑04386‑1 28646161
    [Google Scholar]
  76. Yu M. Song X. Zhao Y. Circulating serum exosomal long non-coding RNAs FOXD2-AS1, NRIR, and XLOC_009459 as diagnostic biomarkers for colorectal cancer. Front. Oncol. 2021 11 618967 10.3389/fonc.2021.618967 33777763
    [Google Scholar]
  77. Oehme F. Krahl S. Gyorffy B. Low level of exosomal long non-coding RNA HOTTIP is a prognostic biomarker in colorectal cancer. RNA Biol. 2019 16 10 1339 1345 10.1080/15476286.2019.1637697 31251124
    [Google Scholar]
  78. Pan B. Qin J. Liu X. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front. Genet. 2019 10 1096 10.3389/fgene.2019.01096 31737058
    [Google Scholar]
  79. Yu B. Du Q. Li H. Diagnostic potential of serum exosomal colorectal neoplasia differentially expressed long non-coding RNA (CRNDE-p) and microRNA-217 expression in colorectal carcinoma. Oncotarget 2017 8 48 83745 83753 10.18632/oncotarget.19407 29137379
    [Google Scholar]
  80. Liu T. Zhang X. Gao S. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget 2016 7 51 85551 85563 10.18632/oncotarget.13465 27888803
    [Google Scholar]
  81. Wang L. Skotland T. Berge V. Sandvig K. Llorente A. Exosomal proteins as prostate cancer biomarkers in urine: From mass spectrometry discovery to immunoassay-based validation. Eur. J. Pharm. Sci. 2017 98 80 85 10.1016/j.ejps.2016.09.023 27664330
    [Google Scholar]
  82. Cho S. Yang H.C. Rhee W.J. Simultaneous multiplexed detection of exosomal microRNAs and surface proteins for prostate cancer diagnosis. Biosens. Bioelectron. 2019 146 111749 10.1016/j.bios.2019.111749 31600625
    [Google Scholar]
  83. Wang C.B. Chen S.H. Zhao L. Urine-derived exosomal PSMA is a promising diagnostic biomarker for the detection of prostate cancer on initial biopsy. Clin. Transl. Oncol. 2022 25 3 758 767 10.1007/s12094‑022‑02983‑9 36266386
    [Google Scholar]
  84. Li S. Zhao Y. Chen W. Exosomal ephrinA2 derived from serum as a potential biomarker for prostate cancer. J. Cancer 2018 9 15 2659 2665 10.7150/jca.25201 30087706
    [Google Scholar]
  85. Huang X. Yuan T. Liang M. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur. Urol. 2015 67 1 33 41 10.1016/j.eururo.2014.07.035 25129854
    [Google Scholar]
  86. Wei Q. Li Z. Feng H. Ren L. Serum exosomal EphA2 is a prognostic biomarker in patients with pancreatic cancer. Cancer Manag. Res. 2021 13 3675 3683 10.2147/CMAR.S304719 33994808
    [Google Scholar]
  87. Yang J. Zhang Y. Gao X. Plasma-derived exosomal ALIX as a novel biomarker for diagnosis and classification of pancreatic cancer. Front. Oncol. 2021 11 628346 10.3389/fonc.2021.628346 34026608
    [Google Scholar]
  88. Wei Q. Zhang J. Li Z. Wei L. Ren L. Serum Exo-EphA2 as a potential diagnostic biomarker for pancreatic cancer. Pancreas 2020 49 9 1213 1219 10.1097/MPA.0000000000001660 32898008
    [Google Scholar]
  89. Ohshima K. Hatakeyama K. Kanto K. Ide T. Watanabe Y. Moromizato S. Comparative proteomic analysis identifies exosomal Eps8 protein as a potential metastatic biomarker for pancreatic cancer. Oncol. Rep. 2019 41 2 1019 1034 10.3892/or.2018.6869 30431134
    [Google Scholar]
  90. Sakaue T. Koga H. Iwamoto H. Glycosylation of ascites-derived exosomal CD133: A potential prognostic biomarker in patients with advanced pancreatic cancer. Med. Mol. Morphol. 2019 52 4 198 208 10.1007/s00795‑019‑00218‑5 30805710
    [Google Scholar]
  91. Chen J. Yao D. Chen W. Serum exosomal miR-451a acts as a candidate marker for pancreatic cancer. Int. J. Biol. Markers 2022 37 1 74 80 10.1177/17246008211070018 35001683
    [Google Scholar]
  92. Wang L. Wu J. Ye N. Plasma-derived exosome MiR-19b acts as a diagnostic marker for pancreatic cancer. Front. Oncol. 2021 11 739111 10.3389/fonc.2021.739111 34589435
    [Google Scholar]
  93. Wang C. Wang J. Cui W. Serum exosomal miRNA-1226 as potential biomarker of pancreatic ductal adenocarcinoma. OncoTargets Ther. 2021 14 1441 1451 10.2147/OTT.S296816 33664577
    [Google Scholar]
  94. Yoshizawa N. Sugimoto K. Tameda M. Inagaki Y. Ikejiri M. Inoue H. miR 3940 5p/miR 8069 ratio in urine exosomes is a novel diagnostic biomarker for pancreatic ductal adenocarcinoma. Oncol. Lett. 2020 19 4 2677 2684 10.3892/ol.2020.11357
    [Google Scholar]
  95. Pu X. Ding G. Wu M. Zhou S. Jia S. Cao L. Elevated expression of exosomal microRNA-21 as a potential biomarker for the early diagnosis of pancreatic cancer using a tethered cationic lipoplex nanoparticle biochip. Oncol. Lett. 2020 19 3 2062 2070 10.3892/ol.2020.11302 32194703
    [Google Scholar]
  96. Takahasi K. Iinuma H. Wada K. Usefulness of exosome‐encapsulated microRNA‐451a as a minimally invasive biomarker for prediction of recurrence and prognosis in pancreatic ductal adenocarcinoma. J. Hepatobiliary Pancreat. Sci. 2018 25 2 155 161 10.1002/jhbp.524 29130611
    [Google Scholar]
  97. Goto T. Fujiya M. Konishi H. An elevated expression of serum exosomal microRNA-191, − 21, −451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer 2018 18 1 116 10.1186/s12885‑018‑4006‑5 29385987
    [Google Scholar]
  98. Xu Y.F. Hannafon B.N. Zhao Y.D. Postier R.G. Ding W.Q. Plasma exosome miR-196a and miR-1246 are potential indicators of localized pancreatic cancer. Oncotarget 2017 8 44 77028 77040 10.18632/oncotarget.20332 29100367
    [Google Scholar]
  99. Vaidya M. Sugaya K. DNA Associated with circulating exosomes as a biomarker for glioma. Genes 2020 11 11 1276 10.3390/genes11111276 33137926
    [Google Scholar]
  100. Li X. Wang Q. Wang R. Roles of exosome genomic DNA in colorectal cancer. Front. Pharmacol. 2022 13 923232 10.3389/fphar.2022.923232 35721181
    [Google Scholar]
  101. Jin Y. Chen K. Wang Z. DNA in serum extracellular vesicles is stable under different storage conditions. BMC Cancer 2016 16 1 753 10.1186/s12885‑016‑2783‑2 27662833
    [Google Scholar]
  102. Balaj L. Lessard R. Dai L. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2011 2 1 180 10.1038/ncomms1180 21285958
    [Google Scholar]
  103. Kahlert C. Melo S.A. Protopopov A. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 2014 289 7 3869 3875 10.1074/jbc.C113.532267 24398677
    [Google Scholar]
  104. Kalluri R. LeBleu V.S. Discovery of double-stranded genomic DNA in circulating exosomes. Cold Spring Harb. Symp. Quant. Biol. 2016 81 275 280 10.1101/sqb.2016.81.030932 28424339
    [Google Scholar]
  105. Sansone P. Savini C. Kurelac I. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc. Natl. Acad. Sci. USA 2017 114 43 E9066 E9075 10.1073/pnas.1704862114 29073103
    [Google Scholar]
  106. Fernando M.R. Jiang C. Krzyzanowski G.D. Ryan W.L. New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes. PLoS One 2017 12 8 e0183915 10.1371/journal.pone.0183915 28850588
    [Google Scholar]
  107. Kawamura Y. Yamamoto Y. Sato T.A. Ochiya T. Extracellular vesicles as trans‐genomic agents: Emerging roles in disease and evolution. Cancer Sci. 2017 108 5 824 830 10.1111/cas.13222 28256033
    [Google Scholar]
  108. Vaidya M. Bacchus M. Sugaya K. Differential sequences of exosomal NANOG DNA as a potential diagnostic cancer marker. PLoS One 2018 13 5 e0197782 10.1371/journal.pone.0197782 29787607
    [Google Scholar]
  109. Vaidya M. Sugaya K. Differential sequences and single nucleotide polymorphism of exosomal SOX2 DNA in cancer. PLoS One 2020 15 2 e0229309 10.1371/journal.pone.0229309 32092088
    [Google Scholar]
  110. García-Romero N. Carrión-Navarro J. Esteban-Rubio S. DNA sequences within glioma-derived extracellular vesicles can cross the intact blood-brain barrier and be detected in peripheral blood of patients. Oncotarget 2017 8 1 1416 1428 10.18632/oncotarget.13635 27902458
    [Google Scholar]
  111. Thakur B.K. Zhang H. Becker A. Double-stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Res. 2014 24 6 766 769 10.1038/cr.2014.44 24710597
    [Google Scholar]
  112. Mortazavi A. Williams B.A. McCue K. Schaeffer L. Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008 5 7 621 628 10.1038/nmeth.1226 18516045
    [Google Scholar]
  113. Jenjaroenpun P. Kremenska Y. Nair V.M. Kremenskoy M. Joseph B. Kurochkin I.V. Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. PeerJ 2013 1 201 10.7717/peerj.201 24255815
    [Google Scholar]
  114. Sinha D. Roy S. Saha P. Chatterjee N. Bishayee A. Trends in research on exosomes in cancer progression and anticancer therapy. Cancers 2021 13 2 326 10.3390/cancers13020326 33477340
    [Google Scholar]
  115. Tickner J.A. Urquhart A.J. Stephenson S.A. Richard D.J. Functions and therapeutic roles of exosomes in cancer. Front. Oncol. 2014 4 127 10.3389/fonc.2014.00127 24904836
    [Google Scholar]
  116. Henderson M.C. Azorsa D.O. The genomic and proteomic content of cancer cell-derived exosomes. Front. Oncol. 2012 2 38 10.3389/fonc.2012.00038 22649786
    [Google Scholar]
  117. Valadi H. Ekström K. Bossios A. Sjöstrand M. Lee J.J. Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007 9 6 654 659 10.1038/ncb1596 17486113
    [Google Scholar]
  118. Bang Y.H. Shim J.H. Ryu K.J. Clinical relevance of serum-derived exosomal messenger RNA sequencing in patients with non-Hodgkin lymphoma. J. Cancer 2022 13 5 1388 1397 10.7150/jca.69639 35371331
    [Google Scholar]
  119. Wang J.H. Forterre A.V. Zhao J. Anti-HER2 scFv-directed extracellular vesicle-mediated mrna-based gene delivery inhibits growth of HER2-positive human breast tumor xenografts by prodrug activation. Mol. Cancer Ther. 2018 17 5 1133 1142 10.1158/1535‑7163.MCT‑17‑0827 29483213
    [Google Scholar]
  120. Hong B.S. Cho J.H. Kim H. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 2009 10 1 556 10.1186/1471‑2164‑10‑556 19930720
    [Google Scholar]
  121. Skog J. Würdinger T. van Rijn S. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 2008 10 12 1470 1476 10.1038/ncb1800 19011622
    [Google Scholar]
  122. Das P.K. Siddika M.A. Asha S.Y. MicroRNAs, a promising target for breast cancer stem cells. Mol. Diagn. Ther. 2020 24 1 69 83 10.1007/s40291‑019‑00439‑5 31758333
    [Google Scholar]
  123. Peng Y. Croce C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016 1 1 15004 10.1038/sigtrans.2015.4 29263891
    [Google Scholar]
  124. Fabris L. Calin G.A. Circulating free xeno‐microRNAs – The new kids on the block. Mol. Oncol. 2016 10 3 503 508 10.1016/j.molonc.2016.01.005 26860056
    [Google Scholar]
  125. Lai C.H. Lee C.L. Vu C.A. Paper-based devices for capturing exosomes and exosomal nucleic acids from biological samples. Front. Bioeng. Biotechnol. 2022 10 836082 10.3389/fbioe.2022.836082 35497368
    [Google Scholar]
  126. Nedaeinia R. Manian M. Jazayeri M.H. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Ther. 2017 24 2 48 56 10.1038/cgt.2016.77 27982021
    [Google Scholar]
  127. Yan S. Han B. Gao S. Exosome-encapsulated microRNAs as circulating biomarkers for colorectal cancer. Oncotarget 2017 8 36 60149 60158 10.18632/oncotarget.18557 28947960
    [Google Scholar]
  128. Zhang X. Sai B. Wang F. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol. Cancer 2019 18 1 40 10.1186/s12943‑019‑0959‑5 30866952
    [Google Scholar]
  129. Hu Y. Yang R. Zhao W. circRNA expression patterns and circRNA-miRNA-mRNA networks during CV-A16 infection of SH-SY5Y cells. Arch. Virol. 2021 166 11 3023 3035 10.1007/s00705‑021‑05190‑z 34410499
    [Google Scholar]
  130. Li Y. Zheng Q. Bao C. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 2015 25 8 981 984 10.1038/cr.2015.82 26138677
    [Google Scholar]
  131. Huang X.Y. Huang Z.L. Huang J. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J. Exp. Clin. Cancer Res. 2020 39 1 20 10.1186/s13046‑020‑1529‑9 31973767
    [Google Scholar]
  132. Tao X. Shao Y. Lu R. Clinical significance of hsa_circ_0000419 in gastric cancer screening and prognosis estimation. Pathol. Res. Pract. 2020 216 1 152763 10.1016/j.prp.2019.152763 31810586
    [Google Scholar]
  133. Tang W. Fu K. Sun H. Rong D. Wang H. Cao H. CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Mol. Cancer 2018 17 1 137 10.1186/s12943‑018‑0888‑8 30236115
    [Google Scholar]
  134. Lu J. Wang Y. Yoon C. Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877–3p to facilitate gastric cancer invasion and metastasis. Cancer Lett. 2020 471 38 48 10.1016/j.canlet.2019.11.038 31811909
    [Google Scholar]
  135. Xu Z. Chen Y. Ma L. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol. Ther. 2022 30 10 3133 3154 10.1016/j.ymthe.2022.01.046 35405312
    [Google Scholar]
  136. Zhang P. Zhou H. Lu K. Lu Y. Wang Y. Feng T. Exosome-mediated delivery of MALAT1 induces cell proliferation in breast cancer. OncoTargets Ther. 2018 11 291 299 10.2147/OTT.S155134 29386907
    [Google Scholar]
  137. Ni C. Fang Q.Q. Chen W.Z. Breast cancer-derived exosomes transmit lncRNA SNHG16 to induce CD73+γδ1 Treg cells. Signal Transduct. Target. Ther. 2020 5 1 41 10.1038/s41392‑020‑0129‑7 32345959
    [Google Scholar]
  138. Takahashi K. Yan I.K. Kogure T. Haga H. Patel T. Extracellular vesicle‐mediated transfer of long non‐coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio 2014 4 1 458 467 10.1016/j.fob.2014.04.007 24918061
    [Google Scholar]
  139. Ren J. Ding L. Zhang D. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics 2018 8 14 3932 3948 10.7150/thno.25541 30083271
    [Google Scholar]
  140. Sun Y. Sun F. Jin J. Xu W. Qian H. Exosomal LncRNAs in gastrointestinal cancer: Biological functions and emerging clinical applications. Cancers 2023 15 3 959 10.3390/cancers15030959 36765913
    [Google Scholar]
  141. Mashouri L. Yousefi H. Aref A.R. Ahadi A. Molaei F. Alahari S.K. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol. Cancer 2019 18 1 75 10.1186/s12943‑019‑0991‑5 30940145
    [Google Scholar]
  142. Sancho-Albero M. Jarne C. Savirón M. High-performance thin-layer Chromatography-Densitometry-Tandem ESI-MS to evaluate phospholipid content in exosomes of cancer cells. Int. J. Mol. Sci. 2022 23 3 1150 10.3390/ijms23031150 35163074
    [Google Scholar]
  143. Record M. Carayon K. Poirot M. Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim. Biophys. Acta 2014 1841 1 108 120 10.1016/j.bbalip.2013.10.004 24140720
    [Google Scholar]
  144. Skotland T. Sandvig K. Llorente A. Lipids in exosomes: Current knowledge and the way forward. Prog. Lipid Res. 2017 66 30 41 10.1016/j.plipres.2017.03.001 28342835
    [Google Scholar]
  145. Donoso-Quezada J. Ayala-Mar S. González-Valdez J. The role of lipids in exosome biology and intercellular communication: Function, analytics and applications. Traffic 2021 22 7 204 220 10.1111/tra.12803 34053166
    [Google Scholar]
  146. Trajkovic K. Hsu C. Chiantia S. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008 319 5867 1244 1247 10.1126/science.1153124 18309083
    [Google Scholar]
  147. Phuyal S. Skotland T. Hessvik N.P. The ether lipid precursor hexadecylglycerol stimulates the release and changes the composition of exosomes derived from PC-3 cells. J. Biol. Chem. 2015 290 7 4225 4237 10.1074/jbc.M114.593962 25519911
    [Google Scholar]
  148. Gurung S. Perocheau D. Touramanidou L. Baruteau J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal. 2021 19 1 47 10.1186/s12964‑021‑00730‑1 33892745
    [Google Scholar]
  149. Lydic T.A. Townsend S. Adda C.G. Collins C. Mathivanan S. Reid G.E. Rapid and comprehensive ‘shotgun’ lipidome profiling of colorectal cancer cell derived exosomes. Methods 2015 87 83 95 10.1016/j.ymeth.2015.04.014 25907253
    [Google Scholar]
  150. Elmallah M.I.Y. Ortega-Deballon P. Hermite L. Pais-De-Barros J.P. Gobbo J. Garrido C. Lipidomic profiling of exosomes from colorectal cancer cells and patients reveals potential biomarkers. Mol. Oncol. 2022 16 14 2710 2718 10.1002/1878‑0261.13223 35524452
    [Google Scholar]
  151. Skotland T. Ekroos K. Kauhanen D. Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. Eur. J. Cancer 2017 70 122 132 10.1016/j.ejca.2016.10.011 27914242
    [Google Scholar]
  152. Llorente A. Skotland T. Sylvänne T. Kauhanen D. Róg T. Orłowski A. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim. Biophys. Acta 2013 1831 7 1302 1309 10.1016/j.bbalip.2013.04.011 24046871
    [Google Scholar]
  153. Bobrie A. Colombo M. Raposo G. Théry C. Exosome secretion: Molecular mechanisms and roles in immune responses. Traffic 2011 12 12 1659 1668 10.1111/j.1600‑0854.2011.01225.x 21645191
    [Google Scholar]
  154. Théry C. Zitvogel L. Amigorena S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002 2 8 569 579 10.1038/nri855 12154376
    [Google Scholar]
  155. Colombo M. Raposo G. Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014 30 1 255 289 10.1146/annurev‑cellbio‑101512‑122326 25288114
    [Google Scholar]
  156. Liu J. Ren L. Li S. The biology, function, and applications of exosomes in cancer. Acta Pharm. Sin. B 2021 11 9 2783 2797 10.1016/j.apsb.2021.01.001 34589397
    [Google Scholar]
  157. Tai Y.L. Chen K.C. Hsieh J.T. Shen T.L. Exosomes in cancer development and clinical applications. Cancer Sci. 2018 109 8 2364 2374 10.1111/cas.13697 29908100
    [Google Scholar]
  158. Kowal J. Tkach M. Théry C. Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol. 2014 29 116 125 10.1016/j.ceb.2014.05.004 24959705
    [Google Scholar]
  159. Colombo M. Moita C. van Niel G. Kowal J. Vigneron J. Benaroch P. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 2013 126 Pt 24 5553 5565 10.1242/jcs.128868 24105262
    [Google Scholar]
  160. Hanson P.I. Cashikar A. Multivesicular body morphogenesis. Annu. Rev. Cell Dev. Biol. 2012 28 1 337 362 10.1146/annurev‑cellbio‑092910‑154152 22831642
    [Google Scholar]
  161. Hornung T. O’Neill H.A. Logie S.C. ADAPT identifies an ESCRT complex composition that discriminates VCaP from LNCaP prostate cancer cell exosomes. Nucleic Acids Res. 2020 48 8 4013 4027 10.1093/nar/gkaa034 31989173
    [Google Scholar]
  162. Stuffers S. Sem Wegner C. Stenmark H. Brech A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 2009 10 7 925 937 10.1111/j.1600‑0854.2009.00920.x 19490536
    [Google Scholar]
  163. Lau N.C.H. Yam J.W.P. From exosome biogenesis to absorption: Key takeaways for cancer research. Cancers 2023 15 7 1992 10.3390/cancers15071992 37046653
    [Google Scholar]
  164. Wei D. Zhan W. Gao Y. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res. 2021 31 2 157 177 10.1038/s41422‑020‑00409‑1 32958903
    [Google Scholar]
  165. Krylova S.V. Feng D. The Machinery of exosomes: Biogenesis, release, and uptake. Int. J. Mol. Sci. 2023 24 2 1337 10.3390/ijms24021337 36674857
    [Google Scholar]
  166. Milane L. Singh A. Mattheolabakis G. Suresh M. Amiji M.M. Exosome mediated communication within the tumor microenvironment. J. Control. Release 2015 219 278 294 10.1016/j.jconrel.2015.06.029 26143224
    [Google Scholar]
  167. Stefańska K. Józkowiak M. Angelova Volponi A. The role of exosomes in human carcinogenesis and cancer therapy—Recent findings from molecular and clinical research. Cells 2023 12 3 356 10.3390/cells12030356 36766698
    [Google Scholar]
  168. Liu Y. Shi K. Chen Y. Exosomes and their role in cancer progression. Front. Oncol. 2021 11 639159 10.3389/fonc.2021.639159 33828985
    [Google Scholar]
  169. Cao Y. Tumorigenesis as a process of gradual loss of original cell identity and gain of properties of neural precursor/progenitor cells. Cell Biosci. 2017 7 1 61 10.1186/s13578‑017‑0188‑9 29177029
    [Google Scholar]
  170. Rosati R. An overview on key events and factors involved in tumorigenesis. J Cancer Sci Res 2023 8 5
    [Google Scholar]
  171. Zhang X. Nie D. Chakrabarty S. Growth factors in tumor microenvironment. Front. Biosci. 2010 15 1 151 165 10.2741/3612 20036812
    [Google Scholar]
  172. Franovic A. Gunaratnam L. Smith K. Robert I. Patten D. Lee S. Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proc. Natl. Acad. Sci. USA 2007 104 32 13092 13097 10.1073/pnas.0702387104 17670948
    [Google Scholar]
  173. Zhou Y. Zhang Y. Gong H. Luo S. Cui Y. The role of exosomes and their applications in cancers. Preprint 2024 10.22541/au.170666194.47486495/v1
    [Google Scholar]
  174. Kim H. Kim D.W. Cho J.Y. Exploring the key communicator role of exosomes in cancer microenvironment through proteomics. Proteome Sci. 2019 17 1 5 10.1186/s12953‑019‑0154‑z 31686989
    [Google Scholar]
  175. Wu H. Zhou J. Mei S. Circulating exosomal microRNA‐96 promotes cell proliferation, migration and drug resistance by targeting LMO7. J. Cell. Mol. Med. 2017 21 6 1228 1236 10.1111/jcmm.13056 28026121
    [Google Scholar]
  176. Li X. Wang S. Zhu R. Li H. Han Q. Zhao R.C. Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway. J. Hematol. Oncol. 2016 9 1 42 10.1186/s13045‑016‑0269‑y 27090786
    [Google Scholar]
  177. Zhang N. Nan A. Chen L. Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Mol. Cancer 2020 19 1 101 10.1186/s12943‑020‑01221‑6 32493389
    [Google Scholar]
  178. Wang B. Mao J. Wang B. Exosomal miR-1910-3p promotes proliferation, metastasis, and autophagy of breast cancer cells by targeting MTMR3 and activating the NF-κB signaling pathway. Cancer Lett. 2020 489 87 99 10.1016/j.canlet.2020.05.038 32531321
    [Google Scholar]
  179. Chen B. Sang Y. Song X. Exosomal miR-500a-5p derived from cancer-associated fibroblasts promotes breast cancer cell proliferation and metastasis through targeting USP28. Theranostics 2021 11 8 3932 3947 10.7150/thno.53412 33664871
    [Google Scholar]
  180. Valcz G. Galamb O. Krenács T. Exosomes in colorectal carcinoma formation: ALIX under the magnifying glass. Mod. Pathol. 2016 29 8 928 938 10.1038/modpathol.2016.72 27150162
    [Google Scholar]
  181. Ghofrani-Shahpar M. Pakravan K. Razmara E. Cancer-associated fibroblasts drive colorectal cancer cell progression through exosomal miR-20a-5p-mediated targeting of PTEN and stimulating interleukin-6 production. BMC Cancer 2024 24 1 400 10.1186/s12885‑024‑12190‑0 38561726
    [Google Scholar]
  182. Wang H. Lu Z. Zhao X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer. J. Hematol. Oncol. 2019 12 1 133 10.1186/s13045‑019‑0806‑6 31815633
    [Google Scholar]
  183. Hu J. Xie C. Xu S. Pu Q. Liu H. Yang L. Liver fibrosis-derived exosomal miR-106a-5p facilitates the malignancy by targeting SAMD12 and CADM2 in hepatocellular carcinoma. PLoS One 2023 18 5 e0286017 10.1371/journal.pone.0286017 37228062
    [Google Scholar]
  184. Fang T. Lv H. Lv G. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat. Commun. 2018 9 1 191 10.1038/s41467‑017‑02583‑0 29335551
    [Google Scholar]
  185. Qu J.L. Qu X.J. Zhao M.F. Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Dig. Liver Dis. 2009 41 12 875 880 10.1016/j.dld.2009.04.006 19473897
    [Google Scholar]
  186. Gu H. Ji R. Zhang X. Exosomes derived from human mesenchymal stem cells promote gastric cancer cell growth and migration via the activation of the Akt pathway. Mol. Med. Rep. 2016 14 4 3452 3458 10.3892/mmr.2016.5625 27513187
    [Google Scholar]
  187. Zhu L. Zhang S. Chen S. Wu H. Jiang M. Liu A. Exosomal miR-552-5p promotes tumorigenesis and disease progression via the PTEN/TOB1 axis in gastric cancer. J. Cancer 2022 13 3 890 905 10.7150/jca.66903 35154457
    [Google Scholar]
  188. Yan T. Wang X. Wei G. Exosomal miR-10b-5p mediates cell communication of gastric cancer cells and fibroblasts and facilitates cell proliferation. J. Cancer 2021 12 7 2140 2150 10.7150/jca.47817 33754012
    [Google Scholar]
  189. Wei S. Peng L. Yang J. Exosomal transfer of miR-15b-3p enhances tumorigenesis and malignant transformation through the DYNLT1/Caspase-3/Caspase-9 signaling pathway in gastric cancer. J. Exp. Clin. Cancer Res. 2020 39 1 32 10.1186/s13046‑019‑1511‑6 32039741
    [Google Scholar]
  190. Wang X. Wang X. Zhu Z. Prostate carcinoma cell-derived exosomal MicroRNA-26a modulates the metastasis and tumor growth of prostate carcinoma. Biomed. Pharmacother. 2019 117 109109 10.1016/j.biopha.2019.109109 31229922
    [Google Scholar]
  191. Li T. Sun X. Chen L. Exosome circ_0044516 promotes prostate cancer cell proliferation and metastasis as a potential biomarker. J. Cell. Biochem. 2020 121 3 2118 2126 10.1002/jcb.28239 31625175
    [Google Scholar]
  192. Wang L. Zhao F. Xiao Z. Yao L. Exosomal microRNA-205 is involved in proliferation, migration, invasion, and apoptosis of ovarian cancer cells via regulating VEGFA. Cancer Cell Int. 2019 19 1 281 10.1186/s12935‑019‑0990‑z 31719795
    [Google Scholar]
  193. Hang W. Feng Y. Sang Z. Yang Y. Zhu Y. Huang Q. Downregulation of miR-145-5p in cancer cells and their derived exosomes may contribute to the development of ovarian cancer by targeting CT. Int. J. Mol. Med. 2019 43 1 256 266 10.3892/ijmm.2018.3958
    [Google Scholar]
  194. Guan X. Zong Z. Liu Y. Chen S. Wang L. Zhao Y. circPUM1 Promotes tumorigenesis and progression of ovarian cancer by sponging miR-615-5p and miR-6753-5p. Mol. Ther. Nucleic Acids 2019 18 882 892 10.1016/j.omtn.2019.09.032 31751911
    [Google Scholar]
  195. Cheng H.C. Huang L.T. Tumor progression, micro-environments, and therapeutics. Life 2022 12 10 1599 10.3390/life12101599 36295034
    [Google Scholar]
  196. Paskeh M.D.A. Entezari M. Mirzaei S. Emerging role of exosomes in cancer progression and tumor micro-environment remodeling. J. Hematol. Oncol. 2022 15 1 83 10.1186/s13045‑022‑01305‑4 35765040
    [Google Scholar]
  197. Yuan Y. Jiang Y.C. Sun C.K. Chen Q.M. Role of the tumor microenvironment in tumor progression and the clinical applications. Oncol. Rep. 2016 35 5 2499 2515 10.3892/or.2016.4660 26986034
    [Google Scholar]
  198. Wan Z. Gao X. Dong Y. Exosome-mediated cell-cell communication in tumor progression. Am. J. Cancer Res. 2018 8 9 1661 1673 30323961
    [Google Scholar]
  199. Conigliaro A. Cicchini C. Exosome-mediated signaling in epithelial to mesenchymal transition and tumor progression. J. Clin. Med. 2018 8 1 26 10.3390/jcm8010026 30591649
    [Google Scholar]
  200. Mastronikolis N.S. Kyrodimos E. Spyropoulou D. The role of exosomes in epithelial–to-mesenchymal transition and cell functional properties in head and neck cancer. Cancers 2023 15 7 2156 10.3390/cancers15072156 37046817
    [Google Scholar]
  201. You J. Li M. Cao L.M. Snail1-dependent cancer-associated fibroblasts induce epithelial-mesenchymal transition in lung cancer cells via exosomes. QJM 2019 112 8 581 590 10.1093/qjmed/hcz093 31106370
    [Google Scholar]
  202. Kim J. Kim T.Y. Lee M.S. Mun J.Y. Ihm C. Kim S.A. Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells. Biochem. Biophys. Res. Commun. 2016 478 2 643 648 10.1016/j.bbrc.2016.07.124 27492069
    [Google Scholar]
  203. Shojaei S. Hashemi S.M. Ghanbarian H. Effect of mesenchymal stem cells-derived exosomes on tumor microenvironment: tumor progression versus tumor suppression. J. Cell. Physiol. 234 4 3394 3409 10.1002/jcp.27326
    [Google Scholar]
  204. Hussen B.M. Abdullah S.R. Hama Faraj G.S. Exosomal circular RNA: A signature for lung cancer progression. Cancer Cell Int. 2022 22 1 378 10.1186/s12935‑022‑02793‑7 36457039
    [Google Scholar]
  205. Almouh M. Pakravan K. Ghazimoradi M.H. Motamed R. Bakhshinejad B. Hassan Z.M. Exosomes released by oxidative stress-induced mesenchymal stem cells promote murine mammary tumor progression through activating the STAT3 signaling pathway 2024 Available from: https://link.springer.com/10.1007/s11010-024-04934-0 10.1007/s11010‑024‑04934‑0
    [Google Scholar]
  206. Li J. He D. Bi Y. Liu S. The emerging roles of exosomal miRNAs in breast cancer progression and potential clinical applications. Breast Cancer 2023 15 825 840 10.2147/BCTT.S432750 38020052
    [Google Scholar]
  207. Magliacane Trotta S. Adinolfi A. D’Orsi L. Cancer-derived exosomal Alu RNA promotes colorectal cancer progression. Exp. Mol. Med. 2024 56 3 700 710 10.1038/s12276‑024‑01166‑6 38486106
    [Google Scholar]
  208. Zhang Y. Wang S. Lai Q. Cancer-associated fibroblasts-derived exosomal miR-17-5p promotes colorectal cancer aggressive phenotype by initiating a RUNX3/MYC/TGF-β1 positive feedback loop. Cancer Lett. 2020 491 22 35 10.1016/j.canlet.2020.07.023 32730779
    [Google Scholar]
  209. Hu X. Mu Y. Liu J. Exosomes derived from hypoxic colorectal cancer cells transfer miR-410-3p to regulate tumor progression. J. Cancer 2020 11 16 4724 4735 10.7150/jca.33232 32626519
    [Google Scholar]
  210. Zhou L. Li J. Tang Y. Yang M. Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis. J. Transl. Med. 2021 19 1 8 10.1186/s12967‑020‑02648‑7 33407563
    [Google Scholar]
  211. Yang P. Zhang D. Wang T. CAF-derived exosomal WEE2-AS1 facilitates colorectal cancer progression via promoting degradation of MOB1A to inhibit the Hippo pathway. Cell Death Dis. 2022 13 9 796 10.1038/s41419‑022‑05240‑7 36123327
    [Google Scholar]
  212. Jiang K. Dong C. Yin Z. Exosome-derived ENO1 regulates integrin α6β4 expression and promotes hepatocellular carcinoma growth and metastasis. Cell Death Dis. 2020 11 11 972 10.1038/s41419‑020‑03179‑1 33184263
    [Google Scholar]
  213. Li R. Wang Y. Zhang X. Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis. Mol. Cancer 2019 18 1 18 10.1186/s12943‑019‑0948‑8 30704479
    [Google Scholar]
  214. Yugawa K. Yoshizumi T. Mano Y. Cancer-associated fibroblasts promote hepatocellular carcinoma progression through downregulation of exosomal miR-150-3p. Eur. J. Surg. Oncol. 2021 47 2 384 393 10.1016/j.ejso.2020.08.002 32883551
    [Google Scholar]
  215. Ashraf Malik M. Ishtiyaq Ali Mirza J. Umar M. Manzoor S. CD81 + exosomes play a pivotal role in the establishment of hepatitis C persistent infection and contribute toward the progression of hepatocellular carcinoma. Viral Immunol. 2019 32 10 453 462 10.1089/vim.2019.0077 31755827
    [Google Scholar]
  216. Xue X. Wang X. Zhao Y. Hu R. Qin L. Exosomal miR-93 promotes proliferation and invasion in hepatocellular carcinoma by directly inhibiting TIMP2/TP53INP1/CDKN1A. Biochem. Biophys. Res. Commun. 2018 502 4 515 521 10.1016/j.bbrc.2018.05.208 29859935
    [Google Scholar]
  217. Hu Z. Zhang H. Liu W. Mechanism of HBV-positive liver cancer cell exosomal miR-142-3p by inducing ferroptosis of M1 macrophages to promote liver cancer progression. Transl. Cancer Res. 2022 11 5 1173 1187 10.21037/tcr‑22‑96 35706810
    [Google Scholar]
  218. Wang X. Dong F.L. Wang Y.Q. Wei H.L. Li T. Li J. Exosomal circTGFBR2 promotes hepatocellular carcinoma progression via enhancing ATG5 mediated protective autophagy. Cell Death Dis. 2023 14 7 451 10.1038/s41419‑023‑05989‑5 37474520
    [Google Scholar]
  219. Li Z. Tao Y. Wang X. Tumor-secreted exosomal miR-222 promotes tumor progression via regulating p27 expression and re-localization in pancreatic cancer. Cell. Physiol. Biochem. 2018 51 2 610 629 10.1159/000495281 30458449
    [Google Scholar]
  220. Li M. Guo H. Wang Q. Pancreatic stellate cells derived exosomal miR-5703 promotes pancreatic cancer by downregulating CMTM4 and activating PI3K/Akt pathway. Cancer Lett. 2020 490 20 30 10.1016/j.canlet.2020.06.009 32585413
    [Google Scholar]
  221. Chen D. Wu X. Xia M. Upregulated exosomic miR-23b-3p plays regulatory roles in the progression of pancreatic cancer. Oncol. Rep. 2017 38 4 2182 2188 10.3892/or.2017.5919 28849236
    [Google Scholar]
  222. Xiong C. Sun Z. Yu J. Lin Y. Exosome component 4 promotes epithelial ovarian cancer cell proliferation, migration, and invasion via the Wnt pathway. Front. Oncol. 2021 11 797968 10.3389/fonc.2021.797968 34956910
    [Google Scholar]
  223. Li X. Tang M. Exosomes released from M2 macrophages transfer miR‐221‐3p contributed to EOC progression through targeting CDKN1B. Cancer Med. 2020 9 16 5976 5988 10.1002/cam4.3252 32590883
    [Google Scholar]
  224. Li W. Zhang X. Wang J. TGFβ1 in fibroblasts-derived exosomes promotes epithelial-mesenchymal transition of ovarian cancer cells. Oncotarget 2017 8 56 96035 96047 10.18632/oncotarget.21635 29221185
    [Google Scholar]
  225. Cao J. Zhang Y. Mu J. Yang D. Gu X. Zhang J. Exosomal miR-21-5p contributes to ovarian cancer progression by regulating CDK6. Hum. Cell 2021 34 4 1185 1196 10.1007/s13577‑021‑00522‑2 33813728
    [Google Scholar]
  226. Xiong J. He X. Xu Y. Zhang W. Fu F. MiR-200b is upregulated in plasma-derived exosomes and functions as an oncogene by promoting macrophage M2 polarization in ovarian cancer. J. Ovarian Res. 2021 14 1 74 10.1186/s13048‑021‑00826‑9 34078414
    [Google Scholar]
  227. Guan H. Peng R. Fang F. Tumor‐associated macrophages promote prostate cancer progression via exosome‐mediated miR‐95 transfer. J. Cell. Physiol. 2020 235 12 9729 9742 10.1002/jcp.29784 32406953
    [Google Scholar]
  228. Liu Y. Yang C. Chen S. Liu W. Liang J. He S. Cancer-derived exosomal miR-375 targets DIP2C and promotes osteoblastic metastasis and prostate cancer progression by regulating the Wnt signaling pathway. Cancer Gene Ther. 2023 30 437 449 10.1038/s41417‑022‑00563‑1
    [Google Scholar]
  229. Ding L. Zheng Q. Lin Y. Exosome‐derived circTFDP2 promotes prostate cancer progression by preventing PARP1 from caspase‐3‐dependent cleavage. Clin. Transl. Med. 2023 13 1 1156 10.1002/ctm2.1156 36597139
    [Google Scholar]
  230. Zhou C. Chen Y. He X. Zheng Z. Xue D. Functional Implication of exosomal miR-217 and miR-23b-3p in the progression of prostate cancer. OncoTargets Ther. 2020 13 11595 11606 10.2147/OTT.S272869 33209036
    [Google Scholar]
  231. Huang C.S. Ho J.Y. Chiang J.H. Yu C.P. Yu D.S. Exosome-derived LINC00960 and LINC02470 promote the epithelial-mesenchymal transition and aggressiveness of bladder cancer cells. Cells 2020 9 6 1419 10.3390/cells9061419 32517366
    [Google Scholar]
  232. Steinbichler T.B. Dudás J. Riechelmann H. Skvortsova I.I. The role of exosomes in cancer metastasis. Semin. Cancer Biol. 2017 44 170 181 10.1016/j.semcancer.2017.02.006 28215970
    [Google Scholar]
  233. Bai S. Wei Y. Liu R. Xu R. Xiang L. Du J. Role of tumour-derived exosomes in metastasis. Biomed. Pharmacother. 2022 147 112657 10.1016/j.biopha.2022.112657 35078096
    [Google Scholar]
  234. Lobb R.J. Lima L.G. Möller A. Exosomes: Key mediators of metastasis and pre-metastatic niche formation. Semin. Cell Dev. Biol. 2017 67 3 10 10.1016/j.semcdb.2017.01.004 28077297
    [Google Scholar]
  235. Guo Y. Ji X. Liu J. Effects of exosomes on pre-metastatic niche formation in tumors. Mol. Cancer 2019 18 1 39 10.1186/s12943‑019‑0995‑1 30857545
    [Google Scholar]
  236. Zeng Z. Li Y. Pan Y. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun. 2018 9 1 5395 10.1038/s41467‑018‑07810‑w 30568162
    [Google Scholar]
  237. Jia W. Liang S. Lin W. Hypoxia-induced exosomes facilitate lung pre-metastatic niche formation in hepatocellular carcinoma through the miR-4508-RFX1-IL17A-p38 MAPK-NF-κB pathway. Int. J. Biol. Sci. 2023 19 15 4744 4762 10.7150/ijbs.86767 37781522
    [Google Scholar]
  238. Li K. Xue W. Lu Z. Tumor-derived exosomal ADAM17 promotes pre-metastatic niche formation by enhancing vascular permeability in colorectal cancer. J. Exp. Clin. Cancer Res. 2024 43 1 59 10.1186/s13046‑024‑02991‑3 38413999
    [Google Scholar]
  239. Liu Y. Gu Y. Han Y. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell 2016 30 2 243 256 10.1016/j.ccell.2016.06.021 27505671
    [Google Scholar]
  240. Mao Y. Wang J. Wang Y. Fu Z. Dong L. Liu J. Hypoxia induced exosomal Circ-ZNF609 promotes pre-metastatic niche formation and cancer progression via miR-150-5p/VEGFA and HuR/ZO-1 axes in esophageal squamous cell carcinoma. Cell Death Discov. 2024 10 1 133 10.1038/s41420‑024‑01905‑8 38472174
    [Google Scholar]
  241. Costa-Silva B. Aiello N.M. Ocean A.J. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 2015 17 6 816 826 10.1038/ncb3169 25985394
    [Google Scholar]
  242. Deep G. Jain A. Kumar A. Exosomes secreted by prostate cancer cells under hypoxia promote matrix metalloproteinases activity at pre‐metastatic niches. Mol. Carcinog. 2020 59 3 323 332 10.1002/mc.23157 31943365
    [Google Scholar]
  243. Yuan X. Qian N. Ling S. Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells. Theranostics 2021 11 3 1429 1445 10.7150/thno.45351 33391543
    [Google Scholar]
  244. Mao S. Zheng S. Lu Z. Exosomal miR-375-3p breaks vascular barrier and promotes small cell lung cancer metastasis by targeting claudin-1. Transl. Lung Cancer Res. 2021 10 7 3155 3172 10.21037/tlcr‑21‑356 34430355
    [Google Scholar]
  245. Li X. Chen Z. Ni Y. Tumor-associated macrophages secret exosomal miR-155 and miR-196a-5p to promote metastasis of non-small-cell lung cancer. Transl. Lung Cancer Res. 2021 10 3 1338 1354 10.21037/tlcr‑20‑1255 33889514
    [Google Scholar]
  246. Gu P. Sun M. Li L. Breast tumor-derived exosomal MicroRNA-200b-3p promotes specific organ metastasis through regulating CCL2 expression in lung epithelial cells. Front. Cell Dev. Biol. 2021 9 657158 10.3389/fcell.2021.657158 34249913
    [Google Scholar]
  247. Kim D.H. Park H. Choi Y.J. Exosomal miR-1260b derived from non-small cell lung cancer promotes tumor metastasis through the inhibition of HIPK2. Cell Death Dis. 2021 12 8 747 10.1038/s41419‑021‑04024‑9 34321461
    [Google Scholar]
  248. Yang F. Yan Y. Yang Y. MiR-210 in exosomes derived from CAFs promotes non-small cell lung cancer migration and invasion through PTEN/PI3K/AKT pathway. Cell. Signal. 2020 73 109675 10.1016/j.cellsig.2020.109675 32446904
    [Google Scholar]
  249. Wang L. He J. Hu H. Lung CSC‐derived exosomal miR‐210‐3p contributes to a pro‐metastatic phenotype in lung cancer by targeting FGFRL1. J. Cell. Mol. Med. 2020 24 11 6324 6339 10.1111/jcmm.15274 32396269
    [Google Scholar]
  250. Xia Y. Wei K. Hu L.Q. Exosome‐mediated transfer of miR‐1260b promotes cell invasion through Wnt/β–catenin signaling pathway in lung adenocarcinoma. J. Cell. Physiol. 2020 235 10 6843 6853 10.1002/jcp.29578 32026462
    [Google Scholar]
  251. Ma Z. Wei K. Yang F. Tumor-derived exosomal miR-3157-3p promotes angiogenesis, vascular permeability and metastasis by targeting TIMP/KLF2 in non-small cell lung cancer. Cell Death Dis. 2021 12 9 840 10.1038/s41419‑021‑04037‑4 34497265
    [Google Scholar]
  252. Huang W. Yan Y. Liu Y. Exosomes with low miR-34c-3p expression promote invasion and migration of non-small cell lung cancer by upregulating integrin α2β1. Signal Transduct. Target. Ther. 2020 5 1 39 10.1038/s41392‑020‑0133‑y 32317629
    [Google Scholar]
  253. Kim D.H. Park S. Kim H. Tumor-derived exosomal miR-619-5p promotes tumor angiogenesis and metastasis through the inhibition of RCAN1.4. Cancer Lett. 2020 475 2 13 10.1016/j.canlet.2020.01.023 32004570
    [Google Scholar]
  254. Zang X. Gu J. Zhang J. Exosome-transmitted lncRNA UFC1 promotes non-small-cell lung cancer progression by EZH2-mediated epigenetic silencing of PTEN expression. Cell Death Dis. 2020 11 4 215 10.1038/s41419‑020‑2409‑0 32242003
    [Google Scholar]
  255. Shi L. Li B. Zhang Y. Exosomal lncRNA Mir100hg derived from cancer stem cells enhance glycolysis and promote metastasis of lung adenocarcinoma through mircroRNA-15a-5p/31-5p. Cell Commun. Signal. 2023 21 1 248 10.1186/s12964‑023‑01281‑3 37735657
    [Google Scholar]
  256. Chen T. Liu Y. Li C. Tumor-derived exosomal circFARSA mediates M2 macrophage polarization via the PTEN/PI3K/AKT pathway to promote non-small cell lung cancer metastasis. Cancer Treat. Res. Commun. 2021 28 100412 10.1016/j.ctarc.2021.100412 34119765
    [Google Scholar]
  257. Feng C. She J. Chen X. Exosomal miR-196a-1 promotes gastric cancer cell invasion and metastasis by targeting SFRP1. Nanomedicine (Lond.) 2019 14 19 2579 2593 10.2217/nnm‑2019‑0053 31609675
    [Google Scholar]
  258. Li Q. Li B. Li Q. Exosomal miR-21-5p derived from gastric cancer promotes peritoneal metastasis via mesothelial-to-mesenchymal transition. Cell Death Dis. 2018 9 9 854 10.1038/s41419‑018‑0928‑8 30154401
    [Google Scholar]
  259. Zhou C. Qiao C. Ji J. Plasma exosome proteins ILK1 and CD14 correlated with organ-specific metastasis in advanced gastric cancer patients. Cancers 2023 15 15 3986 10.3390/cancers15153986 37568802
    [Google Scholar]
  260. Qiu S. Xie L. Lu C. Gastric cancer-derived exosomal miR-519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-mediated angiogenesis. J. Exp. Clin. Cancer Res. 2022 41 1 296 10.1186/s13046‑022‑02499‑8 36217165
    [Google Scholar]
  261. Xia X. Wang S. Ni B. Hypoxic gastric cancer-derived exosomes promote progression and metastasis via MiR-301a-3p/PHD3/HIF-1α positive feedback loop. Oncogene 2020 39 39 6231 6244 10.1038/s41388‑020‑01425‑6 32826951
    [Google Scholar]
  262. Piao H. Guo S. Wang Y. Zhang J. Exosome-transmitted lncRNA PCGEM1 promotes invasive and metastasis in gastric cancer by maintaining the stability of SNAI1. Clin. Transl. Oncol. 2021 23 2 246 256 10.1007/s12094‑020‑02412‑9 32519176
    [Google Scholar]
  263. Zhu K.G. Yang J. Zhu Y. The microprotein encoded by exosomal lncAKR1C2 promotes gastric cancer lymph node metastasis by regulating fatty acid metabolism. Cell Death Dis. 2023 14 10 708 10.1038/s41419‑023‑06220‑1 37903800
    [Google Scholar]
  264. Huang X.J. Exosomal hsa_circ_000200 as a potential biomarker and metastasis enhancer of gastric cancer via miR-4659a/b-3p/HBEGF axis. Cancer Cell Int. 2023 23 1 151 10.1186/s12935‑023‑02976‑w 37525152
    [Google Scholar]
  265. Lin X.M. Wang Z.J. Lin Y.X. Chen H. Decreased exosome-delivered miR-486-5p is responsible for the peritoneal metastasis of gastric cancer cells by promoting EMT progress. World J. Surg. Oncol. 2021 19 1 312 10.1186/s12957‑021‑02381‑5 34686196
    [Google Scholar]
  266. Nakamura K. Sawada K. Kinose Y. Exosomes promote ovarian cancer cell invasion through transfer of CD44 to peritoneal mesothelial cells. Mol. Cancer Res. 2017 15 1 78 92 10.1158/1541‑7786.MCR‑16‑0191 27758876
    [Google Scholar]
  267. Zhou W. Ma J. Zhao H. Serum exosomes from epithelial ovarian cancer patients contain LRP1, which promotes the migration of epithelial ovarian cancer cell. Mol. Cell. Proteomics 2023 22 4 100520 10.1016/j.mcpro.2023.100520 36842607
    [Google Scholar]
  268. Li H. Zeng C. Shu C. Laminins in tumor-derived exosomes upregulated by ETS1 reprogram omental macrophages to promote omental metastasis of ovarian cancer. Cell Death Dis. 2022 13 12 1028 10.1038/s41419‑022‑05472‑7 36477408
    [Google Scholar]
  269. Cai J. Gong L. Li G. Guo J. Yi X. Wang Z. Exosomes in ovarian cancer ascites promote epithelial–mesenchymal transition of ovarian cancer cells by delivery of miR-6780b-5p. Cell Death Dis. 2021 12 2 210 10.1038/s41419‑021‑03490‑5 33627627
    [Google Scholar]
  270. Han Q. Tan S. Gong L. Omental cancer‐associated fibroblast‐derived exosomes with low microRNA‐29c‐3p promote ovarian cancer peritoneal metastasis. Cancer Sci. 2023 114 5 1929 1942 10.1111/cas.15726 36644823
    [Google Scholar]
  271. Ran X.M. Yang J. Wang Z.Y. Xiao L.Z. Deng Y.P. Zhang K.Q. M2 macrophage-derived exosomal circTMCO3 acts through miR-515-5p and ITGA8 to enhance malignancy in ovarian cancer. Commun. Biol. 2024 7 1 583 10.1038/s42003‑024‑06095‑8 38755265
    [Google Scholar]
  272. Gao L. Nie X. Gou R. Exosomal ANXA2 derived from ovarian cancer cells regulates epithelial‐mesenchymal plasticity of human peritoneal mesothelial cells. J. Cell. Mol. Med. 2021 25 23 10916 10929 10.1111/jcmm.16983 34725902
    [Google Scholar]
  273. Han B. Zhang H. Tian R. Exosomal EPHA2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the AMPK signaling pathway through Ephrin A1-EPHA2 forward signaling. Theranostics 2022 12 9 4127 4146 10.7150/thno.72404 35673569
    [Google Scholar]
  274. Yang S.S. Ma S. Dou H. Breast cancer-derived exosomes regulate cell invasion and metastasis in breast cancer via miR-146a to activate cancer associated fibroblasts in tumor microenvironment. Exp. Cell Res. 2020 391 2 111983 10.1016/j.yexcr.2020.111983 32268136
    [Google Scholar]
  275. Wang J. Zhang Q. Wang D. Microenvironment‐induced TIMP2 loss by cancer‐secreted exosomal miR‐4443 promotes liver metastasis of breast cancer. J. Cell. Physiol. 2020 235 7-8 5722 5735 10.1002/jcp.29507 31970775
    [Google Scholar]
  276. Pan S. Zhao X. Shao C. STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells. Cell Death Dis. 2021 12 1 38 10.1038/s41419‑020‑03304‑0 33414420
    [Google Scholar]
  277. Chen Y. Zeng C. Zhan Y. Wang H. Jiang X. Li W. Aberrant low expression of p85α in stromal fibroblasts promotes breast cancer cell metastasis through exosome-mediated paracrine Wnt10b. Oncogene 2017 36 33 4692 4705 10.1038/onc.2017.100 28394344
    [Google Scholar]
  278. Yang S.J. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/β-catenin (cyclin D1) axis. Cell Death Dis. 2021 12 5 420 10.1038/s41419‑021‑03680‑1 33911067
    [Google Scholar]
  279. Liang Z. Liu L. Gao R. Che C. Yang G. Downregulation of exosomal miR-7-5p promotes breast cancer migration and invasion by targeting RYK and participating in the atypical WNT signalling pathway. Cell. Mol. Biol. Lett. 2022 27 1 88 10.1186/s11658‑022‑00393‑x 36210461
    [Google Scholar]
  280. Zhang C. Wang X.Y. Zhang P. Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis. 2022 13 1 57 10.1038/s41419‑022‑04506‑4 35027547
    [Google Scholar]
  281. Wu Y. Zhang J. Lin F. Exosomal miR ‐1470 is a diagnostic biomarker and promotes cell proliferation and metastasis in colorectal cancer. Cancer Med. 2024 13 7 7117 10.1002/cam4.7117 38545812
    [Google Scholar]
  282. Yang C. Dou R. Wei C. Tumor-derived exosomal microRNA-106b-5p activates EMT-cancer cell and M2-subtype TAM interaction to facilitate CRC metastasis. Mol. Ther. 2021 29 6 2088 2107 10.1016/j.ymthe.2021.02.006 33571679
    [Google Scholar]
  283. Liu K. Dou R. Yang C. Exosome-transmitted miR-29a induces colorectal cancer metastasis by destroying the vascular endothelial barrier. Carcinogenesis 2023 44 4 356 367 10.1093/carcin/bgad013 36939367
    [Google Scholar]
  284. Sun X. Lin F. Sun W. Exosome-transmitted miRNA-335-5p promotes colorectal cancer invasion and metastasis by facilitating EMT via targeting RASA1. Mol. Ther. Nucleic Acids 2021 24 164 174 10.1016/j.omtn.2021.02.022 33767913
    [Google Scholar]
  285. Zhao S. Mi Y. Guan B. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J. Hematol. Oncol. 2020 13 1 156 10.1186/s13045‑020‑00991‑2 33213490
    [Google Scholar]
  286. Takano Y. Masuda T. Iinuma H. Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. Oncotarget 2017 8 45 78598 78613 10.18632/oncotarget.20009 29108252
    [Google Scholar]
  287. Li Y. Hu J. Wang M. Exosomal circPABPC1 promotes colorectal cancer liver metastases by regulating HMGA2 in the nucleus and BMP4/ADAM19 in the cytoplasm. Cell Death Discov. 2022 8 1 335 10.1038/s41420‑022‑01124‑z 35871166
    [Google Scholar]
  288. Liang Z.X. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization. Cell Death Dis. 2020 11 6 465 10.1038/s41419‑020‑2661‑3 32546789
    [Google Scholar]
  289. Dai W. Wang Y. Yang T. Wang J. Wu W. Gu J. Downregulation of exosomal CLEC3B in hepatocellular carcinoma promotes metastasis and angiogenesis via AMPK and VEGF signals. Cell Commun. Signal. 2019 17 1 113 10.1186/s12964‑019‑0423‑6 31477130
    [Google Scholar]
  290. Fang J.H. Zhang Z.J. Shang L.R. Hepatoma cell‐secreted exosomal microRNA‐103 increases vascular permeability and promotes metastasis by targeting junction proteins. Hepatology 2018 68 4 1459 1475 10.1002/hep.29920 29637568
    [Google Scholar]
  291. Wang D. Wang X. Si M. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett. 2020 474 36 52 10.1016/j.canlet.2020.01.005 31931030
    [Google Scholar]
  292. Xu Y. Luan G. Li Z. Liu Z. Qin G. Chu Y. Correction to: Tumour-derived exosomal lncRNA SNHG16 induces telocytes to promote metastasis of hepatocellular carcinoma via the miR-942-3p/MMP9 axis. Cell. Oncol. 2023 46 265 266 10.1007/s13402‑023‑00782‑0
    [Google Scholar]
  293. Guan H. Mao L. Wang J. Exosomal RNF157 mRNA from prostate cancer cells contributes to M2 macrophage polarization through destabilizing HDAC1. Front. Oncol. 2022 12 1021270 10.3389/fonc.2022.1021270 36263220
    [Google Scholar]
  294. Liu Z. Lin Z. Jiang M. Cancer-associated fibroblast exosomes promote prostate cancer metastasis through miR-500a-3p/FBXW7/HSF1 axis under hypoxic microenvironment. Cancer Gene Ther. 2024 31 5 698 709 10.1038/s41417‑024‑00742‑2 38351137
    [Google Scholar]
  295. Ye Y. Li S.L. Ma Y.Y. Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Oncotarget 2017 8 55 94834 94849 10.18632/oncotarget.22014 29212270
    [Google Scholar]
  296. Jiang Y. Zhao H. Chen Y. Exosomal long noncoding RNA HOXD-AS1 promotes prostate cancer metastasis via miR-361-5p/FOXM1 axis. Cell Death Dis. 2021 12 12 1129 10.1038/s41419‑021‑04421‑0 34864822
    [Google Scholar]
  297. Zhang Y. Zhao J. Ding M. Loss of exosomal miR-146a-5p from cancer-associated fibroblasts after androgen deprivation therapy contributes to prostate cancer metastasis. J. Exp. Clin. Cancer Res. 2020 39 1 282 10.1186/s13046‑020‑01761‑1 33317606
    [Google Scholar]
  298. Ma Q. Wu H. Xiao Y. Liang Z. Liu T. Upregulation of exosomal microRNA 21 in pancreatic stellate cells promotes pancreatic cancer cell migration and enhances Ras/ERK pathway activity. Int. J. Oncol. 2020 56 4 1025 1033 10.3892/ijo.2020.4986
    [Google Scholar]
  299. Wang X. Luo G. Zhang K. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res. 2018 78 16 4586 4598 10.1158/0008‑5472.CAN‑17‑3841 29880482
    [Google Scholar]
  300. Raimondo S. Pucci M. Alessandro R. Fontana S. Extracellular vesicles and tumor-immune escape: Biological functions and clinical perspectives. Int. J. Mol. Sci. 2020 21 7 2286 10.3390/ijms21072286 32225076
    [Google Scholar]
  301. Wang Y. Hays E. Rama M. Bonavida B. Cell-mediated immune resistance in cancer. Cancer Drug Resist. 2020 3 2 232 251 10.20517/cdr.2019.98 35310881
    [Google Scholar]
  302. Whiteside T. Tumor-derived exosomes and their role in tumor-induced immune suppression. Vaccines 2016 4 4 35 10.3390/vaccines4040035 27775593
    [Google Scholar]
  303. Wang M. Zhang B. The immunomodulation potential of exosomes in tumor microenvironment. J Immunol Res 2021. Lu X.J. 2021 1 11 10.1155/2021/3710372
    [Google Scholar]
  304. Wu X. Zhang H. Jiang G. Exosome-transmitted S100A4 induces immunosuppression and non-small cell lung cancer development by activating STAT3. Clin. Exp. Immunol. 2022 210 3 309 320 10.1093/cei/uxac102 36370151
    [Google Scholar]
  305. Liang M. Chen X. Wang L. Cancer-derived exosomal TRIM59 regulates macrophage NLRP3 inflammasome activation to promote lung cancer progression. J. Exp. Clin. Cancer Res. 2020 39 1 176 10.1186/s13046‑020‑01688‑7 32867817
    [Google Scholar]
  306. Yang F. Wang T. Du P. Fan H. Dong X. Guo H. M2 bone marrow-derived macrophage-derived exosomes shuffle microRNA-21 to accelerate immune escape of glioma by modulating PEG3. Cancer Cell Int. 2020 20 1 93 10.1186/s12935‑020‑1163‑9 32231463
    [Google Scholar]
  307. Liu Y. Yin Z. Lu P. Lung carcinoma cells secrete exosomal MALAT1 to inhibit dendritic cell phagocytosis, inflammatory response, costimulatory molecule expression and promote dendritic cell autophagy via AKT/mTOR pathway. OncoTargets Ther. 2020 13 10693 10705 10.2147/OTT.S256669 33116646
    [Google Scholar]
  308. Du C. Duan X. Yao X. Tumour‐derived exosomal miR‐3473b promotes lung tumour cell intrapulmonary colonization by activating the nuclear factor‐κB of local fibroblasts. J. Cell. Mol. Med. 2020 24 14 7802 7813 10.1111/jcmm.15411 32449597
    [Google Scholar]
  309. Xu L. Li K. Li J. M2 macrophage exosomal LINC01001 promotes non-small cell lung cancer development by affecting METTL3 and glycolysis pathway. Cancer Gene Ther. 2023 30 11 1569 1580 10.1038/s41417‑023‑00661‑8 37666899
    [Google Scholar]
  310. Chen S.W. Zhu S.Q. Pei X. Cancer cell-derived exosomal circUSP7 induces CD8+ T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC. Mol. Cancer 2021 20 1 144 10.1186/s12943‑021‑01448‑x 34753486
    [Google Scholar]
  311. Kim D.H. Kim H. Choi Y.J. Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp. Mol. Med. 2019 51 8 1 13 10.1038/s12276‑019‑0295‑2 31399559
    [Google Scholar]
  312. Hu Z. Chen G. Zhao Y. Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol. Cancer 2023 22 1 55 10.1186/s12943‑023‑01759‑1 36932387
    [Google Scholar]
  313. Ye L. Zhang Q. Cheng Y. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1+ regulatory B cell expansion. J. Immunother. Cancer 2018 6 1 145 10.1186/s40425‑018‑0451‑6 30526680
    [Google Scholar]
  314. Liu J. Fan L. Yu H. Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR‐23a‐3p and up‐regulate programmed death ligand 1 expression in macrophages. Hepatology 2019 70 1 241 258 10.1002/hep.30607 30854665
    [Google Scholar]
  315. Ren W. Zhang X. Li W. Exosomal miRNA-107 induces myeloid-derived suppressor cell expansion in gastric cancer. Cancer Manag. Res. 2019 11 4023 4040 10.2147/CMAR.S198886 31190980
    [Google Scholar]
  316. Dou D. Ren X. Han M. RETRACTED: Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer via the miR-92/PD-L1 pathway. Front. Immunol. 2020 11 2026 10.3389/fimmu.2020.02026 33162971
    [Google Scholar]
  317. Zhou C. Wei W. Ma J. Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels. Mol. Ther. 2021 29 4 1512 1528 10.1016/j.ymthe.2020.12.034 33388421
    [Google Scholar]
  318. Zhou C. Zhang Y. Yan R. Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment. Cell Death Differ. 2021 28 2 715 729 10.1038/s41418‑020‑00618‑6 32929219
    [Google Scholar]
  319. Huang Y. Luo Y. Ou W. Exosomal lncRNA SNHG10 derived from colorectal cancer cells suppresses natural killer cell cytotoxicity by upregulating INHBC. Cancer Cell Int. 2021 21 1 528 10.1186/s12935‑021‑02221‑2 34641864
    [Google Scholar]
  320. Xu W. Lu M. Xie S. Zhou D. Zhu M. Liang C. Endoplasmic reticulum stress promotes prostate cancer cells to release exosome and up-regulate PD-L1 expression via PI3K/Akt signaling pathway in macrophages. J. Cancer 2023 14 6 1062 1074 10.7150/jca.81933 37151385
    [Google Scholar]
  321. Xu F. Wang X. Huang Y. Prostate cancer cell-derived exosomal IL-8 fosters immune evasion by disturbing glucolipid metabolism of CD8+ T cell. Cell Rep. 2023 42 11 113424 10.1016/j.celrep.2023.113424 37963015
    [Google Scholar]
  322. Cheshomi H. Matin M.M. Exosomes and their importance in metastasis, diagnosis, and therapy of colorectal cancer. J. Cell. Biochem. 2019 120 2 2671 2686 10.1002/jcb.27582 30246315
    [Google Scholar]
  323. Mostafazadeh M. Samadi N. Kahroba H. Baradaran B. Haiaty S. Nouri M. Potential roles and prognostic significance of exosomes in cancer drug resistance. Cell Biosci. 2021 11 1 1 10.1186/s13578‑020‑00515‑y 33407894
    [Google Scholar]
  324. Li J. Gao N. Gao Z. The emerging role of exosomes in cancer chemoresistance. Front. Cell Dev. Biol. 2021 9 737962 10.3389/fcell.2021.737962 34778252
    [Google Scholar]
  325. Steinbichler T.B. Dudás J. Skvortsov S. Ganswindt U. Riechelmann H. Skvortsova I.I. Therapy resistance mediated by exosomes. Mol. Cancer 2019 18 1 58 10.1186/s12943‑019‑0970‑x 30925921
    [Google Scholar]
  326. Li S. Yi M. Dong B. Jiao Y. Luo S. Wu K. The roles of exosomes in cancer drug resistance and its therapeutic application. Clin. Transl. Med. 2020 10 8 257 10.1002/ctm2.257 33377643
    [Google Scholar]
  327. Bach D.H. Hong J.Y. Park H.J. Lee S.K. The role of exosomes and miRNAs in drug‐resistance of cancer cells. Int. J. Cancer 2017 141 2 220 230 10.1002/ijc.30669 28240776
    [Google Scholar]
  328. Mowla M. Hashemi A. Functional roles of exosomal miRNAs in multi-drug resistance in cancer chemotherapeutics. Exp. Mol. Pathol. 2021 118 104592 10.1016/j.yexmp.2020.104592 33296693
    [Google Scholar]
  329. Deng Y. Ding H. Zhang Y. TP53 mitigates cisplatin resistance in non-small cell lung cancer by mediating the effects of resistant cell-derived exosome mir-424-5p. Heliyon 2024 10 5 26853 10.1016/j.heliyon.2024.e26853 38439876
    [Google Scholar]
  330. Yao F. Shi W. Fang F. Exosomal miR ‐ 196a‐5p enhances radioresistance in lung cancer cells by downregulating NFKBIA. Kaohsiung J. Med. Sci. 2023 39 6 554 564 10.1002/kjm2.12673 36912495
    [Google Scholar]
  331. Wang X. Wang H. Jiang H. Qiao L. Guo C. Circular RNAcirc_0076305 promotes cisplatin (DDP) resistance of non-small cell lung cancer cells by regulating ABCC1 through miR-186-5p. Cancer Biother. Radiopharm. 2023 38 5 293 304 10.1089/cbr.2020.4153 34339285
    [Google Scholar]
  332. Zhou Y. Tang W. Zhuo H. Cancer-associated fibroblast exosomes promote chemoresistance to cisplatin in hepatocellular carcinoma through circZFR targeting signal transducers and activators of transcription (STAT3)/nuclear factor -kappa B (NF-κB) pathway. Bioengineered 2022 13 3 4786 4797 10.1080/21655979.2022.2032972 35139763
    [Google Scholar]
  333. Zhang P.F. Gao C. Huang X.Y. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol. Cancer 2020 19 1 110 10.1186/s12943‑020‑01222‑5 32593303
    [Google Scholar]
  334. Li R. Dong C. Jiang K. Rab27B enhances drug resistance in hepatocellular carcinoma by promoting exosome-mediated drug efflux. Carcinogenesis 2020 41 11 1583 1591 10.1093/carcin/bgaa029 32390047
    [Google Scholar]
  335. Sun J. Du R. Li X. CD63+ cancer-associated fibroblasts confer CDK4/6 inhibitor resistance to breast cancer cells by exosomal miR-20. Cancer Lett. 2024 588 216747 10.1016/j.canlet.2024.216747 38403110
    [Google Scholar]
  336. Xia W. Chen W. Ni C. Chemotherapy-induced exosomal circBACH1 promotes breast cancer resistance and stemness via miR-217/G3BP2 signaling pathway. Breast Cancer Res. 2023 25 1 85 10.1186/s13058‑023‑01672‑x 37461019
    [Google Scholar]
  337. Zhao S. Pan T. Deng J. Exosomal transfer of miR-181b-5p confers senescence-mediated doxorubicin resistance via modulating BCLAF1 in breast cancer. Br. J. Cancer 2023 128 4 665 677 10.1038/s41416‑022‑02077‑x 36522479
    [Google Scholar]
  338. Yao W. Guo P. Mu Q. Wang Y. Exosome-derived Circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1 axis in gastric cancer cells. Cancer Biother. Radiopharm. 2021 36 4 347 359 10.1089/cbr.2020.3578 32799541
    [Google Scholar]
  339. Lin H. Zhang L. Zhang C. Liu P. Exosomal MiR‐500a‐3p promotes cisplatin resistance and stemness via negatively regulating FBXW7 in gastric cancer. J. Cell. Mol. Med. 2020 24 16 8930 8941 10.1111/jcmm.15524 32588541
    [Google Scholar]
  340. Jing X. Xie M. Ding K. Exosome‐transmitted miR‐769‐5p confers cisplatin resistance and progression in gastric cancer by targeting CASP9 and promoting the ubiquitination degradation of p53. Clin. Transl. Med. 2022 12 5 780 10.1002/ctm2.780 35522909
    [Google Scholar]
  341. Wei Z. Wang Z. Chai Q. Exosomes derived from MDR cells induce cetuximab resistance in CRC via PI3K/AKT signaling mediated Sox2 and PD L1 expression. Exp. Ther. Med. 2023 25 2 86 10.3892/etm.2023.11785 36741914
    [Google Scholar]
  342. Hui B. Zhou C. Xu Y. Exosomes secreted by Fusobacterium nucleatum-infected colon cancer cells transmit resistance to oxaliplatin and 5-FU by delivering hsa_circ_0004085. J. Nanobiotechnology 2024 22 1 62 10.1186/s12951‑024‑02331‑9 38360615
    [Google Scholar]
  343. Hu J.H. Tang H.N. Wang Y.H. Cancer-associated fibroblast exosome LINC00355 promotes epithelial-mesenchymal transition and chemoresistance in colorectal cancer through the miR-34b-5p/CRKL axis. Cancer Gene Ther. 2024 31 2 259 272 10.1038/s41417‑023‑00700‑4 38052858
    [Google Scholar]
  344. Zhang Y. Tan X. Lu Y. Exosomal transfer of circ_0006174 contributes to the chemoresistance of doxorubicin in colorectal cancer by depending on the miR-1205/CCND2 axis. J. Physiol. Biochem. 2022 78 1 39 50 10.1007/s13105‑021‑00831‑y 34792792
    [Google Scholar]
  345. Guo T. Wang Y. Jia J. The identification of plasma exosomal miR-423-3p as a potential predictive biomarker for prostate cancer castration-resistance development by plasma exosomal miRNA sequencing. Front. Cell Dev. Biol. 2021 8 602493 10.3389/fcell.2020.602493 33490068
    [Google Scholar]
  346. Shan G. Gu J. Zhou D. Cancer-associated fibroblast-secreted exosomal miR-423-5p promotes chemotherapy resistance in prostate cancer by targeting GREM2 through the TGF-β signaling pathway. Exp. Mol. Med. 2020 52 11 1809 1822 10.1038/s12276‑020‑0431‑z 33144675
    [Google Scholar]
  347. Zhang H. Li M. Zhang J. Shen Y. Gui Q. Exosomal Circ-XIAP promotes docetaxel resistance in prostate cancer by regulating miR-1182/TPD52 axis. Drug Des. Devel. Ther. 2021 15 1835 1849 10.2147/DDDT.S300376 33976535
    [Google Scholar]
  348. Shi Y. Zou Y. Guo Y. Liu Y. Wang Q. Exosomal transfer of miR-548aq-3p confers cisplatin resistance via MED12 downregulation in epithelial ovarian cancer. Am. J. Cancer Res. 2023 13 5 1999 2012 37293147
    [Google Scholar]
  349. Zhu X. Shen H. Yin X. Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J. Exp. Clin. Cancer Res. 2019 38 1 81 10.1186/s13046‑019‑1095‑1 30770776
    [Google Scholar]
  350. Guo H. Ha C. Dong H. Yang Z. Ma Y. Ding Y. Cancer-associated fibroblast-derived exosomal microRNA-98-5p promotes cisplatin resistance in ovarian cancer by targeting CDKN1A. Cancer Cell Int. 2019 19 1 347 10.1186/s12935‑019‑1051‑3 31889899
    [Google Scholar]
  351. Zeng Z. Zhao Y. Chen Q. Hypoxic exosomal HIF-1α-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene 2021 40 36 5505 5517 10.1038/s41388‑021‑01960‑w 34294845
    [Google Scholar]
  352. Yang Z. Zhao N. Cui J. Wu H. Xiong J. Peng T. Exosomes derived from cancer stem cells of gemcitabine-resistant pancreatic cancer cells enhance drug resistance by delivering miR-210. Cell. Oncol. 2020 43 1 123 136 10.1007/s13402‑019‑00476‑6 31713003
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240374643250902181706
Loading
/content/journals/cmm/10.2174/0115665240374643250902181706
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: metastasis ; progression ; therapy resistance ; tumorigenesis ; biogenesis ; Exosomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test