Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Prior studies established associations between gut microbiota and myocardial interstitial fibrosis. Nevertheless, the causal relationships and potential intermediaries remain unknown. Thus, we employed a Mendelian randomization strategy to explore whether gut microbiota causally influence myocardial interstitial fibrosis and to assess whether plasma metabolites serve as potential intermediaries in this pathway.

Methods

A two-sample Mendelian randomization approach was performed, utilizing genome-wide association studies to examine the causal relationship between gut microbiota (n= 18,340) and myocardial interstitial fibrosis (n=41,505). Additionally, an investigation was conducted to determine the potential mediation by four plasma metabolites (n=8,299) a two-step Mendelian randomization analysis. Inverse variance weighted method was the primary method employed in Mendelian randomization, and complementary analyses were conducted alongside to enhance the robustness of the results.

Results

Mendelian randomization analysis indicated suggestive associations of three microbial taxa with myocardial interstitial fibrosis. The most significant taxon was the genus (β [SE], -0.1272 [0.0347], P = 0.0002). Reverse Mendelian randomization analyses revealed no evidence of myocardial interstitial fibrosis affecting these three microbial taxa. In the two-step Mendelian randomization analysis involving four plasma metabolites, it was found that plasma sphingomyelin levels mediated the causal effects of genus on myocardial interstitial fibrosis (proportion mediated = 14.2%, 95% CI = 1.4-27.0%).

Conclusion

The study validates the causality between particular gut microbial taxa and myocardial interstitial fibrosis, and suggests that plasma sphingomyelin might mediate this association. These findings offer a novel perspective on myocardial interstitial fibrosis prevention, and underscore the significance of plasma sphingomyelin in human health and disease.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240393776250523073829
2025-07-10
2025-12-22
Loading full text...

Full text loading...

References

  1. GonzálezA. SchelbertE.B. DíezJ. ButlerJ. Myocardial interstitial fibrosis in heart failure.J. Am. Coll. Cardiol.201871151696170610.1016/j.jacc.2018.02.021 29650126
    [Google Scholar]
  2. LuM. ZhuL. PrasadS.K. ZhaoS. Magnetic resonance imaging mimicking pathology detects myocardial fibrosis: A door to hope for improving the whole course management.Sci. Bull.202368986486710.1016/j.scib.2023.04.014 37080852
    [Google Scholar]
  3. NguyenM. KiriazisH. GaoX. Cardiac fibrosis and arrhythmogenesis.1st ed TerjungR. Comprehensive Physiology.Wiley20171009104910.1002/cphy.c160046
    [Google Scholar]
  4. AokiT. FukumotoY. SugimuraK. Prognostic impact of myocardial interstitial fibrosis in non-ischemic heart failure. -Comparison between preserved and reduced ejection fraction heart failure.-.Circ. J.201175112605261310.1253/circj.CJ‑11‑0568 21821961
    [Google Scholar]
  5. FanY. PedersenO. Gut microbiota in human metabolic health and disease.Nat. Rev. Microbiol.2021191557110.1038/s41579‑020‑0433‑9 32887946
    [Google Scholar]
  6. TangW.H.W. WangZ. LevisonB.S. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.N. Engl. J. Med.2013368171575158410.1056/NEJMoa1109400 23614584
    [Google Scholar]
  7. LiuA. MaT. XuN. Adjunctive probiotics alleviates asthmatic symptoms via modulating the gut microbiome and serum metabolome.Microbiol. Spectr.20219e00859e2110.1128/Spectrum.00859‑21
    [Google Scholar]
  8. ZhangY. WangY. KeB. DuJ. TMAO: How gut microbiota contributes to heart failure.Transl. Res.202122810912510.1016/j.trsl.2020.08.007 32841736
    [Google Scholar]
  9. CuiX. YeL. LiJ. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients.Sci. Rep.20188163510.1038/s41598‑017‑18756‑2 29330424
    [Google Scholar]
  10. EmdinC.A. KheraA.V. KathiresanS. Mendelian randomization.JAMA2017318191925192610.1001/jama.2017.17219
    [Google Scholar]
  11. DuckworthA. GibbonsM.A. AllenR.J. Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease: A mendelian randomisation study.Lancet Respir. Med.20219328529410.1016/S2213‑2600(20)30364‑7 33197388
    [Google Scholar]
  12. CarterA.R. GillD. DaviesN.M. Understanding the consequences of education inequality on cardiovascular disease: Mendelian randomisation study.BMJ2019365l185510.1136/bmj.l1855 31122926
    [Google Scholar]
  13. SkrivankovaV.W. RichmondR.C. WoolfB.A.R. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): Explanation and elaboration.BMJ2021375n223310.1136/bmj.n2233 34702754
    [Google Scholar]
  14. BoehmF.J. ZhouX. Statistical methods for Mendelian randomization in genome-wide association studies: A review.Comput. Struct. Biotechnol. J.2022202338235110.1016/j.csbj.2022.05.015 35615025
    [Google Scholar]
  15. KurilshikovA. Medina-GomezC. BacigalupeR. Large-scale association analyses identify host factors influencing human gut microbiome composition.Nat. Genet.202153215616510.1038/s41588‑020‑00763‑1 33462485
    [Google Scholar]
  16. ChenY. LuT. Pettersson-KymmerU. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases.Nat. Genet.2023551445310.1038/s41588‑022‑01270‑1 36635386
    [Google Scholar]
  17. NauffalV. Di AchilleP. Klarqvist MarcusD.R. Genetics of myocardial interstitial fibrosis in the human heart and association with disease.Nat. Genet.20235577778610.1038/s41588‑023‑01371‑5
    [Google Scholar]
  18. MewtonN. LiuC.Y. CroisilleP. BluemkeD. LimaJ.A.C. Assessment of myocardial fibrosis with cardiovascular magnetic resonance.J. Am. Coll. Cardiol.201157889190310.1016/j.jacc.2010.11.013 21329834
    [Google Scholar]
  19. DiaoK. YangZ. XuH. Histologic validation of myocardial fibrosis measured by T1 mapping: A systematic review and meta-analysis.J. Cardiovasc. Magn. Reson.20161819210.1186/s12968‑016‑0313‑7 27955698
    [Google Scholar]
  20. BurgessS. ThompsonS.G. Avoiding bias from weak instruments in Mendelian randomization studies.Int. J. Epidemiol.201140375576410.1093/ije/dyr036 21414999
    [Google Scholar]
  21. VerbanckM. ChenC.Y. NealeB. DoR. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases.Nat. Genet.201850569369810.1038/s41588‑018‑0099‑7 29686387
    [Google Scholar]
  22. LvY. HuangB. XuL. WuX. Elucidating the causal dynamics between inflammatory proteins and atrial fibrillation risk through bidirectional mendelian randomization.Curr. Mol. Med.20252510.2174/0115665240347233250119190837 39838668
    [Google Scholar]
  23. ChenW. ZhangS. WuJ. Butyrate-producing bacteria and the gut-heart axis in atherosclerosis.Clin. Chim. Acta202050723624110.1016/j.cca.2020.04.037 32376324
    [Google Scholar]
  24. GlorieuxG. NigamS.K. VanholderR. VerbekeF. Role of the microbiome in gut-heart-kidney cross talk.Circ. Res.202313281064108310.1161/CIRCRESAHA.123.321763 37053274
    [Google Scholar]
  25. TrøseidM. AndersenG.Ø. BrochK. HovJ.R. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions.EBioMedicine20205210264910.1016/j.ebiom.2020.102649 32062353
    [Google Scholar]
  26. LamV. SuJ. KoprowskiS. Intestinal microbiota determine severity of myocardial infarction in rats.FASEB J.20122641727173510.1096/fj.11‑197921 22247331
    [Google Scholar]
  27. MarquesF.Z. NelsonE. ChuP.Y. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice.Circulation20171351096497710.1161/CIRCULATIONAHA.116.024545 27927713
    [Google Scholar]
  28. CostanzaA.C. MoscavitchS.D. Faria NetoH.C.C. MesquitaE.T. Probiotic therapy with Saccharomyces boulardii for heart failure patients: A randomized, double-blind, placebo-controlled pilot trial.Int. J. Cardiol.201517934835010.1016/j.ijcard.2014.11.034 25464484
    [Google Scholar]
  29. EffendiR.M.R.A. AnshoryM. KalimH. Akkermansia muciniphila and Faecalibacterium prausnitzii in immune-related diseases.Microorganisms20221012238210.3390/microorganisms10122382 36557635
    [Google Scholar]
  30. YeohY.K. ZuoT. LuiG.C.Y. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19.Gut202170469870610.1136/gutjnl‑2020‑323020 33431578
    [Google Scholar]
  31. ForslundS.K. Fasting intervention and its clinical effects on the human host and microbiome.J. Intern. Med.2023293216618310.1111/joim.13574 36271842
    [Google Scholar]
  32. MohebaliN. EkatK. KreikemeyerB. BreitrückA. Barrier protection and recovery effects of gut commensal bacteria on differentiated intestinal epithelial cells in vitro.Nutrients2020128225110.3390/nu12082251 32731411
    [Google Scholar]
  33. LozhkinA. VendrovA.E. Ramos-MondragónR. Mitochondrial oxidative stress contributes to diastolic dysfunction through impaired mitochondrial dynamics.Redox Biol.20225710247410.1016/j.redox.2022.102474 36183542
    [Google Scholar]
  34. ChenY. LiuY. WangY. Prevotellaceae produces butyrate to alleviate PD-1/PD-L1 inhibitor-related cardiotoxicity via PPARα-CYP4X1 axis in colonic macrophages.J. Exp. Clin. Cancer Res.2022411110.1186/s13046‑021‑02201‑4 34980222
    [Google Scholar]
  35. NilssonÅ. DuanR.D. Absorption and lipoprotein transport of sphingomyelin.J. Lipid Res.200647115417110.1194/jlr.M500357‑JLR200 16251722
    [Google Scholar]
  36. PiH. XiaL. RalphD.D. Metabolomic signatures associated with pulmonary arterial hypertension outcomes.Circ. Res.2023132325426610.1161/CIRCRESAHA.122.321923 36597887
    [Google Scholar]
  37. Pongrac BarlovicD. HarjutsaloV. SandholmN. ForsblomC. GroopP.H. Sphingomyelin and progression of renal and coronary heart disease in individuals with type 1 diabetes.Diabetologia20206391847185610.1007/s00125‑020‑05201‑9 32564139
    [Google Scholar]
  38. SubbaiahP.V. JiangX.C. BelikovaN.A. AizeziB. HuangZ.H. ReardonC.A. Regulation of plasma cholesterol esterification by sphingomyelin: Effect of physiological variations of plasma sphingomyelin on lecithin-cholesterol acyltransferase activity.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20121821690891310.1016/j.bbalip.2012.02.007 22370449
    [Google Scholar]
  39. DengX. ZhangC. WangP. Cardiovascular benefits of empagliflozin are associated with gut microbiota and plasma metabolites in type 2 diabetes.J. Clin. Endocrinol. Metab.202210771888189610.1210/clinem/dgac210 35397165
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240393776250523073829
Loading
/content/journals/cmm/10.2174/0115665240393776250523073829
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test