Skip to content
2000
image of Medical Artificial Intelligence: Opportunities and Challenges In Infectious Disease Management

Abstract

Globally, millions of individuals suffer from infectious diseases, which are major public health concerns caused by bacteria, fungi, viruses, or parasites. These diseases can be transmitted directly or indirectly from person to person, potentially leading to a pandemic or epidemic. Several advancements have been made in molecular genetics for infectious disease management, which include pharmaceutical chemistry, medicine, and infection tracking; however, these advancements still lack control over human infections. Multidisciplinary cooperation is needed to address and control human infections. Advancements in scientific tools have empowered scientists to enhance epidemic prediction, gain insights into pathogen specificity, and pinpoint potential targets for drug development. Artificial intelligence (AI)-based methodologies demonstrate significant potential for integrating large-scale quantitative and omics data, enabling effective handling of biological complexity. Machine Learning (ML) plays a crucial role in AI by leveraging data to train predictive models. AI can enhance diagnostic accuracy through objective pattern recognition, standardize infection diagnoses with implications for Infection Prevention and Control (IPC), and aid in generalizing IPC knowledge. Additionally, AI-powered hand hygiene applications have the potential to drive behavioral change, although further evaluation in diverse clinical contexts is necessary. This review article highlights AI's potential in improving the healthcare system in different aspects of infectious diseases management, such as monitoring disease growth, using a real-time chatbot for patient assistance, using image processing for diagnosis, and developing new treatment algorithms. The study also discusses future directions for novel vaccine and drug development, as well as other aspects, such as the need for physicians and healthcare professionals to receive AI system training for their correct use and the ability of doctors to identify and resolve any problems that may arise with AI.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673390868250728103906
2025-08-19
2025-11-04
Loading full text...

Full text loading...

References

  1. Ahmed R. Shaheen S. Philbin S.P. The role of big data analytics and decision-making in achieving project success. J. Eng. Technol. Manage. 2022 65 101697 10.1016/j.jengtecman.2022.101697
    [Google Scholar]
  2. Rawson T.M. Ahmad R. Toumazou C. Georgiou P. Holmes A.H. Artificial intelligence can improve decision- making in infection management. Nat. Hum. Behav. 2019 3 6 543 545 10.1038/s41562‑019‑0583‑9 31190023
    [Google Scholar]
  3. Mogi K. Artificial intelligence, human cognition, and conscious supremacy. Front. Psychol. 2024 15 1364714 10.3389/fpsyg.2024.1364714 38807956
    [Google Scholar]
  4. Yin M. Tambyah P.A. Perencevich E.N. Infection, antibiotics, and patient outcomes in the intensive care unit. JAMA 2020 323 15 1451 1452 10.1001/jama.2020.2241 32207775
    [Google Scholar]
  5. Blot S. Ruppé E. Harbarth S. Asehnoune K. Poulakou G. Luyt C.E. Rello J. Klompas M. Depuydt P. Eckmann C. Martin-Loeches I. Povoa P. Bouadma L. Timsit J.F. Zahar J.R. Healthcare-associated infections in adult intensive care unit patients: Changes in epidemiology, diagnosis, prevention and contributions of new technologies. Intensive Crit. Care Nurs. 2022 70 103227 10.1016/j.iccn.2022.103227 35249794
    [Google Scholar]
  6. De Corte T. Van Hoecke S. De Waele J. Artificial intelligence in infection management in the ICU. Crit. Care 2022 26 1 79 10.1186/s13054‑022‑03916‑2 35337363
    [Google Scholar]
  7. Shams R.A. Zowghi D. Bano M. AI and the quest for diversity and inclusion: A systematic literature review. AI Ethics 2025 5 411 438 10.1007/s43681‑023‑00362‑w
    [Google Scholar]
  8. Agrebi S. Larbi A. Use of artificial intelligence in infectious diseases. Artificial Intelligence in Precision Health: From Concept to Applications Academic Press 2020 415 438 10.1016/B978‑0‑12‑817133‑2.00018‑5
    [Google Scholar]
  9. Ha T. Yang H. Hong S. Automated weak signal detection and prediction using keyword network clustering and graph convolutional network. Futures 2023 152 103202 10.1016/j.futures.2023.103202
    [Google Scholar]
  10. Wang J. Is artificial intelligence capable of understanding? An analysis based on philosophical hermeneutics. Cult. Sc. 2021 4 3 135 146 10.1177/20966083211056405
    [Google Scholar]
  11. Zhu S. Yu T. Xu T. Chen H. Dustdar S. Gigan S. Gunduz D. Hossain E. Jin Y. Lin F. Liu B. Wan Z. Zhang J. Zhao Z. Zhu W. Chen Z. Durrani T.S. Wang H. Wu J. Zhang T. Pan Y. Intelligent computing: The latest advances, challenges, and future. Intelligent Computing 2023 2 0006 10.34133/icomputing.0006
    [Google Scholar]
  12. Kermany D.S. Goldbaum M. Cai W. Valentim C.C.S. Liang H. Baxter S.L. McKeown A. Yang G. Wu X. Yan F. Dong J. Prasadha M.K. Pei J. Ting M.Y.L. Zhu J. Li C. Hewett S. Dong J. Ziyar I. Shi A. Zhang R. Zheng L. Hou R. Shi W. Fu X. Duan Y. Huu V.A.N. Wen C. Zhang E.D. Zhang C.L. Li O. Wang X. Singer M.A. Sun X. Xu J. Tafreshi A. Lewis M.A. Xia H. Zhang K. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018 172 5 1122 1131.e9 10.1016/j.cell.2018.02.010 29474911
    [Google Scholar]
  13. Stephen O. Sain M. Maduh U.J. Jeong D.U. An efficient deep learning approach to pneumonia classification in healthcare. J. Healthc. Eng. 2019 2019 1 7 10.1155/2019/4180949 31049186
    [Google Scholar]
  14. Sorayaie Azar A. Naemi A. Babaei Rikan S. Bagherzadeh Mohasefi J. Pirnejad H. Wiil U.K. Monkeypox detection using deep neural networks. BMC Infect. Dis. 2023 23 1 438 10.1186/s12879‑023‑08408‑4 37370031
    [Google Scholar]
  15. Heckerling P.S. Gerber B.S. Tape T.G. Wigton R.S. Prediction of community-acquired pneumonia using artificial neural networks. Med. Decis. Making 2003 23 2 112 121 10.1177/0272989X03251247 12693873
    [Google Scholar]
  16. Li X. Xu X. Wang J. Li J. Qin S. Yuan J. Study on prediction model of HIV incidence based on GRU neural network optimized by MHPSO. IEEE Access 2020 8 49574 49583 10.1109/ACCESS.2020.2979859 32391239
    [Google Scholar]
  17. Xiang Y. Fujimoto K. Schneider J. Jia Y. Zhi D. Tao C. Network context matters: Graph convolutional network model over social networks improves the detection of unknown HIV infections among young men who have sex with men. J. Am. Med. Inform. Assoc. 2019 26 11 1263 1271 10.1093/jamia/ocz070 31197365
    [Google Scholar]
  18. Lee S. Cho E. Jang G. Kim S. Cho G. Early detection of norovirus outbreak using machine learning methods in South Korea. PLoS One 2022 17 e0277671 10.1371/journal.pone.0277671
    [Google Scholar]
  19. Zoabi Y. Kehat O. Lahav D. Weiss-Meilik A. Adler A. Shomron N. Predicting bloodstream infection outcome using machine learning. Sci. Rep. 2021 11 1 20101 10.1038/s41598‑021‑99105‑2 34635696
    [Google Scholar]
  20. Sebastianelli A. Spiller D. Carmo R. Wheeler J. Nowakowski A. Jacobson L.V. Kim D. Barlevi H. Cordero Z.E.R. Colón-González F.J. Lowe R. Ullo S.L. Schneider R. A reproducible ensemble machine learning approach to forecast dengue outbreaks. Sci. Rep. 2024 14 1 3807 10.1038/s41598‑024‑52796‑9 38360915
    [Google Scholar]
  21. Ethics and governance of artificial intelligence for health. 2021 Available from: https://www.who.int/publications/i/item/9789240029200
  22. Adlassnig Klaus-Peter Blacky Alexander Koller Walter Artificial-intelligence-based hospital-acquired infection control. Stud. Health Technol. Inform. 2009 149 103 110 10.3233/978‑1‑60750‑050‑6‑103 19745475
    [Google Scholar]
  23. Martin-Moreno J.M. Alegre-Martinez A. Martin-Gorgojo V. Alfonso-Sanchez J.L. Torres F. Pallares-Carratala V. Predictive models for forecasting public health scenarios: Practical experiences applied during the first wave of the covid-19 pandemic. Int. J. Environ. Res. Public Health 2022 19 9 5546 10.3390/ijerph19095546 35564940
    [Google Scholar]
  24. Chao K. Sarker M.N.I. Ali I. Firdaus R.B.R. Azman A. Shaed M.M. Big data-driven public health policy making: Potential for the healthcare industry. Heliyon 2023 9 9 e19681 10.1016/j.heliyon.2023.e19681 37809720
    [Google Scholar]
  25. Shahroz M. Ahmad F. Younis M.S. Ahmad N. Kamel Boulos M.N. Vinuesa R. Qadir J. COVID-19 digital contact tracing applications and techniques: A review post initial deployments. Transportation Engineering 2021 5 100072 10.1016/j.treng.2021.100072
    [Google Scholar]
  26. Stokes K. Piaggio D. De Micco F. Zarro M. De Benedictis A. Tambone V. Moon M. Maccaro A. Pecchia L. The use of contact tracing technologies for infection prevention and control purposes in nosocomial settings: A systematic literature review. Infect Dis Rep 2024 16 3 519 530 10.3390/idr16030039
    [Google Scholar]
  27. Anom B.Y. The ethical dilemma of mobile phone data monitoring during COVID-19: The case for South Korea and the United States. J. Public Health Res. 2022 11 3 22799036221102491 10.1177/22799036221102491 35911427
    [Google Scholar]
  28. Lack L.C. Gradisar M. Van Someren E.J.W. Wright H.R. Lushington K. The relationship between insomnia and body temperatures. Sleep Med. Rev. 2008 12 4 307 317 10.1016/j.smrv.2008.02.003 18603220
    [Google Scholar]
  29. Wright K. P. Hull J. T. Czeisler C. A. Relationship between alertness, performance, and body temperature in humans. Am J Physiol Regul Integr Comp Physiol 2002 283 6 R1267 R1276 10.1152/ajpregu.00205.2002
    [Google Scholar]
  30. Shibasaki K. Suzuki M. Mizuno A. Tominaga M. Effects of body temperature on neural activity in the hippocampus: Regulation of resting membrane potentials by transient receptor potential vanilloid 4. J. Neurosci. 2007 27 7 1566 1575 10.1523/JNEUROSCI.4284‑06.2007 17301165
    [Google Scholar]
  31. Buller M.J. Tharion W.J. Cheuvront S.N. Montain S.J. Kenefick R.W. Castellani J. Latzka W.A. Roberts W.S. Richter M. Jenkins O.C. Hoyt R.W. Estimation of human core temperature from sequential heart rate observations. Physiol. Meas. 2013 34 7 781 798 10.1088/0967‑3334/34/7/781 23780514
    [Google Scholar]
  32. Mansor H. Shukor M.H.A. Meskam S.S. Rusli N.Q.A.M. Zamery N.S. Body temperature measurement for remote health monitoring system. 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA) Kuala Lumpur, Malaysia, 25-27 November 2013, pp. 1-5. 10.1109/ICSIMA.2013.6717956
    [Google Scholar]
  33. Vaz A. Ubarretxena A. Zalbide I. Pardo D. Solar H. Garcia-Alonso A. Berenguer R. Full passive UHF tag with a temperature sensor suitable for human body temperature monitoring. IEEE Trans. Circuits Syst. II Express Briefs 2010 57 2 95 99 10.1109/TCSII.2010.2040314
    [Google Scholar]
  34. Milici S. Amendola S. Bianco A. Marrocco G. Epidermal RFID passive sensor for body temperature measurements. 2014 IEEE RFID Technology and Applications Conference (RFID-TA) Tampere, Finland, 08-09 September 2014, pp. 140-144. 10.1109/RFID‑TA.2014.6934216
    [Google Scholar]
  35. Sim S.Y. Lee W.K. Baek H.J. Park K.S. A nonintrusive temperature measuring system for estimating deep body temperature in bed. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society San Diego, CA, USA, 28 August 2012 - 01 September 2012, pp. 3460-3463. 10.1109/EMBC.2012.6346710
    [Google Scholar]
  36. Paul D. Sanap G. Shenoy S. Kalyane D. Kalia K. Tekade R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021 26 1 80 93 10.1016/j.drudis.2020.10.010 33099022
    [Google Scholar]
  37. Blanco-González A. Cabezón A. Seco-González A. Conde-Torres D. Antelo-Riveiro P. Piñeiro Á. Garcia- Fandino R. The role of AI in drug discovery: Challenges, opportunities, and strategies. Pharmaceuticals 2023 16 6 891 10.3390/ph16060891 37375838
    [Google Scholar]
  38. Chauhan A.S. Kathuria S. Gehlot A. Sunil G. Revolutionizing drug discovery: Unleashing AI’s potential in pharmaceutical innovation. Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2023. Communications in Computer and Information Science Springer, Cham, 31 January 2024, pp 39–50. 10.1007/978‑3‑031‑53082‑1_4
    [Google Scholar]
  39. AI_healthcare_model. https://www.ddcdolphin.com/media/blog/healthcare-ai-infection-control (2024).
    [Google Scholar]
  40. Pinto-Coelho L. How artificial intelligence is shaping medical imaging technology: A survey of innovations and applications. Bioengineering 2023 10 12 1435 10.3390/bioengineering10121435 38136026
    [Google Scholar]
  41. Al-Antari M.A. Artificial intelligence for medical diagnostics—existing and future AI technology! Diagnostics 2023 13 4 688 10.3390/diagnostics13040688 36832175
    [Google Scholar]
  42. Oren O. Gersh B.J. Bhatt D.L. Artificial intelligence in medical imaging: Switching from radiographic pathological data to clinically meaningful endpoints. Lancet Digit. Health 2020 2 9 e486 e488 10.1016/S2589‑7500(20)30160‑6 33328116
    [Google Scholar]
  43. El-Bouzaidi Y.E.I. Abdoun O. Advances in artificial intelligence for accurate and timely diagnosis of COVID-19: A comprehensive review of medical imaging analysis. Sci. Am. 2023 22 e01961 10.1016/j.sciaf.2023.e01961
    [Google Scholar]
  44. Undru T.R. Uday U. Lakshmi J.T. Kaliappan A. Mallamgunta S. Nikhat S.S. Sakthivadivel V. Gaur A. Integrating artificial intelligence for clinical and laboratory diagnosis - A review. Maedica 2022 17 2 420 426 10.26574/maedica.2022.17.2.420 36032592
    [Google Scholar]
  45. Mohseni P. Ghorbani A. Exploring the synergy of artificial intelligence in microbiology: Advancements, challenges, and future prospects. Comput. Struct. Biotechnol. Rep. 2024 1 100005 10.1016/j.csbr.2024.100005
    [Google Scholar]
  46. Shafi S. Parwani A.V. Artificial intelligence in diagnostic pathology. Diagn. Pathol. 2023 18 1 109 10.1186/s13000‑023‑01375‑z 37784122
    [Google Scholar]
  47. Sharma A. Gupta G. Ahmad T. Krishan K. Kaur B. Next generation agents (synthetic agents): Emerging threats and challenges in detection, protection, and decontamination. Handbook on Biological Warfare Preparedness Academic Press 2019 217 256 10.1016/B978‑0‑12‑812026‑2.00012‑8
    [Google Scholar]
  48. Alowais S.A. Alghamdi S.S. Alsuhebany N. Alqahtani T. Alshaya A.I. Almohareb S.N. Aldairem A. Alrashed M. Bin Saleh K. Badreldin H.A. Al Yami M.S. Al Harbi S. Albekairy A.M. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023 23 1 689 10.1186/s12909‑023‑04698‑z 37740191
    [Google Scholar]
  49. Morr C. El Ozdemir D. Asdaah Y. Saab A. El-Lahib Y. Sokhn E. S. AI-based epidemic and pandemic early warning systems: A systematic scoping review. Health Inform J 2024 30 3 14604582241275844 10.1177/14604582241275844
    [Google Scholar]
  50. Syrowatka A. Kuznetsova M. Alsubai A. Beckman A.L. Bain P.A. Craig K.J.T. Hu J. Jackson G.P. Rhee K. Bates D.W. Leveraging artificial intelligence for pandemic preparedness and response: A scoping review to identify key use cases. NPJ Digit. Med. 2021 4 1 96 10.1038/s41746‑021‑00459‑8 34112939
    [Google Scholar]
  51. Sheridan C. Massive data initiatives and AI provide testbed for pandemic forecasting. Nat. Biotechnol. 2020 38 9 1010 1013 10.1038/s41587‑020‑0671‑4 32887968
    [Google Scholar]
  52. Chakraborty S. Paul H. Ghatak S. Pandey S.K. Kumar A. Singh K.U. Shah M.A. An AI-based medical chatbot model for infectious disease prediction. IEEE Access 2022 10 128469 128483 10.1109/ACCESS.2022.3227208
    [Google Scholar]
  53. Pathak C. Ansari N. Chatbot based disease prediction and treatment recommendation using AI. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI) Tirunelveli, India, 2019, pp. 851-856. 10.2139/ssrn.3869072
    [Google Scholar]
  54. Dinesh B. Chilukuri P. Sree G.P. Venkatesh K. Delli M. Nandish K.R. Chat and voice bot implementation for cardio and ENT queries using NLP. 2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA) Uttarakhand, India, 14-16 March 2023, pp. 124-130. 10.1109/ICIDCA56705.2023.10099942
    [Google Scholar]
  55. Madhu D. Jain C.J.N. Sebastain E. Shaji S. Ajayakumar A. A novel approach for medical assistance using trained chatbot. 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT) Coimbatore, India, 10-11 March 2017, pp. 243-246. 10.1109/ICICCT.2017.7975195
    [Google Scholar]
  56. Xu L. Sanders L. Li K. Chow J.C.L. Chatbot for health care and oncology applications using artificial intelligence and machine learning: Systematic review. JMIR Cancer 2021 7 4 e27850 10.2196/27850 34847056
    [Google Scholar]
  57. Kim J.I. Maguire F. Tsang K.K. Gouliouris T. Peacock S.J. McAllister T.A. McArthur A.G. Beiko R.G. Machine learning for antimicrobial resistance prediction: Current practice, limitations, and clinical perspective. Clin. Microbiol. Rev. 2022 35 3 e00179-21 10.1128/cmr.00179‑21 35612324
    [Google Scholar]
  58. Vamathevan J. Clark D. Czodrowski P. Dunham I. Ferran E. Lee G. Li B. Madabhushi A. Shah P. Spitzer M. Zhao S. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019 18 6 463 477 10.1038/s41573‑019‑0024‑5 30976107
    [Google Scholar]
  59. Deng F. Huang J. Yuan X. Cheng C. Zhang L. Performance and efficiency of machine learning algorithms for analyzing rectangular biomedical data. Lab. Invest. 2021 101 4 430 441 10.1038/s41374‑020‑00525‑x 33574440
    [Google Scholar]
  60. Sutton R.T. Pincock D. Baumgart D.C. Sadowski D.C. Fedorak R.N. Kroeker K.I. An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit. Med. 2020 3 1 17 10.1038/s41746‑020‑0221‑y 32047862
    [Google Scholar]
  61. Weissler E.H. Naumann T. Andersson T. Ranganath R. Elemento O. Luo Y. Freitag D.F. Benoit J. Hughes M.C. Khan F. Slater P. Shameer K. Roe M. Hutchison E. Kollins S.H. Broedl U. Meng Z. Wong J.L. Curtis L. Huang E. Ghassemi M. The role of machine learning in clinical research: Transforming the future of evidence generation. Trials 2021 22 1 537 10.1186/s13063‑021‑05489‑x 34399832
    [Google Scholar]
  62. Wong F. de la Fuente-Nunez C. Collins J.J. Leveraging artificial intelligence in the fight against infectious diseases. Science 2023 381 6654 164 170 10.1126/science.adh1114 37440620
    [Google Scholar]
  63. Liang W. Tadesse G.A. Ho D. Fei-Fei L. Zaharia M. Zhang C. Zou J. Advances, challenges and opportunities in creating data for trustworthy AI. Nat. Mach. Intell. 2022 4 8 669 677 10.1038/s42256‑022‑00516‑1
    [Google Scholar]
  64. Wong Z.S.Y. Zhou J. Zhang Q. Artificial intelligence for infectious disease big data analytics. Infect. Dis. Health 2019 24 1 44 48 10.1016/j.idh.2018.10.002 30541697
    [Google Scholar]
  65. Murdoch B. Privacy and artificial intelligence: Challenges for protecting health information in a new era. BMC Med. Ethics 2021 22 1 122 10.1186/s12910‑021‑00687‑3 34525993
    [Google Scholar]
  66. Li Y.H. Li Y.L. Wei M.Y. Li G.Y. Innovation and challenges of artificial intelligence technology in personalized healthcare. Sci. Rep. 2024 14 1 18994 10.1038/s41598‑024‑70073‑7 39152194
    [Google Scholar]
  67. Yelne S. Chaudhary M. Dod K. Sayyad A. Sharma R. Harnessing the power of AI: A comprehensive review of its impact and challenges in nursing science and healthcare. Cureus 2023 15 11 e49252 10.7759/cureus.49252 38143615
    [Google Scholar]
  68. Chen Z. Ethics and discrimination in artificial intelligence-enabled recruitment practices. Humanit Soc Sci Commun 2023 10 567 10.1057/s41599‑023‑02079‑x
    [Google Scholar]
  69. Picard M. Scott-Boyer M.P. Bodein A. Périn O. Droit A. Integration strategies of multi-omics data for machine learning analysis. Comput. Struct. Biotechnol. J. 2021 19 3735 3746 10.1016/j.csbj.2021.06.030 34285775
    [Google Scholar]
  70. Reddy S. Generative AI in healthcare: An implementation science informed translational path on application, integration and governance. Implement. Sci. 2024 19 1 27 10.1186/s13012‑024‑01357‑9 38491544
    [Google Scholar]
  71. Ciecierski-Holmes T. Singh R. Axt M. Brenner S. Barteit S. Artificial intelligence for strengthening healthcare systems in low- and middle-income countries: A systematic scoping review. NPJ Digit. Med. 2022 5 1 162 10.1038/s41746‑022‑00700‑y 36307479
    [Google Scholar]
  72. Jahrling P.B. Keith L. St Claire M. Johnson R.F. Bollinger L. Lackemeyer M.G. Hensley L.E. Kindrachuk J. Kuhn J.H. The NIAID integrated research facility at frederick, Maryland: A unique international resource to facilitate medical countermeasure development for BSL-4 pathogens. Pathog. Dis. 2014 71 2 213 219 10.1111/2049‑632X.12171 24687975
    [Google Scholar]
  73. Winkler J.K. Fink C. Toberer F. Enk A. Deinlein T. Hofmann-Wellenhof R. Thomas L. Lallas A. Blum A. Stolz W. Haenssle H.A. Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA Dermatol. 2019 155 10 1135 1141 10.1001/jamadermatol.2019.1735 31411641
    [Google Scholar]
  74. van de Sande D. van Genderen M.E. Huiskens J. Gommers D. van Bommel J. Moving from bytes to bedside: A systematic review on the use of artificial intelligence in the intensive care unit. Intensive Care Med. 2021 47 7 750 760 10.1007/s00134‑021‑06446‑7 34089064
    [Google Scholar]
  75. Fleuren L.M. Thoral P. Shillan D. Ercole A. Elbers P.W.G. Hoogendoorn M. Gibbison B. Klausch T.L.T. Guo T. Roggeveen L.F. Machine learning in intensive care medicine: Ready for take-off? Intensive Care Med. 2020 46 7 1486 1488 10.1007/s00134‑020‑06045‑y 32399747
    [Google Scholar]
  76. Chen P.H.C. Mermel C.H. Liu Y. Evaluation of artificial intelligence on a reference standard based on subjective interpretation. Lancet Digit. Health 2021 3 11 e693 e695 10.1016/S2589‑7500(21)00216‑8 34561202
    [Google Scholar]
  77. Subbaswamy A. Saria S. From development to deployment: Dataset shift, causality, and shift-stable models in health AI. Biostatistics 2019 21 2 kxz041 10.1093/biostatistics/kxz041 31742354
    [Google Scholar]
  78. Anahtar M.N. Yang J.H. Kanjilal S. Applications of machine learning to the problem of antimicrobial resistance: An emerging model for translational research. J. Clin. Microbiol. 2021 59 7 e01260-20 10.1128/JCM.01260‑20 33536291
    [Google Scholar]
  79. Shankarnarayan A. Machine learning for antimicrobial resistance research and drug development. The Global Antimicrobial Resistance Epidemic - Innovative Approaches and Cutting-Edge Solutions IntechOpen 2022 10.5772/intechopen.104841
    [Google Scholar]
  80. Geneva I.I. Cuzzo B. Fazili T. Javaid W. Normal body temperature: A systematic review. Open Forum Infect. Dis. 2019 6 4 ofz032 10.1093/ofid/ofz032 30976605
    [Google Scholar]
  81. Dinh-Le C. Chuang R. Chokshi S. Mann D. Wearable health technology and electronic health record integration: Scoping review and future directions. JMIR Mhealth Uhealth 2019 7 9 e12861 10.2196/12861 31512582
    [Google Scholar]
  82. Chen R. Snyder M. Promise of personalized omics to precision medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013 5 1 73 82 10.1002/wsbm.1198 23184638
    [Google Scholar]
  83. Aushev A. Ripoll V.R. Vellido A. Aletti F. Pinto B.B. Herpain A. Post E.H. Medina E.R. Ferrer R. Baselli G. Bendjelid K. Feature selection for the accurate prediction of septic and cardiogenic shock ICU mortality in the acute phase. PLoS One 2018 13 11 e0199089 10.1371/journal.pone.0199089 30457997
    [Google Scholar]
  84. Chumbita M. Cillóniz C. Puerta-Alcalde P. Moreno-García E. Sanjuan G. Garcia-Pouton N. Soriano A. Torres A. Garcia-Vidal C. Can artificial intelligence improve the management of pneumonia. J. Clin. Med. 2020 9 1 248 10.3390/jcm9010248 31963480
    [Google Scholar]
  85. Zoabi Y. Deri-Rozov S. Shomron N. Machine learning-based prediction of COVID-19 diagnosis based on symptoms. NPJ Digit. Med. 2021 4 1 3 10.1038/s41746‑020‑00372‑6 33398013
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673390868250728103906
Loading
/content/journals/cmc/10.2174/0109298673390868250728103906
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: wearable devices ; infection prevention ; ML ; epidemiology ; prediction ; infection diagnosis ; AI
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test