Skip to content
2000
image of Single-Cell Maps Reveal Novel Mechanisms of Ferroptosis and Biomarkers in Diabetic Nephropathy

Abstract

Objective

Diabetic nephropathy (DN) is the main cause of renal failure due to its complexity and difficulty in prevention. The purpose of our study is to screen potential biomarkers of DN at the single-cell level and reveal its new molecular pathogenesis by single-cell RNA sequencing (scRNA-seq).

Methods

In this study, scRNA-seq was performed on kidney tissue of control and DN mice. Through multiple analyses of the data, biomarkers in DN that contribute to early diagnosis were screened, and the complex pathogenesis associated with ferroptosis was revealed and verified by experiments at the animal and cellular levels.

Results

Through customized analysis of scRNA-seq results, we found for the first time increased intercellular communication between mesangial epithelial cells and transitional epithelial cells in the pathological state of DN. In addition, two sets of differential protein interaction analysis networks showed that Eno1, Hspa8, FLT1, Hspa1a, and Gsta2 could be used as predictive biomarkers of DN. Finally, the promoting effects of ferroptosis, heat shock protein and their interactions in the development of DN are discussed. In particular, the regulation of GPX4 by members of the heat shock family, Dnaja1 and Hspa1a, promotes lipid peroxidation (the classic phenotype of ferroptosis).

Discussion

We identified disruption of iron homeostasis and activation of the ferroptosis pathway, alongside differential expression of oxidative stress-related genes, including PGAM2. Heat shock proteins (, Hspa1a, Dnaja1) were found to interact with ferroptosis markers (, GPX4), suggesting a chaperone-mediated protective mechanism under diabetic stress. Analogous to the Flory–Huggins solution theory, HSPs may enhance misfolded protein compatibility in the cytosol, reducing aggregation. This study provides insight into HSP-regulated ferroptosis in DN, though further validation is required for clinical translation.

Conclusion

In conclusion, we comprehensively analyzed the relevant biomarkers and pathogenesis of DN at single-cell resolution, providing new strategies for therapeutic targets of the disease.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673357406250719145527
2025-08-12
2025-11-04
Loading full text...

Full text loading...

References

  1. Calle P. Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy. Int. J. Mol. Sci. 2020 21 8 2806 10.3390/ijms21082806 32316547
    [Google Scholar]
  2. Makvandi K. Eliasson B. Carlsen H.K. Baid-Agrawal S. Burden and excess risk of adverse outcomes in patients with type 1 diabetes using KDIGO classification: A national cohort study. Diabetes Care 2025 48 1 106 117 10.2337/dc24‑0908 39565836
    [Google Scholar]
  3. Tuttle K.R. Brosius F.C. III Cavender M.A. Fioretto P. Fowler K.J. Heerspink H.J.L. Manley T. McGuire D.K. Molitch M.E. Mottl A.K. Perreault L. Rosas S.E. Rossing P. Sola L. Vallon V. Wanner C. Perkovic V. SGLT2 inhibition for CKD and cardiovascular disease in type 2 diabetes: Report of a scientific workshop sponsored by the national kidney foundation. Am. J. Kidney Dis. 2021 77 1 94 109 10.1053/j.ajkd.2020.08.003 33121838
    [Google Scholar]
  4. Li A. Yi B. Liu Y. Wang J. Dai Q. Huang Y. Li Y.C. Zhang H. Urinary NGAL and RBP are biomarkers of normoalbuminuric renal insufficiency in type 2 diabetes mellitus. J. Immunol. Res. 2019 2019 1 11 10.1155/2019/5063089 31637265
    [Google Scholar]
  5. Qin K. Qing J. Wang Q. Li Y. Epidemiological shifts in chronic kidney disease: A 30-year global and regional assessment. BMC Public Health 2024 24 1 3519 10.1186/s12889‑024‑21065‑9 39695543
    [Google Scholar]
  6. Thomas B. The global burden of diabetic kidney disease: Time trends and gender gaps. Curr. Diab. Rep. 2019 19 4 18 10.1007/s11892‑019‑1133‑6 30826889
    [Google Scholar]
  7. Wei H. Ren J. Li R. Qi X. Yang F. Li Q. Global, regional, and national burden of chronic kidney disease attributable to high fasting plasma glucose from 1990 to 2019: A systematic analysis from the global burden of disease study 2019. Front. Endocrinol. 2024 15 1379634 10.3389/fendo.2024.1379634 38601204
    [Google Scholar]
  8. Huang H.Y. Lin T.W. Hong Z.X. Lim L.M. Vitamin D and diabetic kidney disease. Int. J. Mol. Sci. 2023 24 4 3751 10.3390/ijms24043751 36835159
    [Google Scholar]
  9. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022 102 5S S1 S127 10.1016/j.kint.2022.06.008 36272764
    [Google Scholar]
  10. Ren P. Qian F. Fu L. He W. He Q. Jin J. Zheng D. Adipose-derived stem cell exosomes regulate Nrf2/Keap1 in diabetic nephropathy by targeting FAM129B. Diabetol. Metab. Syndr. 2023 15 1 149 10.1186/s13098‑023‑01119‑5 37403164
    [Google Scholar]
  11. Lu Q. Yang L. Xiao J.J. Liu Q. Ni L. Hu J.W. Yu H. Wu X. Zhang B.F. Empagliflozin attenuates the renal tubular ferroptosis in diabetic kidney disease through AMPK/NRF2 pathway. Free Radic. Biol. Med. 2023 195 89 102 10.1016/j.freeradbiomed.2022.12.088 36581059
    [Google Scholar]
  12. Retat L. Xiao D. Webber L. Martin A. Card-Gowers J. Yao J. Zhang Y. Zhang C. Sanchez G.J.J. Cabrera C. Grandy S. Rao N. Wu Y. Li Z. Xuan J. Inside ANEMIA of CKD: Projecting the future burden of anemia of chronic kidney disease and benefits of proactive management: A microsimulation model of the chinese population. Adv. Ther. 2024 41 10 3905 3921 10.1007/s12325‑024‑02863‑4 39162981
    [Google Scholar]
  13. Gupta S. Dominguez M. Golestaneh L. Diabetic kidney disease. Med. Clin. North Am. 2023 107 4 689 705 10.1016/j.mcna.2023.03.004 37258007
    [Google Scholar]
  14. Schumacher A. Rookmaaker M.B. Joles J.A. Kramann R. Nguyen T.Q. Griensven V.M. LaPointe V.L.S. Defining the variety of cell types in developing and adult human kidneys by single-cell RNA sequencing. NPJ Regen. Med. 2021 6 1 45 10.1038/s41536‑021‑00156‑w 34381054
    [Google Scholar]
  15. Lei Y. Tang R. Xu J. Wang W. Zhang B. Liu J. Yu X. Shi S. Applications of single-cell sequencing in cancer research: Progress and perspectives. J. Hematol. Oncol. 2021 14 1 91 10.1186/s13045‑021‑01105‑2 34108022
    [Google Scholar]
  16. Li X. Wang C.Y. From bulk, single-cell to spatial RNA sequencing. Int. J. Oral Sci. 2021 13 1 36 10.1038/s41368‑021‑00146‑0 34782601
    [Google Scholar]
  17. Doke T. Huang S. Qiu C. Liu H. Guan Y. Hu H. Ma Z. Wu J. Miao Z. Sheng X. Zhou J. Cao A. Li J. Kaufman L. Hung A. Brown C.D. Pestell R. Susztak K. Transcriptome-wide association analysis identifies DACH1 as a kidney disease risk gene that contributes to fibrosis. J. Clin. Invest. 2021 131 10 e141801 10.1172/JCI141801 33998598
    [Google Scholar]
  18. Der E. Suryawanshi H. Morozov P. Kustagi M. Goilav B. Ranabothu S. Izmirly P. Clancy R. Belmont H.M. Koenigsberg M. Mokrzycki M. Rominieki H. Graham J.A. Rocca J.P. Bornkamp N. Jordan N. Schulte E. Wu M. Pullman J. Slowikowski K. Raychaudhuri S. Guthridge J. James J. Buyon J. Tuschl T. Putterman C. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 2019 20 7 915 927 10.1038/s41590‑019‑0386‑1 31110316
    [Google Scholar]
  19. Stewart B.J. Ferdinand J.R. Clatworthy M.R. Using single-cell technologies to map the human immune system — implications for nephrology. Nat. Rev. Nephrol. 2020 16 2 112 128 10.1038/s41581‑019‑0227‑3 31831877
    [Google Scholar]
  20. Rudman-Melnick V. Adam M. Potter A. Chokshi S.M. Ma Q. Drake K.A. Schuh M.P. Kofron J.M. Devarajan P. Potter S.S. Single-cell profiling of aki in a murine model reveals novel transcriptional signatures, profibrotic phenotype, and epithelial-to-stromal crosstalk. J. Am. Soc. Nephrol. 2020 31 12 2793 2814 10.1681/ASN.2020010052 33115917
    [Google Scholar]
  21. Zhang Y. Narayanan S.P. Mannan R. Raskind G. Wang X. Vats P. Su F. Hosseini N. Cao X. Kumar-Sinha C. Ellison S.J. Giordano T.J. Morgan T.M. Pitchiaya S. Alva A. Mehra R. Cieslik M. Dhanasekaran S.M. Chinnaiyan A.M. Single-cell analyses of renal cell cancers reveal insights into tumor microenvironment, cell of origin, and therapy response. Proc. Natl. Acad. Sci. USA 2021 118 24 e2103240118 10.1073/pnas.2103240118 34099557
    [Google Scholar]
  22. Miao Z. Balzer M.S. Ma Z. Liu H. Wu J. Shrestha R. Aranyi T. Kwan A. Kondo A. Pontoglio M. Kim J. Li M. Kaestner K.H. Susztak K. Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets. Nat. Commun. 2021 12 1 2277 10.1038/s41467‑021‑22266‑1 33859189
    [Google Scholar]
  23. Tang R. Meng T. Lin W. Shen C. Ooi J.D. Eggenhuizen P.J. Jin P. Ding X. Chen J. Tang Y. Xiao Z. Ao X. Peng W. Zhou Q. Xiao P. Zhong Y. Xiao X. A partial picture of the single-cell transcriptomics of human iga nephropathy. Front. Immunol. 2021 12 645988 10.3389/fimmu.2021.645988 33936064
    [Google Scholar]
  24. Pan X. Zhang H. Xu D. Chen J. Chen W. Gan S. Qu F. Chu C. Cao J. Fan Y. Song X. Ye J. Zhou W. Cui X. Identification of a novel cancer stem cell subpopulation that promotes progression of human fatal renal cell carcinoma by single-cell RNA-seq analysis. Int. J. Biol. Sci. 2020 16 16 3149 3162 10.7150/ijbs.46645 33162821
    [Google Scholar]
  25. Xu J. Shen C. Lin W. Meng T. Ooi J.D. Eggenhuizen P.J. Tang R. Xiao G. Jin P. Ding X. Tang Y. Peng W. Nie W. Ao X. Xiao X. Zhong Y. Zhou Q. Single-cell profiling reveals transcriptional signatures and cell-cell crosstalk in anti-pla2r positive idiopathic membranous nephropathy patients. Front. Immunol. 2021 12 683330 10.3389/fimmu.2021.683330 34135910
    [Google Scholar]
  26. Li A. Zhang H. Han H. Zhang W. Yang S. Huang Z. Tan J. Yi B. LC3 promotes the nuclear translocation of the vitamin D receptor and decreases fibrogenic gene expression in proximal renal tubules. Metabolism 2019 98 95 103 10.1016/j.metabol.2019.06.008 31226352
    [Google Scholar]
  27. Khan S Gaivin R Abramovich C Boylan M Calles J Schelling JR Fatty acid transport protein-2 regulates glycemic control and diabetic kidney disease progression. JCI Insight. 2020 5 15 e136845 10.1172/jci.insight.136845
    [Google Scholar]
  28. Xu Y. Li F. Lv L. Li T. Zhou X. Deng C.X. Guan K.L. Lei Q.Y. Xiong Y. Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase. Cancer Res. 2014 74 13 3630 3642 10.1158/0008‑5472.CAN‑13‑3615 24786789
    [Google Scholar]
  29. Cao H. Rao X. Jia J. Yan T. Li D. Exploring the pathogenesis of diabetic kidney disease by microarray data analysis. Front. Pharmacol. 2022 13 932205 10.3389/fphar.2022.932205 36059966
    [Google Scholar]
  30. Pasquale D.V Moles A Pavone LM. Cathepsins in the pathophysiology of mucopolysaccharidoses: New perspectives for therapy. Cells 2020 9 4 979 10.3390/cells9040979
    [Google Scholar]
  31. Hsing L.C. Kirk E.A. McMillen T.S. Hsiao S.H. Caldwell M. Houston B. Rudensky A.Y. LeBoeuf R.C. Roles for cathepsins S, L, and B in insulitis and diabetes in the NOD mouse. J. Autoimmun. 2010 34 2 96 104 10.1016/j.jaut.2009.07.003 19664906
    [Google Scholar]
  32. Brown R. Nath S. Lora A. Samaha G. Elgamal Z. Kaiser R. Taggart C. Weldon S. Geraghty P. Cathepsin S: Investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics. Respir. Res. 2020 21 1 111 10.1186/s12931‑020‑01381‑5 32398133
    [Google Scholar]
  33. Maachi H. Fergusson G. Ethier M. Brill G.N. Katz L.S. Honig L.B. Metukuri M.R. Scott D.K. Ghislain J. Poitout V. HB-EGF signaling is required for glucose-induced pancreatic β-cell proliferation in rats. Diabetes 2020 69 3 369 380 10.2337/db19‑0643 31882563
    [Google Scholar]
  34. Chen N. Fan B. He Z. Yu X. Wang J. Identification of HBEGF+ fibroblasts in the remission of rheumatoid arthritis by integrating single-cell RNA sequencing datasets and bulk RNA sequencing datasets. Arthritis Res. Ther. 2022 24 1 215 10.1186/s13075‑022‑02902‑x 36068607
    [Google Scholar]
  35. He C. Sheng L. Pan D. Jiang S. Ding L. Ma X. Liu Y. Jia D. Single-cell transcriptomic analysis revealed a critical role of SPP1/CD44-mediated crosstalk between macrophages and cancer cells in glioma. Front. Cell Dev. Biol. 2021 9 779319 10.3389/fcell.2021.779319 34805184
    [Google Scholar]
  36. Roumeliotis A. Roumeliotis S. Tsetsos F. Georgitsi M. Georgianos P.I. Stamou A. Vasilakou A. Kotsa K. Tsekmekidou X. Paschou P. Panagoutsos S. Liakopoulos V. Oxidative stress genes in diabetes mellitus type 2: Association with diabetic kidney disease. Oxid. Med. Cell. Longev. 2021 2021 1 2531062 10.1155/2021/2531062 34545296
    [Google Scholar]
  37. Liu Y. Zhang L. Ju X. Wang S. Qie J. Single-cell transcriptomic analysis reveals macrophage–tumor crosstalk in hepatocellular carcinoma. Front. Immunol. 2022 13 955390 10.3389/fimmu.2022.955390 35958556
    [Google Scholar]
  38. Xie W. Cheng J. Hong Z. Cai W. Zhuo H. Hou J. Lin L. Wei X. Wang K. Chen X. Song Y. Wang Z. Cai J. Multi-transcriptomic analysis reveals the heterogeneity and tumor-promoting role of SPP1/CD44-mediated intratumoral crosstalk in gastric cancer. Cancers 2022 15 1 164 10.3390/cancers15010164 36612160
    [Google Scholar]
  39. Wang Z. Liu Y. Mo Y. Zhang H. Dai Z. Zhang X. Ye W. Cao H. Liu Z. Cheng Q. The CXCL family contributes to immunosuppressive microenvironment in gliomas and assists in gliomas chemotherapy. Front. Immunol. 2021 12 731751 10.3389/fimmu.2021.731751 34603309
    [Google Scholar]
  40. Johny E. Jala A. Nath B. Alam M.J. Kuladhipati I. Das R. Borkar R.M. Adela R. Vitamin D supplementation modulates platelet-mediated inflammation in subjects with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Front. Immunol. 2022 13 869591 10.3389/fimmu.2022.869591 35720377
    [Google Scholar]
  41. Gu R. Wang L. Zhou H. Wang X. Lenahan C. Qu H. Liu Y. Li S. Wei C. Han L. Hu X. Zuo G. Rh-CXCL-12 attenuates neuronal pyroptosis after subarachnoid hemorrhage in rats via regulating the CXCR4/NLRP1 pathway. Oxid. Med. Cell. Longev. 2021 2021 1 6966394 10.1155/2021/6966394 34795842
    [Google Scholar]
  42. Bonecchi R. Graham G.J. Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front. Immunol. 2016 7 224 10.3389/fimmu.2016.00224 27375622
    [Google Scholar]
  43. Nistala R. Savin V. Diabetes, hypertension, and chronic kidney disease progression: Role of DPP4. Am. J. Physiol. Renal Physiol. 2017 312 4 F661 F670 10.1152/ajprenal.00316.2016 28122713
    [Google Scholar]
  44. Suthon S. Perkins R.S. Bryja V. Miranda-Carboni G.A. Krum S.A. WNT5B in physiology and disease. Front. Cell Dev. Biol. 2021 9 667581 10.3389/fcell.2021.667581 34017835
    [Google Scholar]
  45. Nie X. Wei X. Ma H. Fan L. Chen W.D. The complex role of Wnt ligands in type 2 diabetes mellitus and related complications. J. Cell. Mol. Med. 2021 25 14 6479 6495 10.1111/jcmm.16663 34042263
    [Google Scholar]
  46. Li S. Li Y. Wu Z. Wu Z. Fang H. Diabetic ferroptosis plays an important role in triggering on inflammation in diabetic wound. Am. J. Physiol. Endocrinol. Metab. 2021 321 4 E509 E520 10.1152/ajpendo.00042.2021 34423682
    [Google Scholar]
  47. Wang H. Yu X. Liu D. Qiao Y. Huo J. Pan S. Zhou L. Wang R. Feng Q. Liu Z. VDR activation attenuates renal tubular epithelial cell ferroptosis by regulating nrf2/ho-1 signaling pathway in diabetic nephropathy. Adv. Sci. 2024 11 10 2305563 10.1002/advs.202305563 38145959
    [Google Scholar]
  48. Peiyao R. Xueli M. Wenbo S. Danna Z. Jianguang G. Juan J. Qiang H. High glucose induces podocyte ferroptosis through BAP1/SLC7A11 pathway. Heliyon 2025 11 1 e40590 10.1016/j.heliyon.2024.e40590 39816499
    [Google Scholar]
  49. Sadia K. Ashraf M.Z. Mishra A. Therapeutic role of sirtuins targeting unfolded protein response, coagulation, and inflammation in hypoxia-induced thrombosis. Front. Physiol. 2021 12 733453 10.3389/fphys.2021.733453 34803727
    [Google Scholar]
  50. Han Z. Luo Y. Chen H. Zhang G. You L. Zhang M. Lin Y. Yuan L. Zhou S. A deep insight into ferroptosis in renal disease: Facts and perspectives. Kidney Dis. 2024 10 3 224 236 10.1159/000538106 38835406
    [Google Scholar]
  51. Chen H. Zhang H. Li A. Liu Y. Liu Y. Zhang W. Yang C. Song N. Zhan M. Yang S. VDR regulates mitochondrial function as a protective mechanism against renal tubular cell injury in diabetic rats. Redox Biol. 2024 70 103062 10.1016/j.redox.2024.103062 38320454
    [Google Scholar]
  52. Ye S. Cheng Z. Zhuo D. Liu S. Different types of cell death in diabetic neuropathy: A focus on mechanisms and therapeutic strategies. Int. J. Mol. Sci. 2024 25 15 8126 10.3390/ijms25158126 39125694
    [Google Scholar]
  53. Zhou J. Tan Y. Hu L. Fu J. Li D. Chen J. Long Y. Inhibition of HSPA8 by rifampicin contributes to ferroptosis via enhancing autophagy. Liver Int. 2022 42 12 2889 2899 10.1111/liv.15459 36254713
    [Google Scholar]
  54. Lu L. Li X. Zhong Z. Zhou W. Zhou D. Zhu M. Miao C. KMT5A downregulation participated in high glucose-mediated EndMT via upregulation of ENO1 expression in diabetic nephropathy. Int. J. Biol. Sci. 2021 17 15 4093 4107 10.7150/ijbs.62867 34803485
    [Google Scholar]
  55. Huang J. Zhou Q. Gene biomarkers related to th17 cells in macular edema of diabetic retinopathy: Cutting-edge comprehensive bioinformatics analysis and in vivo validation. Front. Immunol. 2022 13 858972 10.3389/fimmu.2022.858972 35651615
    [Google Scholar]
  56. Zhao J. He K. Du H. Wei G. Wen Y. Wang J. Zhou X. Wang J. Bioinformatics prediction and experimental verification of key biomarkers for diabetic kidney disease based on transcriptome sequencing in mice. PeerJ 2022 10 e13932 10.7717/peerj.13932 36157062
    [Google Scholar]
  57. Liyanagamage D.S.N.K. Martinus R.D. Role of mitochondrial stress protein hsp60 in diabetes-induced neuroinflammation. Mediators Inflamm. 2020 2020 1 8 10.1155/2020/8073516 32410865
    [Google Scholar]
  58. Lv M. Cai Y. Hou W. Peng K. Xu K. Lu C. Yu W. Zhang W. Liu L. The RNA-binding protein SND1 promotes the degradation of GPX4 by destabilizing the HSPA5 mRNA and suppressing HSPA5 expression, promoting ferroptosis in osteoarthritis chondrocytes. Inflamm. Res. 2022 71 4 461 472 10.1007/s00011‑022‑01547‑5 35320827
    [Google Scholar]
  59. Liu Y. Zhou L. Xu Y. Li K. Zhao Y. Qiao H. Xu Q. Zhao J. Heat shock proteins and ferroptosis. Front. Cell Dev. Biol. 2022 10 864635 10.3389/fcell.2022.864635 35478955
    [Google Scholar]
  60. Wang Q. Ke S. Liu Z. Shao H. He M. Guo J. HSPA5 promotes the proliferation, metastasis and regulates ferroptosis of bladder cancer. Int. J. Mol. Sci. 2023 24 6 5144 10.3390/ijms24065144 36982218
    [Google Scholar]
  61. Bima A.I.H. Elsamanoudy A.Z. Albaqami W.F. Khan Z. Parambath S.V. Al-Rayes N. Kaipa P.R. Elango R. Banaganapalli B. Shaik N.A. Integrative system biology and mathematical modeling of genetic networks identifies shared biomarkers for obesity and diabetes. Math. Biosci. Eng. 2022 19 3 2310 2329 10.3934/mbe.2022107 35240786
    [Google Scholar]
  62. Liu B Chen Z Li Z Zhao X Zhang W Zhang A Wen L Wang X Zhou S Qian D. Hsp90alpha promotes chemoresistance in pancreatic cancer by regulating Keap1-Nrf2 axis and inhibiting ferroptosis. Acta Biochim. Biophys. Sin. 2024 57 2 295 309 10.3724/abbs.2024138
    [Google Scholar]
  63. Zhou F. Li D. Liu C. Li C. Li K. Shi L. Zhou F. m6A-activated BACH1 exacerbates ferroptosis by epigenetic suppression HSPB1 in severe acute pancreatitis. Drug Dev. Res. 2024 85 7 e22256 10.1002/ddr.22256 39285641
    [Google Scholar]
  64. Gao X. Hu W. Qian D. Bai X. He H. Li L. Sun S. The mechanisms of ferroptosis under hypoxia. Cell. Mol. Neurobiol. 2023 43 7 3329 3341 10.1007/s10571‑023‑01388‑8 37458878
    [Google Scholar]
  65. Zhang J. Cai Y. Qin Y. Liu J. Ding J. Xu M. Yang L. Zheng Y. Zhang X. Heat shock protein 70 promotes the progression of type 2 diabetic nephropathy by inhibiting T-cell immunoglobulin and mucin domain-3 and thereby promoting Th17/Treg imbalance. Nephrology 2024 29 12 806 814 10.1111/nep.14396 39434257
    [Google Scholar]
  66. Wang Y. Chen Z. Li J. Wen Y. Li J. Lv Y. Pei Z. Pei Y. A paramagnetic metal-organic framework enhances mild magnetic hyperthermia therapy by downregulating heat shock proteins and promoting ferroptosis via aggravation of two-way regulated redox dyshomeostasis. Adv. Sci. 2024 11 11 2306178 10.1002/advs.202306178 38161219
    [Google Scholar]
  67. Peng C. Zhao F. Li H. Li L. Yang Y. Liu F. HSP90 mediates the connection of multiple programmed cell death in diseases. Cell Death Dis. 2022 13 11 929 10.1038/s41419‑022‑05373‑9 36335088
    [Google Scholar]
  68. Cubuk J. Soranno A. Macromolecular crowding and intrinsically disordered proteins: A polymer physics perspective. Chem. Sys. Chem. 2022 4 5 e202100051 10.1002/syst.202100051
    [Google Scholar]
  69. Alberti S. Hyman A.A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 2021 22 3 196 213 10.1038/s41580‑020‑00326‑6 33510441
    [Google Scholar]
  70. Li P. Banjade S. Cheng H.C. Kim S. Chen B. Guo L. Llaguno M. Hollingsworth J.V. King D.S. Banani S.F. Russo P.S. Jiang Q.X. Nixon B.T. Rosen M.K. Phase transitions in the assembly of multivalent signalling proteins. Nature 2012 483 7389 336 340 10.1038/nature10879 22398450
    [Google Scholar]
  71. Cai D. Feliciano D. Dong P. Flores E. Gruebele M. Porat-Shliom N. Sukenik S. Liu Z. Lippincott-Schwartz J. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 2019 21 12 1578 1589 10.1038/s41556‑019‑0433‑z 31792379
    [Google Scholar]
  72. Yu H. Lu S. Gasior K. Singh D. Vazquez-Sanchez S. Tapia O. Toprani D. Beccari M.S. Yates J.R. III Cruz D.S. Newby J.M. Lafarga M. Gladfelter A.S. Villa E. Cleveland D.W. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science 2021 371 6529 eabb4309 10.1126/science.abb4309 33335017
    [Google Scholar]
  73. König I. Soranno A. Nettels D. Schuler B. Impact of in-cell and in-vitro crowding on the conformations and dynamics of an intrinsically disordered protein. Angew. Chem. Int. Ed. 2021 60 19 10724 10729 10.1002/anie.202016804 33587794
    [Google Scholar]
  74. Zeng X. Holehouse A.S. Chilkoti A. Mittag T. Pappu R.V. Connecting coil-to-globule transitions to full phase diagrams for intrinsically disordered proteins. Biophys. J. 2020 119 2 402 418 10.1016/j.bpj.2020.06.014 32619404
    [Google Scholar]
  75. Xia Y. Zhang H. Wang H. Wang Q. Zhu P. Gu Y. Yang H. Geng D. Identification and validation of ferroptosis key genes in bone mesenchymal stromal cells of primary osteoporosis based on bioinformatics analysis. Front. Endocrinol. 2022 13 980867 10.3389/fendo.2022.980867 36093072
    [Google Scholar]
  76. Miao Z. Tian W. Ye Y. Gu W. Bao Z. Xu L. Sun G. Li C. Tu Y. Chao H. Lam S.M. Liu N. Ji J. Hsp90 induces Acsl4-dependent glioma ferroptosis via dephosphorylating Ser637 at Drp1. Cell Death Dis. 2022 13 6 548 10.1038/s41419‑022‑04997‑1 35697672
    [Google Scholar]
  77. Kaur H. Advani A. The study of single cells in diabetic kidney disease. J. Nephrol. 2021 34 6 1925 1939 10.1007/s40620‑020‑00964‑1 33476038
    [Google Scholar]
  78. Zeng H. Yang X. Luo S. Zhou Y. The advances of single-cell RNA-SEQ in kidney immunology. Front. Physiol. 2021 12 752679 10.3389/fphys.2021.752679 34721077
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673357406250719145527
Loading
/content/journals/cmc/10.2174/0109298673357406250719145527
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test