Skip to content
2000
image of Plasma Sphingomyelin Levels Mediate the Causal Relationship Between Gut Microbiota and Myocardial Interstitial Fibrosis: A Mendelian Randomization Study

Abstract

Background

Prior studies established associations between gut microbiota and myocardial interstitial fibrosis. Nevertheless, the causal relationships and potential intermediaries remain unknown. Thus, we employed a Mendelian randomization strategy to explore whether gut microbiota causally influence myocardial interstitial fibrosis and to assess whether plasma metabolites serve as potential intermediaries in this pathway.

Methods

A two-sample Mendelian randomization approach was performed, utilizing genome-wide association studies to examine the causal relationship between gut microbiota (n= 18,340) and myocardial interstitial fibrosis (n=41,505). Additionally, an investigation was conducted to determine the potential mediation by four plasma metabolites (n=8,299) via a two-step Mendelian randomization analysis. Inverse variance weighted method was the primary method employed in Mendelian randomization, and complementary analyses were conducted alongside to enhance the robustness of the results.

Results

Mendelian randomization analysis indicated suggestive associations of three microbial taxa with myocardial interstitial fibrosis. The most significant taxon was the genus (β [SE], -0.1272 [0.0347], P = 0.0002). Reverse Mendelian randomization analyses revealed no evidence of myocardial interstitial fibrosis affecting these three microbial taxa. In the two-step Mendelian randomization analysis involving four plasma metabolites, it was found that plasma sphingomyelin levels mediated the causal effects of genus on myocardial interstitial fibrosis (proportion mediated = 14.2%, 95% CI = 1.4-27.0%).

Conclusion

The study validates the causality between particular gut microbial taxa and myocardial interstitial fibrosis, and suggests that plasma sphingomyelin might mediate this association. These findings offer a novel perspective on myocardial interstitial fibrosis prevention, and underscore the significance of plasma sphingomyelin in human health and disease.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240393776250523073829
2025-07-10
2025-09-14
Loading full text...

Full text loading...

References

  1. González A. Schelbert E.B. Díez J. Butler J. Myocardial interstitial fibrosis in heart failure. J. Am. Coll. Cardiol. 2018 71 15 1696 1706 10.1016/j.jacc.2018.02.021 29650126
    [Google Scholar]
  2. Lu M. Zhu L. Prasad S.K. Zhao S. Magnetic resonance imaging mimicking pathology detects myocardial fibrosis: A door to hope for improving the whole course management. Sci. Bull. 2023 68 9 864 867 10.1016/j.scib.2023.04.014 37080852
    [Google Scholar]
  3. Nguyen M. Kiriazis H. Gao X. Cardiac fibrosis and arrhythmogenesis. In: Terjung R, Ed. Comprehensive Physiology. 1st ed Wiley 2017 1009 1049 10.1002/cphy.c160046
    [Google Scholar]
  4. Aoki T. Fukumoto Y. Sugimura K. Prognostic impact of myocardial interstitial fibrosis in non-ischemic heart failure. -Comparison between preserved and reduced ejection fraction heart failure.-. Circ. J. 2011 75 11 2605 2613 10.1253/circj.CJ‑11‑0568 21821961
    [Google Scholar]
  5. Fan Y. Pedersen O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021 19 1 55 71 10.1038/s41579‑020‑0433‑9 32887946
    [Google Scholar]
  6. Tang W.H.W. Wang Z. Levison B.S. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013 368 17 1575 1584 10.1056/NEJMoa1109400 23614584
    [Google Scholar]
  7. Liu A. Ma T. Xu N. Adjunctive probiotics alleviates asthmatic symptoms via modulating the gut microbiome and serum metabolome. Microbiol. Spectr. 2021 9 e00859 e21 10.1128/Spectrum.00859‑21
    [Google Scholar]
  8. Zhang Y. Wang Y. Ke B. Du J. TMAO: How gut microbiota contributes to heart failure. Transl. Res. 2021 228 109 125 10.1016/j.trsl.2020.08.007 32841736
    [Google Scholar]
  9. Cui X. Ye L. Li J. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci. Rep. 2018 8 1 635 10.1038/s41598‑017‑18756‑2 29330424
    [Google Scholar]
  10. Emdin C.A. Khera A.V. Kathiresan S. Mendelian randomization. JAMA 2017 318 19 1925 1926 10.1001/jama.2017.17219
    [Google Scholar]
  11. Duckworth A. Gibbons M.A. Allen R.J. Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease: A mendelian randomisation study. Lancet Respir. Med. 2021 9 3 285 294 10.1016/S2213‑2600(20)30364‑7 33197388
    [Google Scholar]
  12. Carter A.R. Gill D. Davies N.M. Understanding the consequences of education inequality on cardiovascular disease: Mendelian randomisation study. BMJ 2019 365 l1855 10.1136/bmj.l1855 31122926
    [Google Scholar]
  13. Skrivankova V.W. Richmond R.C. Woolf B.A.R. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): Explanation and elaboration. BMJ 2021 375 2233 10.1136/bmj.n2233 34702754
    [Google Scholar]
  14. Boehm F.J. Zhou X. Statistical methods for Mendelian randomization in genome-wide association studies: A review. Comput. Struct. Biotechnol. J. 2022 20 2338 2351 10.1016/j.csbj.2022.05.015 35615025
    [Google Scholar]
  15. Kurilshikov A. Medina-Gomez C. Bacigalupe R. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 2021 53 2 156 165 10.1038/s41588‑020‑00763‑1 33462485
    [Google Scholar]
  16. Chen Y. Lu T. Pettersson-Kymmer U. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat. Genet. 2023 55 1 44 53 10.1038/s41588‑022‑01270‑1 36635386
    [Google Scholar]
  17. Nauffal V. Di Achille P. Klarqvist Marcus D.R. Genetics of myocardial interstitial fibrosis in the human heart and association with disease. Nat. Genet. 2023 55 777 786 10.1038/s41588‑023‑01371‑5
    [Google Scholar]
  18. Mewton N. Liu C.Y. Croisille P. Bluemke D. Lima J.A.C. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 2011 57 8 891 903 10.1016/j.jacc.2010.11.013 21329834
    [Google Scholar]
  19. Diao K. Yang Z. Xu H. Histologic validation of myocardial fibrosis measured by T1 mapping: A systematic review and meta-analysis. J. Cardiovasc. Magn. Reson. 2016 18 1 92 10.1186/s12968‑016‑0313‑7 27955698
    [Google Scholar]
  20. Burgess S. Thompson S.G. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 2011 40 3 755 764 10.1093/ije/dyr036 21414999
    [Google Scholar]
  21. Verbanck M. Chen C.Y. Neale B. Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018 50 5 693 698 10.1038/s41588‑018‑0099‑7 29686387
    [Google Scholar]
  22. Lv Y. Huang B. Xu L. Wu X. Elucidating the causal dynamics between inflammatory proteins and atrial fibrillation risk through bidirectional mendelian randomization. Curr. Mol. Med. 2025 25 10.2174/0115665240347233250119190837 39838668
    [Google Scholar]
  23. Chen W. Zhang S. Wu J. Butyrate-producing bacteria and the gut-heart axis in atherosclerosis. Clin. Chim. Acta 2020 507 236 241 10.1016/j.cca.2020.04.037 32376324
    [Google Scholar]
  24. Glorieux G. Nigam S.K. Vanholder R. Verbeke F. Role of the microbiome in gut-heart-kidney cross talk. Circ. Res. 2023 132 8 1064 1083 10.1161/CIRCRESAHA.123.321763 37053274
    [Google Scholar]
  25. Trøseid M. Andersen G.Ø. Broch K. Hov J.R. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine 2020 52 102649 10.1016/j.ebiom.2020.102649 32062353
    [Google Scholar]
  26. Lam V. Su J. Koprowski S. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 2012 26 4 1727 1735 10.1096/fj.11‑197921 22247331
    [Google Scholar]
  27. Marques F.Z. Nelson E. Chu P.Y. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 2017 135 10 964 977 10.1161/CIRCULATIONAHA.116.024545 27927713
    [Google Scholar]
  28. Costanza A.C. Moscavitch S.D. Faria Neto H.C.C. Mesquita E.T. Probiotic therapy with Saccharomyces boulardii for heart failure patients: A randomized, double-blind, placebo-controlled pilot trial. Int. J. Cardiol. 2015 179 348 350 10.1016/j.ijcard.2014.11.034 25464484
    [Google Scholar]
  29. Effendi R.M.R.A. Anshory M. Kalim H. Akkermansia muciniphila and Faecalibacterium prausnitzii in immune-related diseases. Microorganisms 2022 10 12 2382 10.3390/microorganisms10122382 36557635
    [Google Scholar]
  30. Yeoh Y.K. Zuo T. Lui G.C.Y. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021 70 4 698 706 10.1136/gutjnl‑2020‑323020 33431578
    [Google Scholar]
  31. Forslund S.K. Fasting intervention and its clinical effects on the human host and microbiome. J. Intern. Med. 2023 293 2 166 183 10.1111/joim.13574 36271842
    [Google Scholar]
  32. Mohebali N. Ekat K. Kreikemeyer B. Breitrück A. Barrier protection and recovery effects of gut commensal bacteria on differentiated intestinal epithelial cells in vitro. Nutrients 2020 12 8 2251 10.3390/nu12082251 32731411
    [Google Scholar]
  33. Lozhkin A. Vendrov A.E. Ramos-Mondragón R. Mitochondrial oxidative stress contributes to diastolic dysfunction through impaired mitochondrial dynamics. Redox Biol. 2022 57 102474 10.1016/j.redox.2022.102474 36183542
    [Google Scholar]
  34. Chen Y. Liu Y. Wang Y. Prevotellaceae produces butyrate to alleviate PD-1/PD-L1 inhibitor-related cardiotoxicity via PPARα-CYP4X1 axis in colonic macrophages. J. Exp. Clin. Cancer Res. 2022 41 1 1 10.1186/s13046‑021‑02201‑4 34980222
    [Google Scholar]
  35. Nilsson Å. Duan R.D. Absorption and lipoprotein transport of sphingomyelin. J. Lipid Res. 2006 47 1 154 171 10.1194/jlr.M500357‑JLR200 16251722
    [Google Scholar]
  36. Pi H. Xia L. Ralph D.D. Metabolomic signatures associated with pulmonary arterial hypertension outcomes. Circ. Res. 2023 132 3 254 266 10.1161/CIRCRESAHA.122.321923 36597887
    [Google Scholar]
  37. Pongrac Barlovic D. Harjutsalo V. Sandholm N. Forsblom C. Groop P.H. Sphingomyelin and progression of renal and coronary heart disease in individuals with type 1 diabetes. Diabetologia 2020 63 9 1847 1856 10.1007/s00125‑020‑05201‑9 32564139
    [Google Scholar]
  38. Subbaiah P.V. Jiang X.C. Belikova N.A. Aizezi B. Huang Z.H. Reardon C.A. Regulation of plasma cholesterol esterification by sphingomyelin: Effect of physiological variations of plasma sphingomyelin on lecithin-cholesterol acyltransferase activity. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2012 1821 6 908 913 10.1016/j.bbalip.2012.02.007 22370449
    [Google Scholar]
  39. Deng X. Zhang C. Wang P. Cardiovascular benefits of empagliflozin are associated with gut microbiota and plasma metabolites in type 2 diabetes. J. Clin. Endocrinol. Metab. 2022 107 7 1888 1896 10.1210/clinem/dgac210 35397165
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240393776250523073829
Loading
/content/journals/cmm/10.2174/0115665240393776250523073829
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test