Current Medicinal Chemistry - Online First
Description text for Online First listing goes here...
41 - 60 of 190 results
-
-
MiRNA Regulations in Cardiotoxicity Induced by Oncologic Therapies and Possible Immune Response
Available online: 19 August 2025More LessAnti-cancer therapy offers significant risks for cardiovascular diseases, including hypertension, thromboembolic ischaemia, arrhythmias, dyslipidaemia, hyperglycemia, obesity, and high cholesterol. Cardiotoxicity is a leading cause of elevated mortality rates among cancer patients, and anti-cancer drugs often contribute to this issue. Emerging research highlights the role of microRNA (miRNAs) in regulating drug-induced cardiotoxicity by influencing genetic, epigenetic, transcriptional, and translational processes. MiRNAs have potential as biomarkers for early detection and treatment. Moreover, novel diagnostic and therapeutic approaches targeting miRNAs could improve the clinical management of cardiotoxicity in cancer patients. This study is based on regulatory mechanisms behind cardiotoxicity, including oxidative stress, vascular homeostasis, mitochondrial damage, apoptosis, and inflammation, and explores strategies for managing these complications in cancer therapy.
-
-
-
Medical Artificial Intelligence: Opportunities and Challenges In Infectious Disease Management
Available online: 19 August 2025More LessGlobally, millions of individuals suffer from infectious diseases, which are major public health concerns caused by bacteria, fungi, viruses, or parasites. These diseases can be transmitted directly or indirectly from person to person, potentially leading to a pandemic or epidemic. Several advancements have been made in molecular genetics for infectious disease management, which include pharmaceutical chemistry, medicine, and infection tracking; however, these advancements still lack control over human infections. Multidisciplinary cooperation is needed to address and control human infections. Advancements in scientific tools have empowered scientists to enhance epidemic prediction, gain insights into pathogen specificity, and pinpoint potential targets for drug development. Artificial intelligence (AI)-based methodologies demonstrate significant potential for integrating large-scale quantitative and omics data, enabling effective handling of biological complexity. Machine Learning (ML) plays a crucial role in AI by leveraging data to train predictive models. AI can enhance diagnostic accuracy through objective pattern recognition, standardize infection diagnoses with implications for Infection Prevention and Control (IPC), and aid in generalizing IPC knowledge. Additionally, AI-powered hand hygiene applications have the potential to drive behavioral change, although further evaluation in diverse clinical contexts is necessary. This review article highlights AI's potential in improving the healthcare system in different aspects of infectious diseases management, such as monitoring disease growth, using a real-time chatbot for patient assistance, using image processing for diagnosis, and developing new treatment algorithms. The study also discusses future directions for novel vaccine and drug development, as well as other aspects, such as the need for physicians and healthcare professionals to receive AI system training for their correct use and the ability of doctors to identify and resolve any problems that may arise with AI.
-
-
-
Uridines Modified with Sulfur or Selenium in U-G Wobble Pairs Matter for tRNA Function
Authors: Katarzyna Kulik and Barbara NawrotAvailable online: 18 August 2025More LessTransfer RNAs (tRNAs) are ubiquitous in cells and are essential for the translation of genetic information from messenger RNA (mRNA) into proteins in all three domains of life. They act as adaptors that decode mRNA codons via their anticodons and deliver the corresponding amino acids to the growing polypeptide chain. Currently, over 100 modified nucleosides have been found in tRNA that are crucial for the integrity and functionality of this molecule. Almost half of them are located at position 34 of the anticodon, which is commonly referred to as the “wobble” position. In this review, we highlight the sulfur- and selenium-modified uridines at this position and discuss their physicochemical properties and regulatory functions in gene expression. We examine how the tRNA anticodons accomplish the decoding of synonymous codons, particularly 5'-NNA-3' and 5'-NNG-3', and provide efficient uridine-adenosine and uridine - guanosine base pairing. We also analyze the effects of C5 substituents on the tautomeric behavior and ionization properties of 2-thiouridines and 2-selenouridines. Theoretical calculations on the stability of 5-substituted uracil - guanine base pairs and their structural representation in crystal complexes of tRNA-mRNA-ribosomes emphasize the importance of these modifications in fine-tuning translation fidelity and efficiency.
-
-
-
Diverse Development Approaches for Xanthine Oxidase Inhibitors: Synthetic Chemistry, Natural Product Chemistry, and Drug Repositioning
Authors: Zhihua Xing, Wen Jiang, Yue Xu, Mingyu Gao, Guanghuan Shen, Yingjie Liu, Na Ling and Linlin CuiAvailable online: 15 August 2025More LessXanthine oxidase (XOD) plays a crucial role in the biosynthesis of uric acid, and inhibiting its activity can effectively reduce the production of uric acid at its source. Currently, clinically used xanthine oxidase inhibitors (XODIs), such as allopurinol and febuxostat, are effective but associated with notable side effects. Allopurinol may induce hypersensitivity reactions, while febuxostat has been reported to potentially increase the risk of severe cardiovascular events. Therefore, the development of Xanthine oxidase inhibitors(XODIs) that lower serum uric acid levels through the inhibition of uric acid production has been a key focus in the research and development of anti-gout medications. This review is based on research literature from 2014 to 2025, sourced from multiple authoritative databases both domestically and internationally, including international databases such as Google Scholar, PubMed, Web of Science, Baidu Scholar, CNKI, Wanfang database. This review systematically summarizes 109 XODIs with urate-lowering or anti-gout pharmacological activities, categorized into chemical synthetic compounds, natural products and their derivatives, and repurposed drugs. The aim is to provide meaningful insights for the development of new therapeutic agents for gout and hyperuricemia. Notably, amides and carboxylic acids among chemically synthesized compounds exhibit promising prospects, while natural products with multiple mechanisms of uric acid reduction hold significant potential for the treatment of hyperuricemia.
-
-
-
Romosozumab's Effect on Bone Mineral Density in Patients with Osteoporosis: A Systematic Review and Meta-Analysis
Available online: 14 August 2025More LessIntroductionOne of the most effective osteoanabolic drugs for treating osteoporosis is romosozumab, which was developed as a consequence of growing knowledge of the Wnt signaling system. This review explored how romosozumab affects the bone mineral density (BMD) in osteoporotic patients.
MethodsUp until January 2024, PubMed, Web of Science, and Scopus were reviewed for any randomized controlled trials (RCTs) evaluating the impact of osteoporotic treatment with romosozumab on BMD changes and bone metabolism markers in primary osteoporosis patients. Pooled Hedges’ g indices, which were consistently used across all included studies to measure standardized mean differences, were computed along with their corresponding 95% confidence intervals using either a random-effects or fixed-effects model.
ResultsOut of the 1855 papers, 24 RCTs met the inclusion criteria. Patients with osteoporosis who received romosozumab for a period of time demonstrated an augmentation in their lumbar spine BMD. The study findings indicated that the total hip and femoral neck BMD demonstrated significant enhancement in 22 (out of 23) and 19 (out of 21) studies, respectively.
ConclusionIn patients with osteoporosis, romosozumab could markedly increase the total hip, lumbar spine, and femoral neck BMD. This finding could be verified by measuring bone turnover indicators such as PINP, TRACP-5b, and CTX.
-
-
-
Single-Cell Maps Reveal Novel Mechanisms of Ferroptosis and Biomarkers in Diabetic Nephropathy
Authors: Yueyi Zhou, Weilin Chen, Dan Li, Li Chen and Bin YiAvailable online: 12 August 2025More LessObjectiveDiabetic nephropathy (DN) is the main cause of renal failure due to its complexity and difficulty in prevention. The purpose of our study is to screen potential biomarkers of DN at the single-cell level and reveal its new molecular pathogenesis by single-cell RNA sequencing (scRNA-seq).
MethodsIn this study, scRNA-seq was performed on kidney tissue of control and DN mice. Through multiple analyses of the data, biomarkers in DN that contribute to early diagnosis were screened, and the complex pathogenesis associated with ferroptosis was revealed and verified by experiments at the animal and cellular levels.
ResultsThrough customized analysis of scRNA-seq results, we found for the first time increased intercellular communication between mesangial epithelial cells and transitional epithelial cells in the pathological state of DN. In addition, two sets of differential protein interaction analysis networks showed that Eno1, Hspa8, FLT1, Hspa1a, and Gsta2 could be used as predictive biomarkers of DN. Finally, the promoting effects of ferroptosis, heat shock protein and their interactions in the development of DN are discussed. In particular, the regulation of GPX4 by members of the heat shock family, Dnaja1 and Hspa1a, promotes lipid peroxidation (the classic phenotype of ferroptosis).
DiscussionWe identified disruption of iron homeostasis and activation of the ferroptosis pathway, alongside differential expression of oxidative stress-related genes, including PGAM2. Heat shock proteins (e.g., Hspa1a, Dnaja1) were found to interact with ferroptosis markers (e.g., GPX4), suggesting a chaperone-mediated protective mechanism under diabetic stress. Analogous to the Flory–Huggins solution theory, HSPs may enhance misfolded protein compatibility in the cytosol, reducing aggregation. This study provides insight into HSP-regulated ferroptosis in DN, though further validation is required for clinical translation.
ConclusionIn conclusion, we comprehensively analyzed the relevant biomarkers and pathogenesis of DN at single-cell resolution, providing new strategies for therapeutic targets of the disease.
-
-
-
Investigating the Causal Role of Neurotrophic Factors in Low Back Pain and Sciatica: A Mendelian Randomization Study
Authors: Feixiang Lin and Wei HeAvailable online: 12 August 2025More LessBackgroundLow back pain (LBP) and sciatica are among the most prevalent musculoskeletal disorders, leading to significant disability and an economic burden. Neurotrophic factors, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF), play critical roles in pain modulation and neuronal function. While NGF-targeting monoclonal antibodies have shown potential in treating chronic pain, their efficacy and safety remain under debate. This study employs Mendelian Randomization (MR) to assess the causal relationships between NGF, BDNF, GDNF, and the risk of LBP and sciatica.
MethodsWe conducted a two-sample MR analysis using genetic instruments for NGF, BDNF, and GDNF. LBP and sciatica data were obtained from FinnGen. The inverse variance weighted (IVW) method was applied as the primary causal estimation, with the weighted median (WM) and MR-Egger regression used for sensitivity analyses. Reverse MR was performed to evaluate bidirectional causality. Furthermore, we used expression quantitative trait loci (eQTLs) within 50 kb of each gene locus as genetic instruments for NGF regulation, ensuring that the genetic variants used directly influence neurotrophic factor expression.
ResultsMR analysis revealed a significant causal association between NGF and an increased risk of LBP (OR = 1.121, 95% CI 1.021-1.230, p = 0.016) and sciatica (OR = 1.158, 95% CI 1.034-1.296, p = 0.010), while BDNF and GDNF showed no significant associations with pain outcomes. Sensitivity analyses confirmed the robustness of the NGF findings, with no evidence of horizontal pleiotropy or heterogeneity. Reverse MR analysis showed no significant causal effect of LBP or sciatica on NGF levels (p > 0.05), ruling out reverse causality. Additionally, we investigated the NGF-eQTL, which captures genetically regulated NGF expression, and found a significant association between the NGF-eQTL and LBP (OR = 1.040, 95% CI 1.010-1.070, p = 0.007). Unlike external NGF measurements, the NGF-eQTL minimizes environmental confounding and reverse causation, providing stronger genetic evidence supporting NGF as a therapeutic target for LBP.
DiscussionOur findings provide strong genetic evidence that nerve growth factor (NGF) plays a causal role in the development of low back pain and sciatica, supporting NGF inhibition as a promising therapeutic strategy. These results align with clinical observations where anti-NGF monoclonal antibodies demonstrated pain-relieving effects, though safety concerns remain. In contrast, no causal associations were observed for BDNF or GDNF, underscoring the specificity of NGF in peripheral pain sensitization. The study demonstrates the value of Mendelian Randomization in minimizing confounding and reverse causation, thereby strengthening causal inference. Future work should focus on pharmacogenomic predictors to identify patients most likely to benefit from NGF-targeted interventions while minimizing adverse effects.
ConclusionThis study provides genetic evidence that NGF plays a causal role in LBP and sciatica, reinforcing its potential as a therapeutic target. However, BDNF and GDNF were not significantly associated with pain outcomes, suggesting distinct mechanisms of pain modulation. While clinical trials of anti-NGF monoclonal antibodies have demonstrated efficacy in pain reduction, concerns about adverse effects, such as joint degeneration, habe limited their widespread clinical use. Future research should explore genetic predictors of anti-NGF therapy response to optimize treatment strategies for LBP and related musculoskeletal pain disorders.
-
-
-
A Comprehensive Analysis of the ITIH Family Across Multiple Cancer Types and an Initial Investigation of ITIH1 in Gastric Cancer
Authors: Qiangqiang Zhong, Baokang Zhao, Xiao She and Xiangjie LiuAvailable online: 12 August 2025More LessIntroductionThe ITIH family, crucial for extracellular matrix stability and cancer progression, is underexplored in multi-omic profiles and immune microenvironments; this study analyzes their roles across cancers and ITIH1’s function in gastric cancer to reveal diagnostic, prognostic, and therapeutic potential.
MethodsWe analyzed RNA-seq, protein expr ession, and clinical data from 33 cancer types and 24 non-cancerous conditions using TCGA, GTEx, GEO, CPTAC, and IMvigor210 datasets. Methods included differential expression analysis, ROC curve assessment for diagnostic potential, Cox regression and Kaplan-Meier survival analyses for prognostic value, GSEA for pathway enrichment, and molecular docking for ITIH1-targeted small molecule screening. Immune microenvironment interactions, tumor mutational burden (TMB), microsatellite instability (MSI), and immunotherapy response were evaluated. in vitro experiments validated ITIH1’s role in gastric cancer using qRT-PCR, Western blotting, siRNA knockdown, and functional assays.
ResultsITIH family genes exhibited differential expression across cancers and non-cancerous conditions, with ITIH1, ITIH4, and ITIH5 showing high diagnostic potential (AUC > 0.90 in multiple cancers). ITIH1 was a risk factor for poor survival in gastric cancer (p < 0.05). Lower ITIH scores correlated with improved survival in patients receiving immune checkpoint inhibitors (p < 0.05). ITIH genes showed strong correlations with immune checkpoints (PD-1, CTLA-4), TMB, and MSI. Molecular docking identified six small molecules, including Entinostat, with high binding affinity for ITIH1 (-8.4 kcal/mol). ITIH1 knockdown in gastric cancer cell lines (HGC-27, AGS) significantly reduced proliferation, migration, and invasion (p < 0.01).
DiscussionThis study underscores the ITIH family's critical role as diagnostic and prognostic biomarkers across various cancers and non-cancerous conditions, with ITIH1's therapeutic potential in gastric cancer highlighted through its impact on tumor progression, though limitations include discrepancies in some ITIH gene expressions between in vitro and in vivo settings, necessitating further validation.
ConclusionOur findings highlight the ITIH family's potential as diagnostic biomarkers, prognostic indicators, and therapeutic targets, particularly in gastric cancer. The identification of ITIH1 inhibitors and their association with immune checkpoints, TMB, and MSI paves the way for improved diagnostics, targeted therapies, and immunotherapy predictions, enhancing patient outcomes across diseases.
-
-
-
Post-marketing Safety Surveillance of Drug-induced Dementia: Utilizing Signal Detection and Mendelian Randomization in Spontaneous Reports
Authors: Yan Chen, Chen Li, Yinhui Yao and Yazhen ShangAvailable online: 12 August 2025More LessObjectiveMany medications associated with an increased risk of dementia do not have adequate warning labels, leading to a significant underestimation of their potential dangers. This study aims to leverage the FAERS database to identify drugs strongly linked to dementia and to examine the relationship between these drugs using Mendelian randomization techniques. The ultimate goal is to mitigate the risk of developing dementia.
MethodsWe utilized the FAERS database to identify medications significantly associated with dementia cases. The DrugBank, OpenTargets, and STITCH databases were employed to pinpoint the target genes of these drugs. We then conducted Mendelian randomization analysis to explore the correlation between the expression of drug target genes and the incidence of dementia. Additionally, a time-to-onset analysis assessed the temporal relationships of drug ingestions. Furthermore, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction Network (PPI) analyses were performed to investigate the molecular pathways linked to target genes related to drugs associated with dementia.
ResultsA total of 28,139 dementia events were recorded in the FAERS database. Our Mendelian randomization analysis revealed a significant association between the expression of all identified drug target genes and dementia in both blood and brain tissues. Specifically, we identified nine drug target genes with significant correlations, implicating quetiapine, clozapine, valproic acid, alendronate, and digoxin as being strongly associated with dementia, which could provide insight into areas of clinical concern regarding dementia occurrence.
ConclusionThe adverse event data sourced from the FAERS database indicate that certain medications are associated with an increased risk of developing dementia, a finding corroborated by our Mendelian randomization analysis. Establishing a comprehensive monitoring and risk assessment program is crucial for identifying high-risk individuals and facilitating informed medication choices, thereby potentially reducing the incidence of dementia.
-
-
-
An Advanced Network Pharmacology Study Reveals the Multi-Pathway and Multi-Gene Regulatory Mechanism of Jinbai Heat-clearing Prescription in HPV-induced Cervical Cancer via Molecular Docking and Microarray Data Analysis
Authors: Sui Liu, Zixiao Jiang, Junlei He, Xiangxin Niu, Changhua Yue, Shiou Yih Lee, Zhangxin Yu and Yangyang LiuAvailable online: 08 August 2025More LessIntroductionCervical cancer, primarily driven by high-risk human papillomavirus (HPV) infection, remains a global health challenge due to limited therapeutic efficacy and adverse effects of conventional treatments. Jinbai Heat-Clearing Prescription (JBHCP), a Traditional Chinese Medicine (TCM), exhibits potential against HPV-associated cervical cancer, yet its molecular mechanisms are unclear. This study aimed to elucidate JBHCP’s multitarget regulatory mechanisms in HPV-induced cervical carcinogenesis.
MethodsNetwork pharmacology, UHPLC-Q-TOF-MS-based metabolomics, and microarray data analysis were integrated to identify the bioactive components and therapeutic targets of JBHCP. Molecular docking and 60 ns Molecular Dynamics (MD) simulations were used to assess the interactions between key compounds (JBHCP673, JBHCP727) and cyclin-dependent kinases (CDK1/CDK2). Gene Ontology (GO), KEGG pathway enrichment, and Protein-Protein Interaction (PPI) network analyses were performed to explore biological functions and signaling pathways.
ResultsUHPLC-Q-TOF-MS identified 816 compounds in JBHCP, with 86 meeting drug-likeness criteria. Network analysis revealed 215 shared targets between JBHCP and HPV-induced cervical cancer, including CDK1 and CDK2 as core regulators. Enrichment analysis highlighted JBHCP’s involvement in cell cycle regulation, PI3K/AKT, and STAT3 signaling pathways. Molecular docking demonstrated strong binding affinities of JBHCP727 with CDK1 (-7.36 kcal/mol) and CDK2 (-6.13 kcal/mol). MD simulations confirmed stable binding of JBHCP727 to CDK1/2, while JBHCP673 exhibited instability. ADMET predictions supported JBHCP727’s drug-like properties.
DiscussionJBHCP exerts anticancer effects by targeting CDK1/2, disrupting cell cycle progression, and modulating oncogenic pathways (PI3K/AKT, STAT3). The stability of JBHCP727-CDK complexes suggests its role in inhibiting HPV-driven proliferation. Multi-component synergy enables JBHCP to act on diverse pathways, aligning with TCM’s “multitarget” paradigm.
ConclusionThis study provides the first systematic evidence of JBHCP’s multi-pathway mechanism against HPV-associated cervical cancer, emphasizing CDK1/2 inhibition as a key therapeutic strategy. JBHCP727 emerges as a promising lead compound. Further in vivo and clinical validation is warranted to translate these findings into clinical applications.
-
-
-
Discovery of Furan-tethered Triazolothiadiazoles and Triazolothia- diazines as Potent Tyrosinase Inhibitors for the Treatment of Skin Diseases: Insights from Kinetics Data and Computational Modeling
Available online: 06 August 2025More LessIntroductionTyrosinase, a copper-containing enzyme, is responsible for melanin production, and its overactivity can lead to hyperpigmentation.
MethodsThis study aimed to evaluate triazolothiadiazoles (3a-h, 4a-f) and triazolothiadiazines (5a-h) against human and mushroom tyrosinase isozymes.
ResultsSeveral derivatives, such as 3a-3b, 3d, 4c-4f, 5d, and 5e, were identified as potent and selective inhibitors of mushroom tyrosinase, with IC50 values ranging from 1.9 to 15.2 µM. Similarly, compounds 3f, 4b, 5a, and 5b effectively inhibited human tyrosinase, with IC50 values between 12.6 and 18.5 µM. Mechanism-based studies revealed that these active compounds exhibited competitive inhibition against both isozymes without any cytotoxic effects. In-silico analysis further demonstrated that these compounds fit well into the active site of both tyrosinase isozymes.
ConclusionAdditionally, the pharmacokinetic profile of these compounds highlighted promising drug-like properties, making them potential candidates for the development of effective therapeutics for skin disorders.
-
-
-
Recent Advancement of Fecal Microbiota Transplantation in the Treatment of Ulcerative Colitis- A Review
Authors: Yiting Lin, Peiru Wang, Xi Hu, Qinjia Wang, Quan Shi, Yanna Zhou, Ruisheng Liu and Xianbin CaiAvailable online: 06 August 2025More LessFecal Microbiota Transplantation (FMT) involves the transfer of gut microbiota from healthy donors to recipients, aiming to reestablish microbial equilibrium within the gastrointestinal tract. The human gut harbors a complex and diverse microbial ecosystem, comprising bacteria, viruses, and fungi, that is essential for maintaining intestinal homeostasis. Emerging evidence indicates a strong association between gut microbial dysbiosis and the pathogenesis of Ulcerative Colitis (UC). FMT has been shown to modulate microbial composition, alter immune signaling pathways, enhance intestinal barrier function, and influence the production of proinflammatory mediators, thereby affecting disease progression. This review critically examines the efficacy, safety, modulatory factors, combination therapies, and predictive strategies associated with FMT in the context of UC. The findings suggest that FMT represents a highly promising therapeutic modality for UC. Overall, this review aims to provide a comprehensive and impartial synthesis of current knowledge regarding FMT, offering deeper insights into its therapeutic potential and clinical applicability in UC management.
-
-
-
Hybrids/Conjugates/Chimera Drugs-Antimicrobial Hybrids: Antibiotics, Antifungals, Antituberculars, Antimalarials
Available online: 04 August 2025More LessAntimicrobial hybrids are compounds that can inhibit, stop the growth of, or kill microorganisms, including bacteria, fungi, and parasites. Antibiotics, a subset of antimicrobial agents, specifically target bacteria and include well-established classes such as β-lactams, macrolides, quinolones, and oxazolidinones. Other antimicrobial hybrids are designed for treating a wide range of diseases, including fungal infections, leishmaniasis, parasitic diseases (such as trypanosomiasis and malaria), leprosy, and tuberculosis. Some hybrids are designed to treat a variety of diseases. This review highlights studies primarily published between 2000 and 2023, with a few from 2024, underscoring the dynamic and rapidly evolving nature of antimicrobial hybrid research.
-
-
-
Participation of MDM2 in Pro-Apoptotic and Androgen Receptor-Degrading Potency of Selected Steroid and Terpenoid Derivatives
Available online: 04 August 2025More LessThis review aims to highlight anti-proliferative, pro-apoptotic, and androgen receptor-degrading activity of selected steroid and terpenoid derivatives in cancer cells, primarily in prostate cancer cells. Steroid and terpenoid derivatives (steroid hybrids, comprising androstane or pregnane skeleton associated with nitrogen containing heterocycle, some natural sterols, bile acids, and related semi-synthetic derivatives; oleanane and ursane type pentacyclic triterpenoids; lanostane and dammarane type tetracyclic triterpenoids), were reported earlier to cause the death of cancer cells via apoptosis; some compounds exhibited significant anticancer potency in vivo and may be considered as promising anticancer agents. The presented data indicate that direct interaction of steroid and terpenoid derivatives with the key oncogenic protein MDM2 makes a significant contribution to anti-proliferative, pro-apoptotic, and androgen receptor-degrading activity of these compounds. It triggers apoptosis, which leads to cell death. Structural optimization of steroid and terpenoid derivatives can significantly increase their affinity to MDM2 and improve their anti-proliferative, pro-apoptotic, and androgen receptor-degrading activity.
-
-
-
Causal Relationships Between Modifiable Risk Factors and Gastroesophageal Reflux Disease: A Two-Sample Mendelian Randomization Study
Authors: Zhongqiu Zhou, Gang Shen, Wenying Zhou, Jiao Gong and Bo HuAvailable online: 01 August 2025More LessIntroductionGastroesophageal reflux disease (GERD) is a prevalent digestive disorder, yet the causal roles of modifiable risk factors remain unclear. This study aims to investigate the causal relationships between 28 modifiable risk factors (including obesity traits, mental health disorders, sleep traits, metabolic comorbidities, and serum parameters) and GERD using two-sample Mendelian randomization (MR). Gastroesophageal reflux disease (GERD). Our findings aim to inform targeted prevention and treatment strategies for GERD.
MethodsThis study obtained data from extensive genome-wide association studies (GWAS). Pooled data associated with gastroesophageal reflux associations were obtained from the 23andMe Research team’s research, which included a total of 129,080 cases of gastroesophageal reflux and 473,524 controls of European ancestry. We conducted a univariable Mendelian randomization (MR) analysis to ascertain whether genetic evidence of exposure demonstrated a statistically significant association with the risk of GERD. Subsequently, a multivariable MR analysis was carried out to estimate the independent effects of the exposures on GERD.
ResultsUnivariable MR analysis utilizing extensive GWAS data suggested that genetic factors such as BMI, Waist circumference, Arm fat mass (left and right), Leg fat mass (left and right), Attention Deficit and Hyperactivity Disorder (ADHD), Major Depressive Disorder (MDD), Schizophrenia, Negative emotions (including nervousness, anxiety, tension, or depression), Insomnia, Sleep apnea syndrome, Sleep duration, and Snoring, as well as Total cholesterol levels and Apolipoprotein B levels, are associated with the development of GERD. Multivariate Mendelian randomization of BMI and Negative emotion as correction factors showed that Waist circumference, Arm fat mass (left and right), Leg fat mass (left and right), ADHD, Insomnia, Sleep apnea syndrome, and Snoring were associated with an increased risk of GERD (p< 0.05). Conversely, longer sleep duration was associated with a reduced risk of GERD (p< 0.05).
DiscussionThis MR study reveals novel causal mechanisms in GERD pathogenesis: (1) Peripheral adiposity (arm/leg fat mass) exerts independent effects beyond central obesity, indicating site-specific fat distribution significance; (2) ADHD emerges as a distinct psychiatric risk factor independent of mental disorders; (3) Sleep apnea operates through BMI-independent pathways. Collectively, these findings redefine GERD pathophysiology, highlighting fat depot specificity and brain-gut interactions as critical mechanistic drivers.
ConclusionOverall, our findings suggest that multiple risk factors are associated with the risk of GERD. These results provide a theoretical basis for controlling body weight and plasticity, improving sleep habits, and preventing and timely seeking medical attention to reduce the occurrence of psychiatric disorders, which will be important strategies to prevent and alleviate GERD.
-
-
-
Targeted Anti-Inflammatory Effects of CHLoramphenicol via TLR4 Inhibition in Postoperative Hemorrhoid Treatment: A Clinico- Computational Cohort Study
Available online: 31 July 2025More LessIntroductionPostoperative hemorrhoidectomy wounds are prone to inflammation and microbial infection due to their anatomical location, necessitating effective therapeutic strategies. CHLoramphenicol (CHL) is a broad-spectrum antibiotic with potential anti-inflammatory properties via Toll-like receptor 4 (TLR4) inhibition. This clinico-computational cohort study investigates CHL’s dual therapeutic mechanism in postoperative hemorrhoid management, combining clinical outcomes with molecular modeling to elucidate its anti-inflammatory and antimicrobial effects.
MethodsA prospective, controlled cohort study was conducted with 155 patients (55 CHL, 39 reference treatment [PR], 61 control) undergoing hemorrhoidectomy. CHL ointment (≤120 mg/day) was applied topically until granulation tissue appeared. Clinical outcomes, including edema resolution, granulation tissue formation, and pain scores, were assessed using ImageJ for wound area analysis and the visual analog scale (VAS) for pain. Molecular docking and dynamics simulations were performed using AutoDock and AMBER 22 to evaluate CHL’s binding affinity to TLR4 compared to the reference inhibitor TAK-242. Statistical analyses included ANOVA, Mann-Whitney U tests, and post hoc power calculations.
ResultsCHL significantly accelerated wound healing, with 53.2% of patients achieving complete edema resolution by day 3 (vs. 43.6% by day 4) and faster granulation tissue formation (3.58 ± 0.60 days vs. 7.08 ± 1.20 days in control, p<0.0001). Pain scores were significantly reduced in the CHL group. Molecularly, CHL exhibited superior TLR4 binding (ΔGtot = -25.97 kcal/mol vs. -20.69 kcal/mol for TAK-242), with stable complex formation and persistent interactions at Ile-135 (buried surface area: 350 Å2). Healing times were 13.5–19.8 days faster in the CHL group (mean 41 days vs. 54.5–60.8 days in control).
ConclusionCHL demonstrates dual therapeutic potential in postoperative hemorrhoid management by inhibiting TLR4-mediated inflammation and microbial infection. Its superior binding affinity and clinical efficacy suggest it as a promising multifunctional agent. Further in vitro and long-term studies are needed to validate these findings and explore broader applications in surgical wound care.
-
-
-
New 4-Benzenesulfonamide Derivatives of Pyrazolo[1,5-a][1,3,5]triazine as Purine Bioisosteres: Development, Synthesis, and Anticancer Perspective
Authors: Ivan Semenyuta, Stepan Pilyo, Bohdan Demydchuk, Oleksandr Lyavinets and Volodymyr BrovaretsAvailable online: 31 July 2025More LessIntroductionSeven new 4-[2-(dichloromethyl)pyrazolo[1,5-a][1,3,5]triazine derivatives were investigated for anticancer activity, possible molecular mechanisms of anticancer action, and ADMET properties.
MethodsThe 4-benzenesulfonamide derivatives of pyrazolo[1,5-a][1,3,5]triazine were synthesized using the condensation of N-(2,2-dichloro-1-cyanovinyl)-amides IV with 1H-pyrazol-5-amine. Compound antitumor activities were evaluated using the NCI-60 human cancer cell line. AutoDockTools and AutoDock Vina software were used for molecular modeling. Using the ADMETlab 3.0 and pkCSM web sources, the ADMET properties of compounds 4, 5, and 7 were calculated.
ResultsSeven new pyrazolo[1,5-a][1,3,5]triazine derivatives were synthesized. The compounds 4, 5, and 7 exhibit high activity >1 µM against leukemia, colon, and renal cancer. Compound 4 exhibited the most potent activity, with IC50 values of 0.32 µM against leukemia, 0.49-0.89 µM against colon cancer, and 0.92 µM against renal cancer. Molecular modeling has demonstrated a potential antitumor mechanism involving CDK. The predicted ADMET profile of compounds 4, 5, and 7 is favorable.
DiscussionThe seven novel pyrazolo[1,5-a][1,3,5]triazines, as purine bioisosteres, were developed, synthesized, and investigated by in vitro and in silico methods.
ConclusionSeven novel pyrazolo[1,5-a][1,3,5]triazine derivatives exhibited anticancer activity against the NCI-60 cancer cell lines. The compounds 4, 5, and 7 demonstrated strong anticancer activity, with growth inhibition (GI) values exceeding 50% across all nine cancer types tested. The most active compound, 4, is against leukemia, colon cancer, renal cancer, and lung cancer. All compounds exhibit low toxicity, with LC50 values of 100 µM or greater. The molecular docking of compounds 4, 5, and 7 revealed the potential to inhibit cancer-associated cyclin-dependent kinases. The predicted ADMET profiles of their compounds are favorable, providing a basis for further improvement of their anticancer activity.
-
-
-
Synthesis, Antiproliferative Activity, ADME Profiling, and Docking Studies of Novel 1, 2, 3-Triazole Derivatives of 2-Amino and 2-Mercaptobenzoxazole
Available online: 31 July 2025More LessIntroductionBenzoxazole is a privileged scaffold with diverse biological activities, and its hybridization with a 1,2,3-triazole ring can improve affinity and efficacy. This study aimed to synthesize novel 1,2,3-triazole derivatives of 2-aminobenzoxazole and 2-mercaptobenzoxazole, and to evaluate their antiproliferative activity, predicted pharmacokinetic properties, and molecular interactions with kinase targets.
Methods1,2,3-triazole derivatives of 2-aminobenzoxazole 3−15 and 2-mercaptobenzoxazole 18−32 were synthesized via cyclization, propargylation, and copper-catalyzed click reaction. Antiproliferative activity was evaluated against human cancer cell lines: LN-229, Capan-1, HCT-116, NCI-H460, DND-41, HL-60, K-562, and Z-138. The ADME properties of 1,2,3-triazole-benzoxazole hybrids were evaluated using the SwissADME tool. The most active compounds were assessed for Human Gastrointestinal Absorption (HGA) and Blood-Brain Barrier (BBB) permeability using the Egan model. Molecular docking was performed on serine/threonine kinase TAO2 and tyrosine kinase c-Src.
ResultsA series of novel 1,2,3-triazole derivatives of 2-amino 3−15 and 2-mercaptobenzoxazole 18−32 were synthesized via click chemistry. Coumarin-containing compounds 3 and 29 showed the most pronounced antiproliferative activity across all tested cell lines. Both demonstrated high predicted HGA and low likelihood of crossing the BBB. Compound 3 exhibited the highest binding affinity for TAO2, while compound 29 showed strong interaction with c-Src.
DiscussionThe results highlight the favorable influence of coumarin substitution on antiproliferative activity, with computational ADME and docking data supporting the observed in vitro efficacy.
ConclusionThis study outlines a viable method for the synthesis of novel 1,2,3-triazole derivatives of 2-aminobenzoxazole and 2-mercaptobenzoxazole. Compounds 3 and 29 demonstrate promising antiproliferative activity and pharmacokinetic potential, supporting their further development as anticancer candidates.
-
-
-
Exploration of Resveratrol Derivatives as Novel Therapeutic Modulators of 11β-Hydroxysteroid Dehydrogenase 1 Activity in Metabolic Dysregulation
Available online: 30 July 2025More LessBackgroundMetabolic dysregulation, encompassing conditions such as type 2 diabetes mellitus, obesity, metabolic syndrome, and dyslipidemia, poses an increasing global health burden. The dysregulation of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), a key enzyme in glucocorticoid metabolism, has been strongly implicated in the pathogenesis of these disorders by influencing glucose homeostasis, lipid metabolism, and insulin sensitivity. Consequently, targeting 11β-HSD1 offers a promising therapeutic strategy for mitigating metabolic dysregulation and its associated complications.
AimThe study aimed to identify resveratrol derivatives with high binding affinity and inhibitory potential against 11β-HSD1, using computational approaches to evaluate their pharmacokinetic and toxicity profiles.
MethodsA library of resveratrol derivatives was screened using molecular docking to identify high-affinity compounds. The hit compounds were further evaluated for absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, followed by molecular dynamics simulations to assess their stability.
ResultsThe resveratrol cis-dehydrodimer emerged as the most promising candidate, demonstrating high binding affinity, favorable ADMET properties, and stability over a 200 ns simulation period. These findings suggest its potential as a small-molecule inhibitor of 11β-HSD1.
ConclusionThe resveratrol cis-dehydrodimer represents a viable candidate for further experimental validation as a therapeutic agent for metabolic disorders. Future studies should include synthetic validation and in vivo testing to confirm its efficacy.
-
-
-
Polysaccharides from Sepia Esculenta Ink Promote Apoptosis via Inhibition of Autophagy in Cisplatin-exposed Triple-Negative Breast Cancer Cells
Authors: Wei Xiao, Zhen Lin, Ping Luo and Huazhong LiuAvailable online: 30 July 2025More LessIntroductionSepia Ink Polysaccharide (SIP) is a well-characterized, marine-derived glycosaminoglycan with demonstrated multifunctional properties; however, its pharmacological mechanisms remain unclear. This study aims to investigate the anti-tumor mechanism of SIP1 from Sepia esculenta ink in the treatment of triple-negative breast cancer (TNBC), with a focus on apoptosis and autophagy.
MethodsMDA-MB-231 cells exposed to cisplatin (CP) and SIP1 were assessed for apoptosis and autophagy by evaluating cell morphology, apoptosis and autophagy rates, and the expression of key genes involved in these processes using double staining, flow cytometry, and Western blotting.
ResultsThe data revealed that SIP1 induced apoptosis in TNBC cells, as demonstrated by an increased apoptosis rate, an elevated expression level of the Caspase-3 protein, a decreased expression of Bcl-2, and an elevated Bax/Bcl-2 ratio. Additionally, SIP1 did not impact autophagy. CP induced both apoptosis and autophagy of breast cancer cells. The combination of SIP1 and CP exhibited synergistic effects, enhancing apoptosis by 2.33-fold compared to SIP1 alone and 1.25-fold compared to CP alone, while simultaneously reducing autophagy levels (0.84-fold compared to CP alone), as verified by the Beclin 1 protein content.
DiscussionThis work discovered that SIP1, a sulfated glycosaminoglycan with a low content of sulfate ester groups derived from Sepia esculenta ink, induced apoptosis by inhibiting autophagy, providing a novel perspective for a deeper understanding of the anti- tumor mechanism of SIP. Currently, the underlying molecular mechanisms by which SIP1 modulates the crosstalk between apoptosis and autophagy in TNBC cells remain unknown and require further investigation.
ConclusionThis study demonstrates that SIP1 is effective in inducing apoptosis and promotes cisplatin-induced apoptosis by repressing cisplatin-induced autophagy in MDA-MB-231 cells.
-