Skip to content
2000
image of Investigating the Causal Role of Neurotrophic Factors in Low Back Pain and Sciatica: A Mendelian Randomization Study

Abstract

Background

Low back pain (LBP) and sciatica are among the most prevalent musculoskeletal disorders, leading to significant disability and an economic burden. Neurotrophic factors, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF), play critical roles in pain modulation and neuronal function. While NGF-targeting monoclonal antibodies have shown potential in treating chronic pain, their efficacy and safety remain under debate. This study employs Mendelian Randomization (MR) to assess the causal relationships between NGF, BDNF, GDNF, and the risk of LBP and sciatica.

Methods

We conducted a two-sample MR analysis using genetic instruments for NGF, BDNF, and GDNF. LBP and sciatica data were obtained from FinnGen. The inverse variance weighted (IVW) method was applied as the primary causal estimation, with the weighted median (WM) and MR-Egger regression used for sensitivity analyses. Reverse MR was performed to evaluate bidirectional causality. Furthermore, we used expression quantitative trait loci (eQTLs) within 50 kb of each gene locus as genetic instruments for NGF regulation, ensuring that the genetic variants used directly influence neurotrophic factor expression.

Results

MR analysis revealed a significant causal association between NGF and an increased risk of LBP (OR = 1.121, 95% CI 1.021-1.230, = 0.016) and sciatica (OR = 1.158, 95% CI 1.034-1.296, = 0.010), while BDNF and GDNF showed no significant associations with pain outcomes. Sensitivity analyses confirmed the robustness of the NGF findings, with no evidence of horizontal pleiotropy or heterogeneity. Reverse MR analysis showed no significant causal effect of LBP or sciatica on NGF levels ( > 0.05), ruling out reverse causality. Additionally, we investigated the NGF-eQTL, which captures genetically regulated NGF expression, and found a significant association between the NGF-eQTL and LBP (OR = 1.040, 95% CI 1.010-1.070, = 0.007). Unlike external NGF measurements, the NGF-eQTL minimizes environmental confounding and reverse causation, providing stronger genetic evidence supporting NGF as a therapeutic target for LBP.

Discussion

Our findings provide strong genetic evidence that nerve growth factor (NGF) plays a causal role in the development of low back pain and sciatica, supporting NGF inhibition as a promising therapeutic strategy. These results align with clinical observations where anti-NGF monoclonal antibodies demonstrated pain-relieving effects, though safety concerns remain. In contrast, no causal associations were observed for BDNF or GDNF, underscoring the specificity of NGF in peripheral pain sensitization. The study demonstrates the value of Mendelian Randomization in minimizing confounding and reverse causation, thereby strengthening causal inference. Future work should focus on pharmacogenomic predictors to identify patients most likely to benefit from NGF-targeted interventions while minimizing adverse effects.

Conclusion

This study provides genetic evidence that NGF plays a causal role in LBP and sciatica, reinforcing its potential as a therapeutic target. However, BDNF and GDNF were not significantly associated with pain outcomes, suggesting distinct mechanisms of pain modulation. While clinical trials of anti-NGF monoclonal antibodies have demonstrated efficacy in pain reduction, concerns about adverse effects, such as joint degeneration, habe limited their widespread clinical use. Future research should explore genetic predictors of anti-NGF therapy response to optimize treatment strategies for LBP and related musculoskeletal pain disorders.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673358689250711005445
2025-08-12
2025-11-04
Loading full text...

Full text loading...

References

  1. Shokri P. Zahmatyar M. Falah Tafti M. Fathy M. Rezaei Tolzali M. Ghaffari Jolfayi A. Nejadghaderi S.A. Sullman M.J.M. Kolahi A.A. Safiri S. Non‐spinal low back pain: Global epidemiology, trends, and risk factors. Health Sci. Rep. 2023 6 9 e1533 10.1002/hsr2.1533 37674621
    [Google Scholar]
  2. Zhou T. Salman D. McGregor A.H. Recent clinical practice guidelines for the management of low back pain: a global comparison. BMC Musculoskelet. Disord. 2024 25 1 344 10.1186/s12891‑024‑07468‑0 38693474
    [Google Scholar]
  3. El-Tallawy S.N. Nalamasu R. Salem G.I. LeQuang J.A.K. Pergolizzi J.V. Christo P.J. Management of Musculoskeletal Pain: An Update with Emphasis on Chronic Musculoskeletal Pain. Pain Ther. 2021 10 1 181 209 10.1007/s40122‑021‑00235‑2 33575952
    [Google Scholar]
  4. Chen S. Chen M. Wu X. Lin S. Tao C. Cao H. Shao Z. Xiao G. Global, regional and national burden of low back pain 1990–2019: A systematic analysis of the Global Burden of Disease study 2019. J. Orthop. Translat. 2022 32 49 58 10.1016/j.jot.2021.07.005 34934626
    [Google Scholar]
  5. Wu A. March L. Zheng X. Huang J. Wang X. Zhao J. Blyth F.M. Smith E. Buchbinder R. Hoy D. Global low back pain prevalence and years lived with disability from 1990 to 2017: estimates from the Global Burden of Disease Study 2017. Ann. Transl. Med. 2020 8 6 299 10.21037/atm.2020.02.175 32355743
    [Google Scholar]
  6. Ferreira M.L. de Luca K. Haile L.M. Steinmetz J.D. Culbreth G.T. Cross M. Kopec J.A. Ferreira P.H. Blyth F.M. Buchbinder R. Hartvigsen J. Wu A-M. Safiri S. Woolf A.D. Collins G.S. Ong K.L. Vollset S.E. Smith A.E. Cruz J.A. Fukutaki K.G. Abate S.M. Abbasifard M. Abbasi-Kangevari M. Abbasi-Kangevari Z. Abdelalim A. Abedi A. Abidi H. Adnani Q.E.S. Ahmadi A. Akinyemi R.O. Alamer A.T. Alem A.Z. Alimohamadi Y. Alshehri M.A. Alshehri M.M. Alzahrani H. Amini S. Amiri S. Amu H. Andrei C.L. Andrei T. Antony B. Arabloo J. Arulappan J. Arumugam A. Ashraf T. Athari S.S. Awoke N. Azadnajafabad S. Bärnighausen T.W. Barrero L.H. Barrow A. Barzegar A. Bearne L.M. Bensenor I.M. Berhie A.Y. Bhandari B.B. Bhojaraja V.S. Bijani A. Bodicha B.B.A. Bolla S.R. Brazo-Sayavera J. Briggs A.M. Cao C. Charalampous P. Chattu V.K. Cicuttini F.M. Clarsen B. Cuschieri S. Dadras O. Dai X. Dandona L. Dandona R. Dehghan A. Demie T.G.G. Denova-Gutiérrez E. Dewan S.M.R. Dharmaratne S.D. Dhimal M.L. Dhimal M. Diaz D. Didehdar M. Digesa L.E. Diress M. Do H.T. Doan L.P. Ekholuenetale M. Elhadi M. Eskandarieh S. Faghani S. Fares J. Fatehizadeh A. Fetensa G. Filip I. Fischer F. Franklin R.C. Ganesan B. Gemeda B.N.B. Getachew M.E. Ghashghaee A. Gill T.K. Golechha M. Goleij P. Gupta B. Hafezi-Nejad N. Haj-Mirzaian A. Hamal P.K. Hanif A. Harlianto N.I. Hasani H. Hay S.I. Hebert J.J. Heidari G. Heidari M. Heidari-Soureshjani R. Hlongwa M.M. Hosseini M-S. Hsiao A.K. Iavicoli I. Ibitoye S.E. Ilic I.M. Ilic M.D. Islam S.M.S. Janodia M.D. Jha R.P. Jindal H.A. Jonas J.B. Kabito G.G. Kandel H. Kaur R.J. Keshri V.R. Khader Y.S. Khan E.A. Khan M.J. Khan M.A.B. Khayat Kashani H.R. Khubchandani J. Kim Y.J. Kisa A. Klugarová J. Kolahi A-A. Koohestani H.R. Koyanagi A. Kumar G.A. Kumar N. Lallukka T. Lasrado S. Lee W-C. Lee Y.H. Mahmoodpoor A. Malagón-Rojas J.N. Malekpour M-R. Malekzadeh R. Malih N. Mehndiratta M.M. Mehrabi Nasab E. Menezes R.G. Mentis A-F.A. Mesregah M.K. Miller T.R. Mirza-Aghazadeh-Attari M. Mobarakabadi M. Mohammad Y. Mohammadi E. Mohammed S. Mokdad A.H. Momtazmanesh S. Monasta L. Moni M.A. Mostafavi E. Murray C.J.L. Nair T.S. Nazari J. Nejadghaderi S.A. Neupane S. Neupane Kandel S. Nguyen C.T. Nowroozi A. Okati-Aliabad H. Omer E. Oulhaj A. Owolabi M.O. Panda-Jonas S. Pandey A. Park E-K. Pawar S. Pedersini P. Pereira J. Peres M.F.P. Petcu I-R. Pourahmadi M. Radfar A. Rahimi-Dehgolan S. Rahimi-Movaghar V. Rahman M. Rahmani A.M. Rajai N. Rao C.R. Rashedi V. Rashidi M-M. Ratan Z.A. Rawaf D.L. Rawaf S. Renzaho A.M.N. Rezaei N. Rezaei Z. Roever L. Ruela G.A. Saddik B. Sahebkar A. Salehi S. Sanmarchi F. Sepanlou S.G. Shahabi S. Shahrokhi S. Shaker E. Shamsi M.B. Shannawaz M. Sharma S. Shaygan M. Sheikhi R.A. Shetty J.K. Shiri R. Shivalli S. Shobeiri P. Sibhat M.M. Singh A. Singh J.A. Slater H. Solmi M. Somayaji R. Tan K-K. Thapar R. Tohidast S.A. Valadan Tahbaz S. Valizadeh R. Vasankari T.J. Venketasubramanian N. Vlassov V. Vo B. Wang Y-P. Wiangkham T. Yadav L. Yadollahpour A. Yahyazadeh Jabbari S.H. Yang L. Yazdanpanah F. Yonemoto N. Younis M.Z. Zare I. Zarrintan A. Zoladl M. Vos T. March L.M. GBD 2021 Low Back Pain Collaborators Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023 5 6 e316 e329 10.1016/S2665‑9913(23)00098‑X 37273833
    [Google Scholar]
  7. Wewege M.A. Bagg M.K. Jones M.D. Ferraro M.C. Cashin A.G. Rizzo R.R.N. Leake H.B. Hagstrom A.D. Sharma S. McLachlan A.J. Maher C.G. Day R. Wand B.M. O’Connell N.E. Nikolakopolou A. Schabrun S. Gustin S.M. McAuley J.H. Comparative effectiveness and safety of analgesic medicines for adults with acute non-specific low back pain: systematic review and network meta-analysis. BMJ 2023 380 e072962 10.1136/bmj‑2022‑072962 36948512
    [Google Scholar]
  8. McMahon S.B. Dargan P. Lanas A. Wiffen P. The burden of musculoskeletal pain and the role of topical non-steroidal anti-inflammatory drugs (NSAIDs) in its treatment. Ten underpinning statements from a global pain faculty. Curr. Med. Res. Opin. 2021 37 2 287 292 10.1080/03007995.2020.1847718 33155849
    [Google Scholar]
  9. Dai W.L. Yan B. Bao Y.N. Fan J.F. Liu J.H. Suppression of peripheral NGF attenuates neuropathic pain induced by chronic constriction injury through the TAK1-MAPK/NF-κB signaling pathways. Cell Commun. Signal. 2020 18 1 66 10.1186/s12964‑020‑00556‑3 32312253
    [Google Scholar]
  10. Jiang B.C. Liu T. Gao Y.J. Chemokines in chronic pain: cellular and molecular mechanisms and therapeutic potential. Pharmacol. Ther. 2020 212 107581 10.1016/j.pharmthera.2020.107581 32450191
    [Google Scholar]
  11. Skaper S.D. Neurotrophic factors: An overview. Methods Mol. Biol. 2018 1727 1 17 10.1007/978‑1‑4939‑7571‑6_1 29222769
    [Google Scholar]
  12. Huang E.J. Reichardt L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 2001 24 1 677 736 10.1146/annurev.neuro.24.1.677 11520916
    [Google Scholar]
  13. Castrén E. Antila H. Neuronal plasticity and neurotrophic factors in drug responses. Mol. Psychiatry 2017 22 8 1085 1095 10.1038/mp.2017.61 28397840
    [Google Scholar]
  14. Malfait A.M. Miller R.E. Block J.A. Targeting neurotrophic factors: Novel approaches to musculoskeletal pain. Pharmacol. Ther. 2020 211 107553 32311372
    [Google Scholar]
  15. Ossipov M.H. Growth factors and neuropathic pain. Curr. Pain Headache Rep. 2011 15 3 185 192 10.1007/s11916‑011‑0183‑5 21327569
    [Google Scholar]
  16. Hiraga S. Itokazu T. Nishibe M. Yamashita T. Neuroplasticity related to chronic pain and its modulation by microglia. Inflamm. Regen. 2022 42 1 15 10.1186/s41232‑022‑00199‑6 35501933
    [Google Scholar]
  17. García-Domínguez M. NGF in neuropathic pain: Understanding its role and therapeutic opportunities. Curr. Issues Mol. Biol. 2025 47 2 47 39996814
    [Google Scholar]
  18. Wise B.L. Seidel M.F. Lane N.E. The evolution of nerve growth factor inhibition in clinical medicine. Nat. Rev. Rheumatol. 2021 17 1 34 46 10.1038/s41584‑020‑00528‑4 33219344
    [Google Scholar]
  19. Ceci F.M. Ferraguti G. Petrella C. Greco A. Tirassa P. Iannitelli A. Ralli M. Vitali M. Ceccanti M. Chaldakov G.N. Versacci P. Fiore M. Nerve growth factor, stress and diseases. Curr. Med. Chem. 2021 28 15 2943 2959 32811396
    [Google Scholar]
  20. Hirose M. Kuroda Y. Murata E. NGF/TrkA signaling as a therapeutic target for pain. Pain Pract. 2016 16 2 175 182 26452158
    [Google Scholar]
  21. Xiong H.Y. Hendrix J. Schabrun S. Wyns A. Campenhout J.V. Nijs J. Polli A. The role of the brain-derived neurotrophic factor in chronic pain: Links to central sensitization and neuroinflammation. Biomolecules 2024 14 1 71 10.3390/biom14010071 38254671
    [Google Scholar]
  22. Merighi A. Brain-derived neurotrophic factor, nociception, and pain. Biomolecules 2024 14 5 539 10.3390/biom14050539 38785946
    [Google Scholar]
  23. Ferrini F. Salio C. Boggio E.M. Merighi A. Interplay of BDNF and GDNF in the mature spinal somatosensory system and its potential therapeutic relevance. Curr. Neuropharmacol. 2021 19 8 1225 1245 10.2174/1570159X18666201116143422 33200712
    [Google Scholar]
  24. Kotliarova A. Sidorova Y.A. Glial cell line-derived neurotrophic factor family ligands, players at the interface of neuroinflammation and neuroprotection: Focus onto the glia. Front. Cell. Neurosci. 2021 15 679034 10.3389/fncel.2021.679034 34220453
    [Google Scholar]
  25. Takasu K. Sakai A. Hanawa H. Shimada T. Suzuki H. Overexpression of GDNF in the uninjured DRG exerts analgesic effects on neuropathic pain following segmental spinal nerve ligation in mice. J. Pain 2011 12 11 1130 1139 10.1016/j.jpain.2011.04.003 21684216
    [Google Scholar]
  26. Zhang X. Liu H. Xiu X. Cheng J. Li T. Wang P. Men L. Qiu J. Jin Y. Zhao J. Exosomal GDNF from bone marrow mesenchymal stem cells moderates neuropathic pain in a rat model of chronic constriction injury. Neuromolecular Med. 2024 26 1 34 10.1007/s12017‑024‑08800‑6 39167282
    [Google Scholar]
  27. Chang D.S. Hsu E. Hottinger D.G. Cohen S.P. Anti-nerve growth factor in pain management: Current evidence. J. Pain Res. 2016 9 373 383 27354823
    [Google Scholar]
  28. Sekula P. Del Greco M F. Pattaro C. Köttgen A. Mendelian randomization as an approach to assess causality using observational data. J. Am. Soc. Nephrol. 2016 27 11 3253 3265 10.1681/ASN.2016010098 27486138
    [Google Scholar]
  29. Burgess S. Foley C.N. Allara E. Staley J.R. Howson J.M.M. A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nat. Commun. 2020 11 1 376 10.1038/s41467‑019‑14156‑4 31953392
    [Google Scholar]
  30. Hu X. Cai M. Xiao J. Wan X. Wang Z. Zhao H. Yang C. Benchmarking Mendelian randomization methods for causal inference using genome-wide association study summary statistics. Am. J. Hum. Genet. 2024 111 8 1717 1735 10.1016/j.ajhg.2024.06.016 39059387
    [Google Scholar]
  31. Richmond R.C. Davey Smith G. Mendelian randomization: Concepts and scope. Cold Spring Harb. Perspect. Med. 2022 12 1 a040501 10.1101/cshperspect.a040501 34426474
    [Google Scholar]
  32. Hartwig F.P. Davies N.M. Davey Smith G. Bias in mendelian randomization due to assortative mating. Genet. Epidemiol. 2018 42 7 608 620 10.1002/gepi.22138 29971821
    [Google Scholar]
  33. Yang Q. Sanderson E. Tilling K. Borges M.C. Lawlor D.A. Exploring and mitigating potential bias when genetic instrumental variables are associated with multiple non-exposure traits in Mendelian randomization. Eur. J. Epidemiol. 2022 37 7 683 700 10.1007/s10654‑022‑00874‑5 35622304
    [Google Scholar]
  34. Skrivankova V.W. Richmond R.C. Woolf B.A.R. Yarmolinsky J. Davies N.M. Swanson S.A. VanderWeele T.J. Higgins J.P.T. Timpson N.J. Dimou N. Langenberg C. Golub R.M. Loder E.W. Gallo V. Tybjaerg-Hansen A. Davey Smith G. Egger M. Richards J.B. Strengthening the reporting of observational studies in epidemiology using mendelian randomization. JAMA 2021 326 16 1614 1621 10.1001/jama.2021.18236 34698778
    [Google Scholar]
  35. Chen B. Huang M. Pu B. Dong H. Impact of SGLT2 inhibitors on lower limb complications: a mendelian randomization perspective. Front. Pharmacol. 2024 15 1401103 10.3389/fphar.2024.1401103 39355774
    [Google Scholar]
  36. Burgess S. Thompson S.G. Mendelian randomization: methods for using genetic variants in causal estimation. Florida, USA CRC Press 2015 10.1201/b18084
    [Google Scholar]
  37. Chen B. Pu B. Li S. Gong Y. Dong H. The role of NSAID in mediating the effect of genetically predicted major depressive disorder on osteomyelitis: A Mendelian randomization study. J. Affect. Disord. 2023 341 62 66 10.1016/j.jad.2023.08.121 37634817
    [Google Scholar]
  38. Gudjonsson A. Gudmundsdottir V. Axelsson G.T. Gudmundsson E.F. Jonsson B.G. Launer L.J. Lamb J.R. Jennings L.L. Aspelund T. Emilsson V. Gudnason V. A genome-wide association study of serum proteins reveals shared loci with common diseases. Nat. Commun. 2022 13 1 480 10.1038/s41467‑021‑27850‑z 35078996
    [Google Scholar]
  39. Emilsson V. Ilkov M. Lamb J.R. Finkel N. Gudmundsson E.F. Pitts R. Hoover H. Gudmundsdottir V. Horman S.R. Aspelund T. Shu L. Trifonov V. Sigurdsson S. Manolescu A. Zhu J. Olafsson Ö. Jakobsdottir J. Lesley S.A. To J. Zhang J. Harris T.B. Launer L.J. Zhang B. Eiriksdottir G. Yang X. Orth A.P. Jennings L.L. Gudnason V. Co-regulatory networks of human serum proteins link genetics to disease. Science 2018 361 6404 769 773 10.1126/science.aaq1327 30072576
    [Google Scholar]
  40. Kurki M.I. Karjalainen J. Palta P. Sipilä T.P. Kristiansson K. Donner K.M. Reeve M.P. Laivuori H. Aavikko M. Kaunisto M.A. Loukola A. Lahtela E. Mattsson H. Laiho P. Della Briotta Parolo P. Lehisto A.A. Kanai M. Mars N. Rämö J. Kiiskinen T. Heyne H.O. Veerapen K. Rüeger S. Lemmelä S. Zhou W. Ruotsalainen S. Pärn K. Hiekkalinna T. Koskelainen S. Paajanen T. Llorens V. Gracia-Tabuenca J. Siirtola H. Reis K. Elnahas A.G. Sun B. Foley C.N. Aalto-Setälä K. Alasoo K. Arvas M. Auro K. Biswas S. Bizaki-Vallaskangas A. Carpen O. Chen C.Y. Dada O.A. Ding Z. Ehm M.G. Eklund K. Färkkilä M. Finucane H. Ganna A. Ghazal A. Graham R.R. Green E.M. Hakanen A. Hautalahti M. Hedman Å.K. Hiltunen M. Hinttala R. Hovatta I. Hu X. Huertas-Vazquez A. Huilaja L. Hunkapiller J. Jacob H. Jensen J.N. Joensuu H. John S. Julkunen V. Jung M. Junttila J. Kaarniranta K. Kähönen M. Kajanne R. Kallio L. Kälviäinen R. Kaprio J. Kerimov N. Kettunen J. Kilpeläinen E. Kilpi T. Klinger K. Kosma V.M. Kuopio T. Kurra V. Laisk T. Laukkanen J. Lawless N. Liu A. Longerich S. Mägi R. Mäkelä J. Mäkitie A. Malarstig A. Mannermaa A. Maranville J. Matakidou A. Meretoja T. Mozaffari S.V. Niemi M.E.K. Niemi M. Niiranen T. O´Donnell C.J. Obeidat M. Okafo G. Ollila H.M. Palomäki A. Palotie T. Partanen J. Paul D.S. Pelkonen M. Pendergrass R.K. Petrovski S. Pitkäranta A. Platt A. Pulford D. Punkka E. Pussinen P. Raghavan N. Rahimov F. Rajpal D. Renaud N.A. Riley-Gillis B. Rodosthenous R. Saarentaus E. Salminen A. Salminen E. Salomaa V. Schleutker J. Serpi R. Shen H. Siegel R. Silander K. Siltanen S. Soini S. Soininen H. Sul J.H. Tachmazidou I. Tasanen K. Tienari P. Toppila-Salmi S. Tukiainen T. Tuomi T. Turunen J.A. Ulirsch J.C. Vaura F. Virolainen P. Waring J. Waterworth D. Yang R. Nelis M. Reigo A. Metspalu A. Milani L. Esko T. Fox C. Havulinna A.S. Perola M. Ripatti S. Jalanko A. Laitinen T. Mäkelä T.P. Plenge R. McCarthy M. Runz H. Daly M.J. Palotie A. FinnGen Author Correction: FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 2023 615 7952 E19 10.1038/s41586‑023‑05837‑8 36829046
    [Google Scholar]
  41. Zhao J.H. Stacey D. Eriksson N. Macdonald-Dunlop E. Hedman Å.K. Kalnapenkis A. Enroth S. Cozzetto D. Digby-Bell J. Marten J. Folkersen L. Herder C. Jonsson L. Bergen S.E. Gieger C. Needham E.J. Surendran P. Metspalu A. Milani L. Mägi R. Nelis M. Hudjašov G. Paul D.S. Polasek O. Thorand B. Grallert H. Roden M. Võsa U. Esko T. Hayward C. Johansson Å. Gyllensten U. Powell N. Hansson O. Mattsson-Carlgren N. Joshi P.K. Danesh J. Padyukov L. Klareskog L. Landén M. Wilson J.F. Siegbahn A. Wallentin L. Mälarstig A. Butterworth A.S. Peters J.E. Estonian Biobank Research Team Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat. Immunol. 2023 24 9 1540 1551 10.1038/s41590‑023‑01588‑w 37563310
    [Google Scholar]
  42. Yeung C.H.C. Schooling C.M. Systemic inflammatory regulators and risk of Alzheimer’s disease: a bidirectional Mendelian-randomization study. Int. J. Epidemiol. 2021 50 3 829 840 10.1093/ije/dyaa241 33313759
    [Google Scholar]
  43. Burgess S. Thompson S.G. Collaboration C.C.G. CRP CHD Genetics Collaboration Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 2011 40 3 755 764 10.1093/ije/dyr036 21414999
    [Google Scholar]
  44. Chen B. Li S. Lin S. Dong H. Causal relationship of interleukin-6 and its receptor on sarcopenia traits using mendelian randomization. Nutr. J. 2024 23 1 51 10.1186/s12937‑024‑00958‑w 38750566
    [Google Scholar]
  45. Aguet F. Anand S. Ardlie K.G. Gabriel S. Getz G.A. Graubert A. Hadley K. Handsaker R.E. Huang K.H. Kashin S. Li X. MacArthur D.G. Meier S.R. Nedzel J.L. Nguyen D.T. Segrè A.V. Todres E. Balliu B. Barbeira A.N. Battle A. Bonazzola R. Brown A. Brown C.D. Castel S.E. Conrad D.F. Cotter D.J. Cox N. Das S. de Goede O.M. Dermitzakis E.T. Einson J. Engelhardt B.E. Eskin E. Eulalio T.Y. Ferraro N.M. Flynn E.D. Fresard L. Gamazon E.R. Garrido-Martín D. Gay N.R. Gloudemans M.J. Guigó R. Hame A.R. He Y. Hoffman P.J. Hormozdiari F. Hou L. Im H.K. Jo B. Kasela S. Kellis M. Kim-Hellmuth S. Kwong A. Lappalainen T. Li X. Liang Y. Mangul S. Mohammadi P. Montgomery S.B. Muñoz-Aguirre M. Nachun D.C. Nobel A.B. Oliva M. Park Y.S. Park Y. Parsana P. Rao A.S. Reverter F. Rouhana J.M. Sabatti C. Saha A. Stephens M. Stranger B.E. Strober B.J. Teran N.A. Viñuela A. Wang G. Wen X. Wright F. Wucher V. Zou Y. Ferreira P.G. Li G. Melé M. Yeger-Lotem E. Barcus M.E. Bradbury D. Krubit T. McLean J.A. Qi L. Robinson K. Roche N.V. Smith A.M. Sobin L. Tabor D.E. Undale A. Bridge J. Brigham L.E. Foster B.A. Gillard B.M. Hasz R. Hunter M. Johns C. Johnson M. Karasik E. Kopen G. Leinweber W.F. McDonald A. Moser M.T. Myer K. Ramsey K.D. Roe B. Shad S. Thomas J.A. Walters G. Washington M. Wheeler J. Jewell S.D. Rohrer D.C. Valley D.R. Davis D.A. Mash D.C. Branton P.A. Barker L.K. Gardiner H.M. Mosavel M. Siminoff L.A. Flicek P. Haeussler M. Juettemann T. Kent W.J. Lee C.M. Powell C.C. Rosenbloom K.R. Ruffier M. Sheppard D. Taylor K. Trevanion S.J. Zerbino D.R. Abell N.S. Akey J. Chen L. Demanelis K. Doherty J.A. Feinberg A.P. Hansen K.D. Hickey P.F. Jasmine F. Jiang L. Kaul R. Kibriya M.G. Li J.B. Li Q. Lin S. Linder S.E. Pierce B.L. Rizzardi L.F. Skol A.D. Smith K.S. Snyder M. Stamatoyannopoulos J. Tang H. Wang M. Carithers L.J. Guan P. Koester S.E. Little A.R. Moore H.M. Nierras C.R. Rao A.K. Vaught J.B. Volpi S. GTEx Consortium The GTEx consortium atlas of genetic regulatory effects across human tissues. Science 2020 369 6509 1318 1330 10.1126/science.aaz1776 32913098
    [Google Scholar]
  46. Bowden J. Davey Smith G. Haycock P.C. Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 2016 40 4 304 314 10.1002/gepi.21965 27061298
    [Google Scholar]
  47. Bowden J. Davey Smith G. Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015 44 2 512 525 10.1093/ije/dyv080 26050253
    [Google Scholar]
  48. Verbanck M. Chen C.Y. Neale B. Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018 50 5 693 698 10.1038/s41588‑018‑0099‑7 29686387
    [Google Scholar]
  49. Huang D. Feng X. Yang H. Wang J. Zhang W. Fan X. Dong X. Chen K. Yu Y. Ma X. Yi X. Li M.J. QTLbase2: an enhanced catalog of human quantitative trait loci on extensive molecular phenotypes. Nucleic Acids Res. 2023 51 D1 D1122 D1128 10.1093/nar/gkac1020 36330927
    [Google Scholar]
  50. Yavorska O.O. Burgess S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 2017 46 6 1734 1739 10.1093/ije/dyx034 28398548
    [Google Scholar]
  51. Sánchez-Robles E.M. Girón R. Paniagua N. Rodríguez-Rivera C. Pascual D. Goicoechea C. Monoclonal antibodies for chronic pain treatment: Present and future. Int. J. Mol. Sci. 2021 22 19 10325 10.3390/ijms221910325 34638667
    [Google Scholar]
  52. Rizzo R.R.N. Ferraro M.C. Wewege M.A. Cashin A.G. Leake H.B. O’Hagan E.T. Jones M.D. Gustin S.M. McLachlan A.J. Day R. McAuley J.H. Targeting neurotrophic factors for low back pain and sciatica: A systematic review and meta-analysis. Rheumatology (Oxford) 2022 61 6 2243 2254 10.1093/rheumatology/keab785 34677587
    [Google Scholar]
  53. Barker P.A. Mantyh P. Arendt-Nielsen L. Viktrup L. Tive L. Nerve growth factor signaling and its contribution to pain. J. Pain Res. 2020 13 1223 1241 10.2147/JPR.S247472 32547184
    [Google Scholar]
  54. Oo W.M. Hunter D.J. Nerve growth factor (NGF) inhibitors and related agents for chronic musculoskeletal pain: A comprehensive review. BioDrugs 2021 35 6 611 641 10.1007/s40259‑021‑00504‑8 34807432
    [Google Scholar]
  55. Bimonte S. Cascella M. Forte C.A. Esposito G. Cuomo A. The role of anti-nerve growth factor monoclonal antibodies in the control of chronic cancer and non-cancer pain. J. Pain Res. 2021 14 1959 1967 10.2147/JPR.S302004 34234542
    [Google Scholar]
  56. Miller R.E. Block J.A. Malfait A.M. Nerve growth factor blockade for the management of osteoarthritis pain: what can we learn from clinical trials and preclinical models? Curr. Opin. Rheumatol. 2017 29 1 110 118 10.1097/BOR.0000000000000354 27672741
    [Google Scholar]
  57. Gao Y. Hu Z. Huang Y. Liu W. Ren C. Efficacy and safety of anti–nerve growth factor antibody therapy for hip and knee osteoarthritis: A Meta-analysis. Orthop. J. Sports Med. 2022 10 4 23259671221088590 10.1177/23259671221088590 35494494
    [Google Scholar]
  58. Schnitzer T.J. Marks J.A. A systematic review of the efficacy and general safety of antibodies to NGF in the treatment of OA of the hip or knee. Osteoarthritis Cartilage 2015 23 Suppl. 1 S8 S17 10.1016/j.joca.2014.10.003 25527221
    [Google Scholar]
  59. Jayabalan P. Schnitzer T.J. Tanezumab in the treatment of chronic musculoskeletal conditions. Expert Opin. Biol. Ther. 2017 17 2 245 254 10.1080/14712598.2017.1271873 27936977
    [Google Scholar]
  60. Yeh J.F. Akinci A. Al Shaker M. Chang M.H. Danilov A. Guillen R. Johnson K.W. Kim Y.C. El-Shafei A.A. Skljarevski V. Dueñas H.J. Tassanawipas W. Monoclonal antibodies for chronic pain: A practical review of mechanisms and clinical applications. Mol. Pain 2017 13 1744806917740233 10.1177/1744806917740233 29056066
    [Google Scholar]
  61. Schnitzer T.J. Khan A. Bessette L. Davignon I. Brown M.T. Pixton G. Prucka W.R. Tive L. Viktrup L. West C.R. Onset and maintenance of efficacy of subcutaneous tanezumab in patients with moderate to severe osteoarthritis of the knee or hip: A 16-week dose-titration study. Semin. Arthritis Rheum. 2020 50 3 387 393 10.1016/j.semarthrit.2020.03.004 32252976
    [Google Scholar]
  62. Markman J.D. Bolash R.B. McAlindon T.E. Kivitz A.J. Pombo-Suarez M. Ohtori S. Roemer F.W. Li D.J. Viktrup L. Bramson C. West C.R. Verburg K.M. Tanezumab for chronic low back pain: a randomized, double-blind, placebo- and active-controlled, phase 3 study of efficacy and safety. Pain 2020 161 9 2068 2078 10.1097/j.pain.0000000000001928 32453139
    [Google Scholar]
  63. Zhao L. Lai Y. Jiao H. Huang J. Nerve growth factor receptor limits inflammation to promote remodeling and repair of osteoarthritic joints. Nat. Commun. 2024 15 1 3225 10.1038/s41467‑024‑47633‑6 38622181
    [Google Scholar]
  64. Backonja M. Williams L. Miao X. Katz N. Chen C. Safety and efficacy of neublastin in painful lumbosacral radiculopathy: a randomized, double-blinded, placebo-controlled phase 2 trial using Bayesian adaptive design (the SPRINT trial). Pain 2017 158 9 1802 1812 10.1097/j.pain.0000000000000983 28746076
    [Google Scholar]
  65. Zhou W. Xie Z. Li C. Xing Z. Xie S. Li M. Yao J. Driving effect of BDNF in the spinal dorsal horn on neuropathic pain. Neurosci. Lett. 2021 756 135965 10.1016/j.neulet.2021.135965 34022262
    [Google Scholar]
  66. Lin Y.T. Ro L.S. Wang H.L. Chen J.C. Up-regulation of dorsal root ganglia BDNF and trkB receptor in inflammatory pain: an in vivo and in vitro study. J. Neuroinflammation 2011 8 1 126 10.1186/1742‑2094‑8‑126 21958434
    [Google Scholar]
  67. Sorkpor S.K. Galle K. Teixeira A.L. Colpo G.D. Ahn B. Jackson N. Miao H. Ahn H. The relationship between plasma BDNF and pain in older adults with knee osteoarthritis. Biol. Res. Nurs. 2021 23 4 629 636 33910384
    [Google Scholar]
  68. Dussán-Sarria J.A. da Silva N.R.J. Deitos A. Stefani L.C. Laste G. Souza A. Torres I.L.S. Fregni F. Caumo W. Higher cortical facilitation and serum BDNF are associated with increased sensitivity to heat pain and reduced endogenous pain inhibition in healthy males. Pain Med. 2018 19 8 1578 1586 10.1093/pm/pnx297 29294124
    [Google Scholar]
  69. Siotto M. Aprile I. Simonelli I. Pazzaglia C. Ventriglia M. Santoro M. Imbimbo I. Squitti R. Padua L. An exploratory study of BDNF and oxidative stress marker alterations in subacute and chronic stroke patients affected by neuropathic pain. J. Neural Transm. (Vienna) 2017 124 12 1557 1566 29086097
    [Google Scholar]
  70. Queme L.F. Weyler A.A. Cohen E.R. Hudgins R.C. Jankowski M.P. A dual role for peripheral GDNF signaling in nociception and cardiovascular reflexes in the mouse. Proc. Natl. Acad. Sci. USA 2020 117 1 698 707 10.1073/pnas.1910905116 31848242
    [Google Scholar]
  71. Boakye P.A. Tang S.J. Smith P.A. Mediators of Neuropathic Pain; Focus on Spinal Microglia, CSF-1, BDNF, CCL21, TNF-α, Wnt Ligands, and Interleukin 1β. Frontiers in Pain Research 2021 2 698157 10.3389/fpain.2021.698157 35295524
    [Google Scholar]
  72. Kataria S. Patel U. Yabut K. Patel J. Patel R. Patel S. Wijaya J.H. Maniyar P. Karki Y. Makrani M.P. Viswanath O. Kaye A.D. Recent advances in management of neuropathic, nociceptive, and chronic pain: a narrative review with focus on nanomedicine, gene therapy, stem cell therapy, and newer therapeutic options. Curr. Pain Headache Rep. 2024 28 5 321 333 10.1007/s11916‑024‑01227‑5 38386244
    [Google Scholar]
  73. Bonomini F. Favero G. Castrezzati S. Borsani E. Role of neurotrophins in orofacial pain modulation: A review of the latest discoveries. Int. J. Mol. Sci. 2023 24 15 12438 10.3390/ijms241512438 37569811
    [Google Scholar]
  74. Boehm F.J. Zhou X. Statistical methods for Mendelian randomization in genome-wide association studies: A review. Comput. Struct. Biotechnol. J. 2022 20 2338 2351 10.1016/j.csbj.2022.05.015 35615025
    [Google Scholar]
  75. Sanderson E. Glymour M.M. Holmes M.V. Kang H. Morrison J. Munafò M.R. Palmer T. Schooling C.M. Wallace C. Zhao Q. Davey Smith G. Mendelian randomization. Nature Reviews Methods Primers 2022 2 1 6 10.1038/s43586‑021‑00092‑5 37325194
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673358689250711005445
Loading
/content/journals/cmc/10.2174/0109298673358689250711005445
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test