Skip to content
2000
image of The Impact of Anaerobic & Aerobic Exercise on Oxidative Stress and Cellular Fitness in Healthy Trained Young Men: A Randomized Trial

Abstract

Introduction

Anaerobic and aerobic exercise are known to increase reactive oxygen species (ROS) and cytokines, which may lead to oxidative stress when ROS accumulate. However, the findings are still inconsistent, with most studies focusing on short exercise durations. This study aimed to compare the effects of anaerobic and aerobic exercise on oxidative stress and cellular fitness in healthy trained young men.

Methods

A randomized trial was conducted involving 18 young male subjects, divided into two groups: anaerobic (short-distance running) and aerobic (long-distance running), with each group exercising three times per week for one month. Blood samples were collected before and after the intervention. Malondialdehyde (MDA) reflected oxidative stress, ROS (HO), and antioxidant levels (total antioxidant capacity, superoxide dismutase/SOD, glutathione peroxidase/GPX) were detected using spectrophotometry, while Interleukin-6 (IL-6) and ATPase Inhibitory Factor 1 (ATPIF1) reflected cellular fitness, were measured using ELISA.

Results

Both anaerobic and aerobic exercise significantly reduced MDA levels. Aerobic exercise significantly increased SOD and total antioxidant capacity, while anaerobic exercise resulted in decreased GPX levels. No significant changes were observed in HO, IL-6, or ATPIF1 levels in either group.

Discussion

The findings suggest that aerobic exercise enhances the body’s antioxidant defense system more effectively than anaerobic exercise, contributing to reduced oxidative stress. The participants’ trained status may have influenced the SOD response. Limitations include a lack of control over lifestyle variables and limited generalizability due to the homogenous sample.

Conclusion

One month of exercise reduces oxidative stress in trained young men, with aerobic exercise showing greater benefits in boosting endogenous antioxidants.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240394040250829091446
2025-10-10
2025-10-18
Loading full text...

Full text loading...

References

  1. Ammar A. Chtourou H. Hammouda O. Relationship between biomarkers of muscle damage and redox status in response to a weightlifting training session: effect of time-of-day. Acta Physiol. Hung. 2016 103 2 243 261 10.1556/036.103.2016.2.11 28639862
    [Google Scholar]
  2. Ammar A. Turki M. Chtourou H. Pomegranate supplementation accelerates recovery of muscle damage and soreness and inflammatory markers after a weightlifting training session. PLoS One 2016 11 10 e0160305 10.1371/journal.pone.0160305 27764091
    [Google Scholar]
  3. Ammar A. Chtourou H. Hammouda O. Acute and delayed responses of C-reactive protein, malondialdehyde and antioxidant markers after resistance training session in elite weightlifters: Effect of time of day. Chronobiol. Int. 2015 32 9 1211 1222 10.3109/07420528.2015.1079215 26453313
    [Google Scholar]
  4. Ammar A. Turki M. Hammouda O. Effects of pomegranate juice supplementation on oxidative stress biomarkers following weightlifting exercise. Nutrients 2017 9 8 819 10.3390/nu9080819 28758938
    [Google Scholar]
  5. Aramouni K. Assaf R. Shaito A. Biochemical and cellular basis of oxidative stress: Implications for disease onset. J. Cell. Physiol. 2023 238 9 1951 1963 10.1002/jcp.31071 37436042
    [Google Scholar]
  6. Patel H. Alkhawam H. Madanieh R. Shah N. Kosmas C.E. Vittorio T.J. Aerobic vs anaerobic exercise training effects on the cardiovascular system. World J. Cardiol. 2017 9 2 134 138 10.4330/wjc.v9.i2.134 28289526
    [Google Scholar]
  7. Koubaa A. Koubaa S. Elloumi M. Effect of different warm-up durations on the plasma oxidative stress biomarkers following anaerobic exercise in amateur handball players. Appl. Sci. 2023 13 19 10576 10.3390/app131910576
    [Google Scholar]
  8. Bloomer R.J. Goldfarb A.H. Anaerobic exercise and oxidative stress: a review. Can. J. Appl. Physiol. 2004 29 3 245 263 10.1139/h04‑017 15199226
    [Google Scholar]
  9. Abed K.E. Rebai H. Bloomer R.J. Antioxidant status and oxidative stress at rest and in response to acute exercise in judokas and sedentary men. J. Strength Cond. Res. 2011 25 9 2400 2409 10.1519/JSC.0b013e3181fc5c35 21869626
    [Google Scholar]
  10. Ammar A. Trabelsi K. Boukhris O. Effects of aerobic-, anaerobic- and combined-based exercises on plasma oxidative stress biomarkers in healthy untrained young adults. Int. J. Environ. Res. Public Health 2020 17 7 2601 10.3390/ijerph17072601 32290148
    [Google Scholar]
  11. Kawamura T. Muraoka I. Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants 2018 7 9 119 10.3390/antiox7090119 30189660
    [Google Scholar]
  12. Quindry J.C. Stone W.L. King J. Broeder C. The effects of acute exercise on neutrophils and plasma oxidative stress. Med. Sci. Sports Exerc. 2003 35 7 1139 1145 10.1249/01.MSS.0000074568.82597.0B 12840634
    [Google Scholar]
  13. Bloomer R. Davis P. Consitt L. Wideman L. Plasma protein carbonyl response to increasing exercise duration in aerobically trained men and women. Int. J. Sports Med. 2007 28 1 21 25 10.1055/s‑2006‑924140 17024638
    [Google Scholar]
  14. Al-Horani R. A Narrative Review of Exercise-Induced Oxidative Stress: Oxidative DNA Damage Underlined. Open Sport Sci J 2022 15 10.2174/1875399X‑v15‑e2202220
    [Google Scholar]
  15. Bloomer R.J. Goldfarb A.H. McKenzie M.J. Oxidative stress response to aerobic exercise: Comparison of antioxidant supplements. Med. Sci. Sports Exerc. 2006 38 6 1098 1105 10.1249/01.mss.0000222839.51144.3e 16775552
    [Google Scholar]
  16. Bloomer R.J. Falvo M.J. Fry A.C. Schilling B.K. Smith W.A. Moore C.A. Oxidative stress response in trained men following repeated squats or sprints. Med. Sci. Sports Exerc. 2006 38 8 1436 1442 10.1249/01.mss.0000227408.91474.77 16888457
    [Google Scholar]
  17. Hoffman J.R. Im J. Kang J. Comparison of low- and high-intensity resistance exercise on lipid peroxidation: role of muscle oxygenation. J. Strength Cond. Res. 2007 21 1 118 122 10.1519/00124278‑200702000‑00022 17313297
    [Google Scholar]
  18. Tagliari N.J. Siqueira L.O. Soares J.F. Manfredini V. Reis V.M. Acute aerobic exercise does not cause DNA damage in trained individuals after a running session. Motricidade 2019 15 61 67 10.6063/motricidade.15829
    [Google Scholar]
  19. Donges C. Duffield R. Drinkwater E.J. Effects of resistance or aerobic exercise training on interleukin-6, C-reactive protein, and body composition. Med. Sci. Sports Exerc. 2010 42 2 304 313 10.1249/MSS.0b013e3181b117ca 20083961
    [Google Scholar]
  20. Makiel K. Suder A. Targosz A. Maciejczyk M. Haim A. Effect of exercise interventions on Irisin and interleukin-6 concentrations and indicators of carbohydrate metabolism in males with metabolic syndrome. J. Clin. Med. 2023 12 1 369 10.3390/jcm12010369 36615169
    [Google Scholar]
  21. Ali K.H. Arman J. Salar A. Salah H. Samaneh K.A. Glareie S. The effect of one session intense anaerobic exercise (Bruce test) on serum level of IL-6 and IL-33 in volybalist athletes. Ann. Biol. Res. 2014 5 99 104
    [Google Scholar]
  22. Pedersen B.K. Åkerström T.C.A. Nielsen A.R. Fischer C.P. Role of myokines in exercise and metabolism. J. Appl. Physiol. 2007 103 3 1093 1098 10.1152/japplphysiol.00080.2007 17347387
    [Google Scholar]
  23. Cappelli K. Felicetti M. Capomaccio S. Pieramati C. Silvestrelli M. Verini-Supplizi A. Exercise-induced up-regulation of MMP-1 and IL-8 genes in endurance horses. BMC Physiol. 2009 9 1 12 10.1186/1472‑6793‑9‑12 19552796
    [Google Scholar]
  24. Fonseca T.R. Mendes T.T. Ramos G.P. Aerobic training modulates the increase in plasma concentrations of cytokines in response to a session of exercise. J. Environ. Public Health 2021 2021 1 13 10.1155/2021/1304139 33510799
    [Google Scholar]
  25. Elgharib A.A. Khalifa D.S. Khodeer S.A. Mohsen Y. Masallat D.T. Interleukin-6 in exhaustive exercises and its correlation to bacteremia: a pilot study. Egyptian Journal of Basic and Applied Sciences 2023 10 1 25 32 10.1080/2314808X.2022.2124343
    [Google Scholar]
  26. Domin R. Pytka M. Niziński J. ATPase inhibitory factor 1-A novel marker of cellular fitness and exercise capacity? Int. J. Mol. Sci. 2022 23 23 15303 10.3390/ijms232315303 36499630
    [Google Scholar]
  27. Thirupathi A. Wang M. Lin J.K. Fekete G. Istvan B. Baker J.S. Effect of different exercise modalities on oxidative stress: A systematic review. BioMed Res. Int. 2021 10.1155/2021/1947928
    [Google Scholar]
  28. Aldoski D. Salim Al-Naemi R. Ahmed Khalid A. Effect of aerobic, anaerobic and resistance exercises on oxidative stress status in healthy sport practitioners. Academic Journal of Nawroz University 2023 12 4 478 487 10.25007/ajnu.v12n4a1135
    [Google Scholar]
  29. Buttar K.K. Kacker S. Saboo N. Normative data of maximal oxygen consumption (VO2 max) among healthy young adults: A cross-sectional study. J. Clin. Diagn. Res. 2022 16 7 CC31 CC34 10.7860/JCDR/2022/53660.16672
    [Google Scholar]
  30. Xiang L. Deng K. Mei Q. Population and age-based cardiorespiratory fitness level investigation and automatic prediction. Front. Cardiovasc. Med. 2022 8 758589 10.3389/fcvm.2021.758589 35071342
    [Google Scholar]
  31. Elgaddal N. Kramarow E.A. Reuben C. Physical activity among adults aged 18 and over: United States, 2020. NCHS Data Brief 2022 443 1 8 10.15620/cdc:120213
    [Google Scholar]
  32. Hardiany N.S. Sucitra S. Paramita R. Profile of malondialdehyde (MDA) and catalase specific activity in plasma of elderly woman. Health Sci J Indonesia 2020 10 2 132 136 10.22435/hsji.v12i2.2239
    [Google Scholar]
  33. Ward C.W. Prosser B.L. Lederer W.J. Mechanical stretch-induced activation of ROS/RNS signaling in striated muscle. Antioxid. Redox Signal. 2014 20 6 929 936 10.1089/ars.2013.5517 23971496
    [Google Scholar]
  34. Gong M.C. Arbogast S. Guo Z. Mathenia J. Su W. Reid M.B. Calcium-independent phospholipase A 2 modulates cytosolic oxidant activity and contractile function in murine skeletal muscle cells. J. Appl. Physiol. 2006 100 2 399 405 10.1152/japplphysiol.00873.2005 16166238
    [Google Scholar]
  35. Powers S.K. Deminice R. Ozdemir M. Yoshihara T. Bomkamp M.P. Hyatt H. Exercise-induced oxidative stress: Friend or foe? J. Sport Health Sci. 2020 9 5 415 425 10.1016/j.jshs.2020.04.001 32380253
    [Google Scholar]
  36. Jackson M.J. Vasilaki A. McArdle A. Cellular mechanisms underlying oxidative stress in human exercise. Free Radic. Biol. Med. 2016 98 13 17 10.1016/j.freeradbiomed.2016.02.023 26912036
    [Google Scholar]
  37. Lauer N. Suvorava T. Rüther U. Critical involvement of hydrogen peroxide in exercise-induced up-regulation of endothelial NO synthase. Cardiovasc. Res. 2005 65 1 254 262 10.1016/j.cardiores.2004.09.010 15621054
    [Google Scholar]
  38. Cai H. Davis M.E. Drummond G.R. Harrison D.G. Meyer W. Harrison D.G. Induction of endothelial NO synthase by hydrogen peroxide via a Ca(2+)/calmodulin-dependent protein kinase II/janus kinase 2-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 2001 21 10 1571 1576 10.1161/hq1001.097028 11597928
    [Google Scholar]
  39. Zhou Y. Zhang X. Baker J.S. Davison G.W. Yan X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024 27 5 109643 10.1016/j.isci.2024.109643 38650987
    [Google Scholar]
  40. Steinbacher P. Eckl P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules 2015 5 2 356 377 10.3390/biom5020356 25866921
    [Google Scholar]
  41. Wang Y. Luo D. Jiang H. Effects of physical exercise on biomarkers of oxidative stress in healthy subjects: A meta-analysis of randomized controlled trials. Open Life Sci. 2023 18 1 20220668 10.1515/biol‑2022‑0668 37589007
    [Google Scholar]
  42. Rudarli Nalcakan G. Onur E. Oran A. Varol S.R. Comparison of sprint interval and continuous endurance training on oxidative stress and antioxidant adaptations in young healthy adults. Balt J Health Phys Act 2021 13 2 27 35 10.29359/BJHPA.13.2.03
    [Google Scholar]
  43. Bloomer R.J. Smith W.A. Oxidative stress in response to aerobic and anaerobic power testing: Influence of exercise training and carnitine supplementation. Res. Sports Med. 2009 17 1 1 16 10.1080/15438620802678289 19266389
    [Google Scholar]
  44. Gandouzi I. Fekih S. Selmi O. Oxidative status alteration during aerobic-dominant mixed and anaerobic-dominant mixed effort in judokas. Heliyon 2023 9 10 e20442 10.1016/j.heliyon.2023.e20442 37829795
    [Google Scholar]
  45. Liberali R. Wilhelm Filho D. Petroski E.L. Aerobic and anaerobic training sessions promote antioxidant changes in young male soccer players. MedicalExpress 2016 3 1 M160107 10.5935/MedicalExpress.2016.01.07
    [Google Scholar]
  46. Nash D. Hughes M.G. Butcher L. IL ‐6 signaling in acute exercise and chronic training: Potential consequences for health and athletic performance. Scand. J. Med. Sci. Sports 2023 33 1 4 19 10.1111/sms.14241 36168944
    [Google Scholar]
  47. Steensberg A. van Hall G. Osada T. Sacchetti M. Saltin B. Pedersen B.K. Production of interleukin‐6 in contracting human skeletal muscles can account for the exercise‐induced increase in plasma interleukin‐6. J. Physiol. 2000 529 1 237 242 10.1111/j.1469‑7793.2000.00237.x 11080265
    [Google Scholar]
  48. Steensberg A. Febbraio M.A. Osada T. Interleukin‐6 production in contracting human skeletal muscle is influenced by pre‐exercise muscle glycogen content. J. Physiol. 2001 537 2 633 639 10.1111/j.1469‑7793.2001.00633.x 11731593
    [Google Scholar]
  49. Markovitch D. Tyrrell R.M. Thompson D. Acute moderate-intensity exercise in middle-aged men has neither an anti- nor proinflammatory effect. J. Appl. Physiol. 2008 105 1 260 265 10.1152/japplphysiol.00096.2008 18467550
    [Google Scholar]
  50. Azizbeigi K. Stannard S.R. Atashak S. Mosalman Haghighi M. Antioxidant enzymes and oxidative stress adaptation to exercise training: Comparison of endurance, resistance, and concurrent training in untrained males. J. Exerc. Sci. Fit. 2014 12 1 1 6 10.1016/j.jesf.2013.12.001
    [Google Scholar]
  51. Alghadir A.H. Gabr S.A. Iqbal Z.A. Al-Eisa E. Association of physical activity, vitamin E levels, and total antioxidant capacity with academic performance and executive functions of adolescents. BMC Pediatr. 2019 19 1 156 10.1186/s12887‑019‑1528‑1 31101100
    [Google Scholar]
  52. Wiecek M. Maciejczyk M. Szymura J. Szygula Z. Kantorowicz M. Changes in non-enzymatic antioxidants in the blood following anaerobic exercise in men and women. PLoS One 2015 10 11 e0143499 10.1371/journal.pone.0143499 26600020
    [Google Scholar]
  53. Yunus M. The influence of 8-week aerobic exercise on antioxidant enzyme on young men. Interdisciplinary Social Studies 2023 2 9 2372 2378 10.55324/iss.v2i9.484
    [Google Scholar]
  54. Carrera-Quintanar L. Funes L. Herranz-López M. Acute antioxidant response to two types of exercises: 2000 m run vs. burpee test. Antioxidants 2024 13 2 144 10.3390/antiox13020144 38397742
    [Google Scholar]
  55. Fagaras SP Popvici IM Radi LE The relationship between physical activity and oxidative stress in athletes. 2020 32 4 10.26717/BJSTR.2020.32.005278
    [Google Scholar]
  56. Azizbeigi K. Azarbayjani M.A. Peeri M. Agha-alinejad H. Stannard S. The effect of progressive resistance training on oxidative stress and antioxidant enzyme activity in erythrocytes in untrained men. Int. J. Sport Nutr. Exerc. Metab. 2013 23 3 230 238 10.1123/ijsnem.23.3.230 23239675
    [Google Scholar]
  57. Daud D.M. Karim A.A.H. Mohamad N. Hamid N.A. Hamid A. Zurinah W. Effect of exercise intensity on antioxidant enzymatic activities in sedentary adults. Malays J Biochem Molec Biol 2006 13 37 47
    [Google Scholar]
  58. Moore S.C. Lee I.M. Weiderpass E. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern. Med. 2016 176 6 816 825 10.1001/jamainternmed.2016.1548 27183032
    [Google Scholar]
  59. Holmes M.D. Chen W.Y. Feskanich D. Kroenke C.H. Colditz G.A. Physical activity and survival after breast cancer diagnosis. JAMA 2005 293 20 2479 2486 10.1001/jama.293.20.2479 15914748
    [Google Scholar]
  60. Kenfield S.A. Stampfer M.J. Giovannucci E. Chan J.M. Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study. J. Clin. Oncol. 2011 29 6 726 732 10.1200/JCO.2010.31.5226 21205749
    [Google Scholar]
  61. Meyerhardt J.A. Giovannucci E.L. Holmes M.D. Physical activity and survival after colorectal cancer diagnosis. J. Clin. Oncol. 2006 24 22 3527 3534 10.1200/JCO.2006.06.0855 16822844
    [Google Scholar]
  62. Hojman P. Gehl J. Christensen J.F. Pedersen B.K. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018 27 1 10 21 10.1016/j.cmet.2017.09.015 29056514
    [Google Scholar]
  63. Thomas R.J. Kenfield S.A. Jimenez A. Exercise-induced biochemical changes and their potential influence on cancer: a scientific review. Br. J. Sports Med. 2017 51 8 640 644 10.1136/bjsports‑2016‑096343 27993842
    [Google Scholar]
  64. Korsager Larsen M. Matchkov V.V. Hypertension and physical exercise: The role of oxidative stress. Medicina 2016 52 1 19 27 10.1016/j.medici.2016.01.005 26987496
    [Google Scholar]
  65. Lavie C.J. Arena R. Swift D.L. Exercise and the cardiovascular system: Clinical science and cardiovascular outcomes. Circ. Res. 2015 117 2 207 219 10.1161/CIRCRESAHA.117.305205 26139859
    [Google Scholar]
  66. Yu Y. Wang D. Research progress on the effect of exercise on homocysteine. Curr. Med. Chem. 2025 ••• 32 10.2174/0109298673354271250413015339 40325817
    [Google Scholar]
  67. Paillard T. Rolland Y. de Souto Barreto P. Protective effects of physical exercise in Alzheimer’s disease and Parkinson’s disease: a narrative review. J. Clin. Neurol. 2015 11 3 212 219 10.3988/jcn.2015.11.3.212 26174783
    [Google Scholar]
  68. Barnham K.J. Masters C.L. Bush A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004 3 3 205 214 10.1038/nrd1330 15031734
    [Google Scholar]
  69. Lin M.T. Beal M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006 443 7113 787 795 10.1038/nature05292 17051205
    [Google Scholar]
  70. Liu Z. Zhou T. Ziegler A.C. Dimitrion P. Zuo L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev. 2017 2017 1 2525967 10.1155/2017/2525967 28785371
    [Google Scholar]
  71. Lucas S.J.E. Cotter J.D. Brassard P. Bailey D.M. High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence. J. Cereb. Blood Flow Metab. 2015 35 6 902 911 10.1038/jcbfm.2015.49 25833341
    [Google Scholar]
  72. Zhu M. Chen W. Zhang J. Aerobic exercise, an effective intervention for cognitive impairment after ischemic stroke. Front. Aging Neurosci. 2025 17 1514271 10.3389/fnagi.2025.1514271 40256392
    [Google Scholar]
  73. MacKay-Lyons M. Billinger S.A. Eng J.J. Aerobic exercise recommendations to optimize best practices in care after stroke: Aerobics 2019 update. Phys. Ther. 2020 100 1 149 156 10.1093/ptj/pzz153 31596465
    [Google Scholar]
  74. Shamsnia E. Matinhomaee H. Azarbayjani M.A. Peeri M. The effect of aerobic exercise on oxidative stress in skeletal muscle tissue: A narrative review. Gene Cell Tissue 2023 10 4 e131964 10.5812/gct‑131964
    [Google Scholar]
  75. Ye Y. Lin H. Wan M. The effects of aerobic exercise on oxidative stress in older adults: A systematic review and meta-analysis. Front. Physiol. 2021 12 701151 10.3389/fphys.2021.701151 34675813
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240394040250829091446
Loading
/content/journals/cmm/10.2174/0115665240394040250829091446
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: oxidative stress ; aerobic ; anaerobic ; cellular fitness ; Exercise
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test