Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Several studies have indicated an association between cadmium (Cd) exposure and the induction of thyroid dysfunction in animal models.

Objective and Aims

There are inconsistent findings on the effect of Cd on the thyroid gland. Therefore, this systematic study was designed to determine the association between changes in thyroid function markers and Cd exposure in animals.

Methods

The search was performed on Scopus, PubMed, Web of Science and databases, and Google Scholar until May 2023. Studies on the relationship between Cd exposure and fish's thyroid function were conducted on rodents and fish.

Results

In total, 171 articles were obtained from the main databases using the search strategy mentioned in this study. Finally, 24 articles were selected according to our inclusion criteria for systematic studies. The findings indicated an increase/decrease or no change in triiodothyronine (T3), thyroxine (T4), and thyroid stimulating hormone (TSH) levels in rodents, fish, and animals exposed to Cd.

Conclusion

Our findings indicated an association between Cd exposure and thyroid dysfunction in rodents, fish, and other animals. However, the association between urinary and blood Cd levels and thyroid function remains unclear in humans because of controversial findings and a lack of strong mechanistic evidence. We perform large cohort human studies to the answer to this question.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240288797240704134652
2024-07-22
2025-10-07
Loading full text...

Full text loading...

References

  1. Mohammadparast-TabasP. Arab-ZozaniM. NaseriK. Polychlorinated biphenyls and thyroid function: A scoping review.Rev. Environ. Health202310.1515/reveh‑2022‑0156 37434382
    [Google Scholar]
  2. Abdel-MoneimA. GaberA.M. GoudaS. OsamaA. OthmanS.I. AllamG. Relationship of thyroid dysfunction with cardiovascular diseases: updated review on heart failure progression.Hormones202019330130910.1007/s42000‑020‑00208‑8 32488814
    [Google Scholar]
  3. PahwaS. MangatS. Prevalence of thyroid disorders in pregnancy.Int. J. Reprod. Contracept. Obstet. Gynecol.2018793493349710.18203/2320‑1770.ijrcog20183401
    [Google Scholar]
  4. VanderpumpM.P.J. Epidemiology of Thyroid Disorders.The Thyroid and Its Diseases: A Comprehensive Guide for the Clinician.ChamSpringer International Publishing2019758510.1007/978‑3‑319‑72102‑6_6
    [Google Scholar]
  5. FarkhondehT. SamarghandianS. Azimin-NezhadM. SaminiF. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats.Int. J. Clin. Exp. Med.201582246
    [Google Scholar]
  6. SamarghandianS. Azimi‐NezhadM. BorjiA. FarkhondehT. Effect of crocin on aged rat kidney through inhibition of oxidative stress and proinflammatory state.Phytother. Res.201630813451353
    [Google Scholar]
  7. VigneriR. MalandrinoP. GianìF. RussoM. VigneriP. Heavy metals in the volcanic environment and thyroid cancer.Mol. Cell. Endocrinol.2017457738010.1016/j.mce.2016.10.027 27794445
    [Google Scholar]
  8. BuhaA. MatovicV. AntonijevicB. Overview of cadmium thyroid disrupting effects and mechanisms.Int. J. Mol. Sci.2018195150110.3390/ijms19051501 29772829
    [Google Scholar]
  9. KhanR. AliS. MumtazS. Toxicological effects of toxic metals (cadmium and mercury) on blood and the thyroid gland and pharmacological intervention by vitamin C in rabbits.Environ. Sci. Pollut. Res. Int.20192616167271674110.1007/s11356‑019‑04886‑9 30989610
    [Google Scholar]
  10. ElinderC-G. Cadmium: uses, occurrence, and intake.In: Cadmium and health: A toxicological and epidemiological appraisal.CRC Press2019236410.1201/9780429260605‑3
    [Google Scholar]
  11. AshrafizadehM. AhmadiZ. FarkhondehT. SamarghandianS. Autophagy as a molecular target of quercetin underlying its protective effects in human diseases.Arch. Physiol. Biochem.2022128120020810.1080/13813455.2019.1671458
    [Google Scholar]
  12. LeungA.O.W. Duzgoren-AydinN.S. CheungK.C. WongM.H. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China.Environ. Sci. Technol.20084272674268010.1021/es071873x 18505015
    [Google Scholar]
  13. JärupL. ÅkessonA. Current status of cadmium as an environmental health problem.Toxicol. Appl. Pharmacol.2009238320120810.1016/j.taap.2009.04.020 19409405
    [Google Scholar]
  14. CarideA. Fernández-PérezB. CabaleiroT. TarascoM. EsquifinoA.I. LafuenteA. Cadmium chronotoxicity at pituitary level: Effects on plasma ACTH, GH, and TSH daily pattern.J. Physiol. Biochem.201066321322010.1007/s13105‑010‑0027‑5 20652474
    [Google Scholar]
  15. MezynskaM. BrzóskaM.M. Environmental exposure to cadmium—a risk for health of the general population in industrialized countries and preventive strategies.Environ. Sci. Pollut. Res. Int.20182543211323210.1007/s11356‑017‑0827‑z 29230653
    [Google Scholar]
  16. MatovićV. BuhaA. Ðukić-ĆosićD. BulatZ. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys.Food Chem. Toxicol.20157813014010.1016/j.fct.2015.02.011 25681546
    [Google Scholar]
  17. LafuenteA. The hypothalamic–pituitary–gonadal axis is target of cadmium toxicity. An update of recent studies and potential therapeutic approaches.Food Chem. Toxicol.20135939540410.1016/j.fct.2013.06.024 23811532
    [Google Scholar]
  18. MatovićV. BuhaA. BulatZ. Đukić-ĆosićD. Cadmium toxicity revisited: Focus on oxidative stress induction and interactions with zinc and magnesium.Arh. Hig. Rada Toksikol.2011621657610.2478/10004‑1254‑62‑2011‑2075 21421535
    [Google Scholar]
  19. MurkA.J. RijntjesE. BlaauboerB.J. Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals.Toxicol. In Vitro 20132741320134610.1016/j.tiv.2013.02.012 23453986
    [Google Scholar]
  20. KlaassenC.D. LiuJ. DiwanB.A. Metallothionein protection of cadmium toxicity.Toxicol. Appl. Pharmacol.2009238321522010.1016/j.taap.2009.03.026 19362100
    [Google Scholar]
  21. UetaniM. KobayashiE. SuwazonoY. Tissue cadmium (Cd) concentrations of people living in a Cd polluted area, Japan.Biometals200619552152510.1007/s10534‑005‑5619‑0 16937258
    [Google Scholar]
  22. HooijmansC.R. RoversM.M. de VriesR.B.M. LeenaarsM. Ritskes-HoitingaM. LangendamM.W. SYRCLE’s risk of bias tool for animal studies.BMC Med. Res. Methodol.20141414310.1186/1471‑2288‑14‑43 24667063
    [Google Scholar]
  23. LiZ.H. ChenL. WuY.H. LiP. LiY.F. NiZ.H. Effects of waterborne cadmium on thyroid hormone levels and related gene expression in Chinese rare minnow larvae.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2014161535710.1016/j.cbpc.2014.02.001 24521933
    [Google Scholar]
  24. YaoF. WuJ. RuH. Thyroid disruption and developmental toxicity caused by Cd2+ in Schizopygopsis younghusbandi larvae.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202023510878310.1016/j.cbpc.2020.108783 32344129
    [Google Scholar]
  25. GuptaP. ChaurasiaS.S. MaitiP.K. KarA. Cadmium induced inhibition of type-I iodothyronine 5′-monodeiodinase in young cockerel: The possible involvement of free radicals.Water Air Soil Pollut.20001171/424525010.1023/A:1005168925362
    [Google Scholar]
  26. BadrG.M. ElsawyH. SedkyA. Protective effects of quercetin supplementation against short-term toxicity of cadmium-induced hematological impairment, hypothyroidism, and testicular disturbances in albino rats.Environ. Sci. Pollut. Res. Int.20192688202821110.1007/s11356‑019‑04276‑1 30697654
    [Google Scholar]
  27. BuhaA. AntonijevićB. BulatZ. JaćevićV. MilovanovićV. MatovićV. The impact of prolonged cadmium exposure and co-exposure with polychlorinated biphenyls on thyroid function in rats.Toxicol. Lett.20132212839010.1016/j.toxlet.2013.06.216 23792431
    [Google Scholar]
  28. ĆurčićM. JankovićS. JaćevićV. Combined effects of cadmium and decabrominated diphenyl ether on thyroid hormones in rats.Arh. Hig. Rada Toksikol.201263325526210.2478/10004‑1254‑63‑2012‑2179 23152375
    [Google Scholar]
  29. LafuenteA. CanoP. EsquifinoA.I. Are cadmium effects on plasma gonadotropins, prolactin, ACTH, GH and TSH levels, dose-dependent?Biometals200316224325010.1023/A:1020658128413 12572682
    [Google Scholar]
  30. MohamedT.M. SalamaA.F. NimrT.M.E. GamalD.M.E. Effects of phytate on thyroid gland of rats intoxicated with cadmium.Toxicol. Ind. Health201531121258126810.1177/0748233713485887 23796758
    [Google Scholar]
  31. MoriK. YoshidaK. HoshikawaS. Effects of perinatal exposure to low doses of cadmium or methylmercury on thyroid hormone metabolism in metallothionein-deficient mouse neonates.Toxicology20062281778410.1016/j.tox.2006.08.017 16982123
    [Google Scholar]
  32. PoliandriA.H.B. EsquifinoA.I. CanoP. In vivo protective effect of melatonin on cadmium‐induced changes in redox balance and gene expression in rat hypothalamus and anterior pituitary.J. Pineal Res.200641323824610.1111/j.1600‑079X.2006.00360.x 16948784
    [Google Scholar]
  33. CaiY. YinY. LiY. Cadmium exposure affects growth performance, energy metabolism, and neuropeptide expression in Carassius auratus gibelio.Fish Physiol. Biochem.202046118719710.1007/s10695‑019‑00709‑3 31612298
    [Google Scholar]
  34. BadieiK. NikghadamP. MostaghniK. Effect of cadmium on thyroid function in sheep.Comp. Clin. Pathol.200918325525910.1007/s00580‑008‑0785‑4
    [Google Scholar]
  35. WuC. ZhangY. ChaiL. WangH. Histological changes, lipid metabolism and oxidative stress in the liver of Bufo gargarizans exposed to cadmium concentrations.Chemosphere201717933734610.1016/j.chemosphere.2017.03.131 28384601
    [Google Scholar]
  36. YaJ. XuY. WangG. ZhaoH. Cadmium induced skeletal underdevelopment, liver cell apoptosis and hepatic energy metabolism disorder in Bufo gargarizans larvae by disrupting thyroid hormone signaling.Ecotoxicol. Environ. Saf.202121111195710.1016/j.ecoenv.2021.111957 33493726
    [Google Scholar]
  37. JancicS. BojanicV. RancicG. Calcitonin gene-related peptide (CGRP) microadenomas of the thyroid gland induced by cadmium toxicity. Experimental study.J. Balkan Union Oncol.2011162331336 21766506
    [Google Scholar]
  38. AtliG. AriyurekS.Y. KanakE.G. CanliM. Alterations in the serum biomarkers belonging to different metabolic systems of fish (Oreochromis niloticus) after Cd and Pb exposures.Environ. Toxicol. Pharmacol.201540250851510.1016/j.etap.2015.08.001 26310509
    [Google Scholar]
  39. TianJ. HuJ. HeW. ZhouL. HuangY. Parental exposure to cadmium chloride causes developmental toxicity and thyroid endocrine disruption in zebrafish offspring.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202023410878210.1016/j.cbpc.2020.108782 32339758
    [Google Scholar]
  40. Piłat-MarcinkiewiczB. BrzóskaM. Moniuszko-JakoniukJ. Thyroid and parathyroid function and structure in male rats chronically exposed to cadmium.Pol. J. Environ. Stud.2008171113120
    [Google Scholar]
  41. MalarvizhiA. SaravananM. PoopalR.K. HurJ.H. RameshM. Accumulation of cadmium and antioxidant and hormonal responses in the Indian Major Carp Cirrhinus mrigala during acute and sublethal exposure.Water Air Soil Pollut.2017228831010.1007/s11270‑017‑3492‑4
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240288797240704134652
Loading
/content/journals/cmm/10.2174/0115665240288797240704134652
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher’s website. PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): Cadmium; cadmium exposure; T3; T4; thyroid function; thyroid gland; TSH
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test