Skip to content
2000
image of Uridines Modified with Sulfur or Selenium in U-G Wobble Pairs Matter for tRNA Function

Abstract

Transfer RNAs (tRNAs) are ubiquitous in cells and are essential for the translation of genetic information from messenger RNA (mRNA) into proteins in all three domains of life. They act as adaptors that decode mRNA codons their anticodons and deliver the corresponding amino acids to the growing polypeptide chain. Currently, over 100 modified nucleosides have been found in tRNA that are crucial for the integrity and functionality of this molecule. Almost half of them are located at position 34 of the anticodon, which is commonly referred to as the “wobble” position. In this review, we highlight the sulfur- and selenium-modified uridines at this position and discuss their physicochemical properties and regulatory functions in gene expression. We examine how the tRNA anticodons accomplish the decoding of synonymous codons, particularly 5'-NNA-3' and 5'-NNG-3', and provide efficient uridine-adenosine and uridine - guanosine base pairing. We also analyze the effects of C5 substituents on the tautomeric behavior and ionization properties of 2-thiouridines and 2-selenouridines. Theoretical calculations on the stability of 5-substituted uracil - guanine base pairs and their structural representation in crystal complexes of tRNA-mRNA-ribosomes emphasize the importance of these modifications in fine-tuning translation fidelity and efficiency.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673367883250716201037
2025-08-18
2025-11-04
Loading full text...

Full text loading...

References

  1. Modomics. 2015 Available from: http://modomics.genesilico.pl, http://mods.rna.albany.edu
  2. Pinello N. Song R. Lee Q. Calonne E. Duan K.L. Wong E. Tieng J. Mehravar M. Rong B. Lan F. Roediger B. Ma C.J. Yuan B.F. Rasko J.E.J. Larance M. Ye D. Fuks F. Wong J.J.L. Dynamic changes in RNA m6A and 5 hmC influence gene expression programs during macrophage differentiation and polarisation. Cell. Mol. Life Sci. 2024 81 1 229 10.1007/s00018‑024‑05261‑9 38780787
    [Google Scholar]
  3. Yared M.J. Marcelot A. Barraud P. Beyond the Anticodon: tRNA Core Modifications and Their Impact on Structure, Translation and Stress Adaptation. Genes (Basel) 2024 15 3 374 10.3390/genes15030374 38540433
    [Google Scholar]
  4. Zhang W. Foo M. Eren A.M. Pan T. tRNA modification dynamics from individual organisms to metaepitranscriptomics of microbiomes. Mol. Cell 2022 82 5 891 906 10.1016/j.molcel.2021.12.007 35032425
    [Google Scholar]
  5. Saint-Léger A. Ribas de Pouplana L. The importance of codon–anticodon interactions in translation elongation. Biochimie 2015 114 72 79 10.1016/j.biochi.2015.04.013 25921436
    [Google Scholar]
  6. Delgado S. Armijo Á. Bravo V. Orellana O. Salazar J.C. Katz A. Impact of the chemical modification of tRNAs anticodon loop on the variability and evolution of codon usage in proteobacteria. Front. Microbiol. 2024 15 1412318 10.3389/fmicb.2024.1412318 39161601
    [Google Scholar]
  7. Agris P.F. Eruysal E.R. Narendran A. Väre V.Y.P. Vangaveti S. Ranganathan S.V. Celebrating wobble decoding: Half a century and still much is new. RNA Biol. 2018 15 4-5 537 553 28812932
    [Google Scholar]
  8. Suzuki T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 2021 22 6 375 392 33658722
    [Google Scholar]
  9. Edwards A.M. Addo M.A. Dos Santos P.C. Extracurricular functions of tRNA modifications in microorganisms. Genes (Basel) 2020 11 8 907 32784710
    [Google Scholar]
  10. Duechler M. Leszczyńska G. Sochacka E. Nawrot B. Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell. Mol. Life Sci. 2016 73 16 3075 3095 10.1007/s00018‑016‑2217‑y 27094388
    [Google Scholar]
  11. Grosjean H. Westhof E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res 2016 44 17 8020 40 10.1093/nar/gkw608
    [Google Scholar]
  12. Zhang M. Xiao Y. Jiang Z. Yi C. Quantifying m 6 A and Ψ modifications in the transcriptome via chemical-assisted approaches. Acc. Chem. Res. 2023 56 21 2980 2991 10.1021/acs.accounts.3c00436 37851547
    [Google Scholar]
  13. Mo J. Weng X. Zhou X. Detection, clinical application, and manipulation of RNA modifications. Acc. Chem. Res. 2023 56 20 2788 2800 37769231
    [Google Scholar]
  14. McCown P.J. Ruszkowska A. Kunkler C.N. Breger K. Hulewicz J.P. Wang M.C. Springer N.A. Brown J.A. Naturally occurring modified ribonucleosides. Wiley Interdiscip. Rev. RNA 2020 11 5 e1595 32301288
    [Google Scholar]
  15. Kothe U. Rodnina M.V. Codon reading by tRNAAla with modified uridine in the wobble position. Mol. Cell 2007 25 1 167 174 17218280
    [Google Scholar]
  16. Mandal D. Köhrer C. Su D. Babu I.R. Chan C.T. Liu Y. Söll D. Blum P. Kuwahara M. Dedon P.C. Rajbhandary U.L. Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs. RNA 2014 20 2 177 188 24344322
    [Google Scholar]
  17. Phizicky E.M. Hopper A.K. The life and times of a tRNA. RNA 2023 29 7 898 957 37055150
    [Google Scholar]
  18. Ikeuchi Y. Soma A. Ote T. Kato J. Sekine Y. Suzuki T. Molecular mechanism of lysidine synthesis that determines tRNA identity and codon recognition. Mol. Cell 2005 19 2 235 246 16039592
    [Google Scholar]
  19. Mandal D. Köhrer C. Su D. Russell S.P. Krivos K. Castleberry C.M. Blum P. Limbach P.A. Söll D. RajBhandary U.L. Agmatidine, a modified cytidine in the anticodon of archaeal tRNA Ile, base pairs with adenosine but not with guanosine. Proc. Natl. Acad. Sci. USA 2010 107 7 2872 2877 10.1073/pnas.0914869107 20133752
    [Google Scholar]
  20. Blanchard S.C. Kim H.D. Gonzalez R.L. Jr Puglisi J.D. Chu S. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 2004 101 35 12893 12898 10.1073/pnas.0403884101 15317937
    [Google Scholar]
  21. Lim V.I. Aglyamova G.V. Mutual orientation of tRNAs and interactions between the codon-anticodon duplexes within the ribosome: a stereochemical analysis. Biol. Chem. 1998 379 7 773 781 9705141
    [Google Scholar]
  22. Tomasi F.G. Kimura S. Rubin E.J. Waldor M.K. A tRNA modification in Mycobacterium tuberculosis facilitates optimal intracellular growth. eLife 2023 12 RP87146 10.7554/eLife.87146 37755167
    [Google Scholar]
  23. Shigi N. Recent advances in our understanding of the biosynthesis of sulfur modifications in tRNAs. Front. Microbiol. 2018 9 2679 10.3389/fmicb.2018.02679 30450093
    [Google Scholar]
  24. Yarian C. Townsend H. Czestkowski W. Sochacka E. Malkiewicz A.J. Guenther R. Miskiewicz A. Agris P.F. Accurate translation of the genetic code depends on tRNA modified nucleosides. J. Biol. Chem. 2002 277 19 16391 16395 10.1074/jbc.M200253200 11861649
    [Google Scholar]
  25. Sylvers L.A. Rogers K.C. Shimizu M. Ohtsuka E. Söll D. A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 1993 32 15 3836 3841 10.1021/bi00066a002 8385989
    [Google Scholar]
  26. Rodriguez-Hernandez A. Spears J.L. Gaston K.W. Limbach P.A. Gamper H. Hou Y.M. Kaiser R. Agris P.F. Perona J.J. Structural and mechanistic basis for enhanced translational efficiency by 2-thiouridine at the tRNA anticodon wobble position. J. Mol. Biol. 2013 425 20 3888 3906 10.1016/j.jmb.2013.05.018 23727144
    [Google Scholar]
  27. Bilbille Y. Vendeix F.A.P. Guenther R. Malkiewicz A. Ariza X. Vilarrasa J. Agris P.F. The structure of the human tRNALys3 anticodon bound to the HIV genome is stabilized by modified nucleosides and adjacent mismatch base pairs. Nucleic Acids Res. 2009 37 10 3342 3353 10.1093/nar/gkp187 19324888
    [Google Scholar]
  28. Yoshida M. Kataoka N. Miyauchi K. Ohe K. Iida K. Yoshida S. Nojima T. Okuno Y. Onogi H. Usui T. Takeuchi A. Hosoya T. Suzuki T. Hagiwara M. Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proc. Natl. Acad. Sci. USA 2015 112 9 2764 2769 10.1073/pnas.1415525112 25675486
    [Google Scholar]
  29. Tsutomu S. Asuteka N. Takeo S. Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. Wiley Interdiscip. Rev. RNA 2011 2 3 376 386 10.1002/wrna.65 21957023
    [Google Scholar]
  30. Suzuki T. Nagao A. Suzuki T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu. Rev. Genet. 2011 45 1 299 329 10.1146/annurev‑genet‑110410‑132531 21910628
    [Google Scholar]
  31. Fakruddin M. Wei F.Y. Suzuki T. Asano K. Kaieda T. Omori A. Izumi R. Fujimura A. Kaitsuka T. Miyata K. Araki K. Oike Y. Scorrano L. Suzuki T. Tomizawa K. Defective mitochondrial tRNA taurine modification activates global proteostress and leads to mitochondrial disease. Cell Rep. 2018 22 2 482 496 10.1016/j.celrep.2017.12.051 29320742
    [Google Scholar]
  32. Grosjean H. Benne R. Modification and editing of RNA. American society for microbiology. American Society for Microbiology Press Washington, DC Press 1998 113 134
    [Google Scholar]
  33. Konevega A.L. Soboleva N.G. Makhno V.I. Semenkov Y.P. Wintermeyer W. Rodnina M.V. Katunin V.I. Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg2+-dependent interactions. RNA 2004 10 1 90 101 14681588
    [Google Scholar]
  34. Lauhon C.T. Kambampati R. The iscS gene in Escherichia coli is required for the biosynthesis of 4-thiouridine, thiamin, and NAD. J. Biol. Chem. 2000 275 26 20096 20103 10781607
    [Google Scholar]
  35. Venkstern T.V. Graĭfer D.M. Gracheva E.A. Karpova G.G. Morozov I.A. [Interaction of s4U8 region of tRNA Phe with tRNA-(adenine-1-)-methyltransferase from Thermus thermophilus]. Bioorg. Khim. 1987 13 10 1344 1350 3325064
    [Google Scholar]
  36. Monroe J. Eyler D.E. Mitchell L. Deb I. Bojanowski A. Srinivas P. Dunham C.M. Roy B. Frank A.T. Koutmou K.S. N1-Methylpseudouridine and pseudouridine modifications modulate mRNA decoding during translation. Nat. Commun. 2024 15 1 8119 10.1038/s41467‑024‑51301‑0 39284850
    [Google Scholar]
  37. Li Y. Zhou H. Chen S. Li Y. Guo Y. Chen X. Wang S. Wang L. Gan Y. Zhang S. Zheng Y.Y. Sheng J. Zhou Z. Wang R. Bioorthogonal labeling and profiling of N 6-isopentenyladenosine (i6A) modified RNA. Nucleic Acids Res. 2024 52 6 2808 2820 10.1093/nar/gkae150 38426933
    [Google Scholar]
  38. Zheng Y.Y. Wu Y. Begley T.J. Sheng J. Sulfur modification in natural RNA and therapeutic oligonucleotides. RSC Chem. Biol. 2021 2 4 990 1003 10.1039/D1CB00038A 34458821
    [Google Scholar]
  39. Wu D. Li X. Khan F.A. Yuan C. Pandupuspitasari N.S. Huang C. Sun F. Guan K. tRNA modifications and tRNA-derived small RNAs: new insights of tRNA in human disease. Cell Biol. Toxicol. 2024 40 1 76 10.1007/s10565‑024‑09919‑9 39276283
    [Google Scholar]
  40. Weiss J.L. Decker J.C. Bolano A. Krahn N. Tuning tRNAs for improved translation. Front. Genet. 2024 15 1436860 10.3389/fgene.2024.1436860 38983271
    [Google Scholar]
  41. Veres Z. Stadtman T.C. A purified selenophosphate-dependent enzyme from Salmonella typhimurium catalyzes the replacement of sulfur in 2-thiouridine residues in tRNAs with selenium. Proc. Natl. Acad. Sci. USA 1994 91 17 8092 8096 7520175
    [Google Scholar]
  42. Wolfe M.D. Ahmed F. Lacourciere G.M. Lauhon C.T. Stadtman T.C. Larson T.J. Functional diversity of the rhodanese homology domain: the Escherichia coli ybbB gene encodes a selenophosphate-dependent tRNA 2-selenouridine synthase. J. Biol. Chem. 2004 279 3 1801 1809 14594807
    [Google Scholar]
  43. Wittwer A.J. Ching W.M. Selenium-containing tRNA(Glu) and tRNA(Lys) from Escherichia coli: purification, codon specificity and translational activity. Biofactors 1989 2 1 27 34 2679651
    [Google Scholar]
  44. Wittwer A.J. Stadtman T.C. Biosynthesis of 5-methylaminomethyl-2-selenouridine, a naturally occurring nucleoside in Escherichia coli tRNA. Arch. Biochem. Biophys. 1986 248 2 540 550 2874771
    [Google Scholar]
  45. Ching W.M. Characterization of selenium-containing tRNAGlu from Clostridium sticklandii. Arch. Biochem. Biophys. 1986 244 1 137 146 2418784
    [Google Scholar]
  46. Wittwer A.J. Specific incorporation of selenium into lysine- and glutamate- accepting tRNAs from Escherichia coli. J. Biol. Chem. 1983 258 14 8637 8641 6345544
    [Google Scholar]
  47. Wittwer A.J. Tsai L. Ching W.M. Stadtman T.C. Identification and synthesis of a naturally occurring selenonucleoside in bacterial tRNAs: 5-[(methylamino)methyl]-2-selenouridine. Biochemistry 1984 23 20 4650 4655 6388630
    [Google Scholar]
  48. Ching W.M. Occurrence of selenium-containing tRNAs in mouse leukemia cells. Proc. Natl. Acad. Sci. USA 1984 81 10 3010 3013 6587339
    [Google Scholar]
  49. Mizutani T. Watanabe T. Kanaya K. Nakagawa Y. Fujiwara T. Trace 5-methylaminomethyl-2-selenouridine in bovine tRNA and the selenouridine synthase activity in bovine liver. Mol. Biol. Rep. 1999 26 3 167 172 10532311
    [Google Scholar]
  50. Ching W.M. Wittwer A.J. Tsai L. Stadtman T.C. Distribution of two selenonucleosides among the selenium-containing tRNAs from Methanococcus vannielii. Proc. Natl. Acad. Sci. USA 1984 81 1 57 60 16082779
    [Google Scholar]
  51. Huang K.X. An Y.X. Chen Z.X. Xu H.B. Isolation and partial characterization of selenium-containing tRNA from germinating barley. Biol. Trace Elem. Res. 2001 82 1-3 247 257 11697773
    [Google Scholar]
  52. Tuan-Nan Wen Chuan L. Chen C-S. Ubiquity of selenium-containing tRNA in plants. Plant Sci. 1988 57 3 185 193 10.1016/0168‑9452(88)90124‑0
    [Google Scholar]
  53. Politino M. Tsai L. Veres Z. Stadtman T.C. Biosynthesis of selenium-modified tRNAs in Methanococcus vannielii. Proc. Natl. Acad. Sci. USA 1990 87 16 6345 6348 10.1073/pnas.87.16.6345 2143584
    [Google Scholar]
  54. Dumelin C.E. Chen Y. Leconte A.M. Chen Y.G. Liu D.R. Discovery and biological characterization of geranylated RNA in bacteria. Nat. Chem. Biol. 2012 8 11 913 919 10.1038/nchembio.1070 22983156
    [Google Scholar]
  55. Sierant M. Leszczynska G. Sadowska K. Komar P. Radzikowska-Cieciura E. Sochacka E. Nawrot B. Escherichia coli tRNA 2-selenouridine synthase (SelU) converts S2U-RNA to Se2U-RNA via S-geranylated-intermediate. FEBS Lett. 2018 592 13 2248 2258 10.1002/1873‑3468.13124 29862510
    [Google Scholar]
  56. Szczupak P. Sierant M. Wielgus E. Radzikowska-Cieciura E. Kulik K. Krakowiak A. Kuwerska P. Leszczynska G. Nawrot B. Escherichia coli tRNA 2-selenouridine synthase (SelU): Elucidation of substrate specificity to understand the role of S-Geranyl-tRNA in the conversion of 2-thio- into 2-selenouridines in bacterial tRNA. Cells 2022 11 9 1522 10.3390/cells11091522 35563829
    [Google Scholar]
  57. Grosjean H. de Crécy-Lagard V. Marck C. Deciphering synonymous codons in the three domains of life: Co-evolution with specific tRNA modification enzymes. FEBS Lett. 2010 584 2 252 264 10.1016/j.febslet.2009.11.052 19931533
    [Google Scholar]
  58. Crick F.H. Codon--anticodon pairing: the wobble hypothesis. J. Mol. Biol 1966 19 2 548 55 10.1016/s0022‑2836(66)80022‑0
    [Google Scholar]
  59. Agris P.F. Decoding the genome: a modified view. Nucleic. Acids. Res. 2004 32 1 223 238 10.1093/nar/gkh185 14715921
    [Google Scholar]
  60. Gustilo E.M. Vendeix F.A.P. Agris P.F. tRNA’s modifications bring order to gene expression. Curr. Opin. Microbiol. 2008 11 2 134 140 10.1016/j.mib.2008.02.003 18378185
    [Google Scholar]
  61. Nedialkova D.D. Leidel S.A. Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell 2015 161 7 1606 1618 10.1016/j.cell.2015.05.022 26052047
    [Google Scholar]
  62. Persson B.C. Modification of tRNA as a regulatory device. Mol. Microbiol. 1993 8 6 1011 1016 10.1111/j.1365‑2958.1993.tb01645.x 7689685
    [Google Scholar]
  63. Chan C.T. Dyavaiah M. DeMott M.S. Taghizadeh K. Dedon P.C. Begley T.J. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 2010 6 12 e1001247 21187895
    [Google Scholar]
  64. Agris P.F. Narendran A. Sarachan K. Väre V.Y.P. Eruysal E. The importance of being modified. Enzymes 2017 41 1 50 10.1016/bs.enz.2017.03.005 28601219
    [Google Scholar]
  65. Kompatscher M. Bartosik K. Erharter K. Plangger R. Juen F.S. Kreutz C. Micura R. Westhof E. Erlacher M.D. Contribution of tRNA sequence and modifications to the decoding preferences of E. coli and M. mycoides tRNAGlyUCC for synonymous glycine codons. Nucleic Acids Res. 2024 52 3 1374 1386 10.1093/nar/gkad1136 38050960
    [Google Scholar]
  66. Girodat D. Wieden H.J. Blanchard S.C. Sanbonmatsu K.Y. Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding. Nat. Commun. 2023 14 1 5582 10.1038/s41467‑023‑40404‑9 37696823
    [Google Scholar]
  67. Shigi N. Biosynthesis and functions of sulfur modifications in tRNA. Front. Genet. 2014 5 67 10.3389/fgene.2014.00067 24765101
    [Google Scholar]
  68. Nakamura Y. Codon Usage Database. 2007 Available from: http://www.kazusa.or.jp/codon/
  69. Brule C.E. Grayhack E.J. Synonymous Codons: Choose wisely for expression. Trends Genet. 2017 33 4 283 297 10.1016/j.tig.2017.02.001 28292534
    [Google Scholar]
  70. Takai K. Yokoyama S. Roles of 5-substituents of tRNA wobble uridines in the recognition of purine-ending codons. Nucleic Acids Res. 2003 31 22 6383 6391 10.1093/nar/gkg839 14602896
    [Google Scholar]
  71. Agris P. Wobble position modified nucleosides evolved to select transfer RNA codon recognition: A modified-wobble hypothesis. Biochimie 1991 73 11 1345 1349 10.1016/0300‑9084(91)90163‑U 1799628
    [Google Scholar]
  72. Varani G. McClain W.H. The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep. 2000 1 1 18 23 10.1093/embo‑reports/kvd001 11256617
    [Google Scholar]
  73. Westhof E. Yusupov M. Yusupova G. Recognition of Watson-Crick base pairs: constraints and limits due to geometric selection and tautomerism. F1000Prime Rep. 2014 6 19 24765524
    [Google Scholar]
  74. Agris P.F. Sierzputowska-Gracz H. Smith W. Malkiewicz A. Sochacka E. Nawrot B. Thiolation of uridine carbon-2 restricts the motional dynamics of the transfer RNA wobble position nucleoside. J. Am. Chem. Soc. 1992 114 7 2652 2656 10.1021/ja00033a044
    [Google Scholar]
  75. Sochacka E. Lodyga-Chruscinska E. Pawlak J. Cypryk M. Bartos P. Ebenryter-Olbinska K. Leszczynska G. Nawrot B. C5-substituents of uridines and 2-thiouridines present at the wobble position of tRNA determine the formation of their keto-enol or zwitterionic forms - a factor important for accuracy of reading of guanosine at the 3′-end of the mRNA codons. Nucleic. Acids. Res. 2017 45 8 gkw1347 10.1093/nar/gkw1347 28088758
    [Google Scholar]
  76. Leszczynska G. Cypryk M. Gostynski B. Sadowska K. Herman P. Bujacz G. Lodyga-Chruscinska E. Sochacka E. Nawrot B. C5-Substituted 2-Selenouridines Ensure Efficient Base Pairing with Guanosine; Consequences for Reading the NNG-3′ Synonymous mRNA Codons. Int. J. Mol. Sci. 2020 21 8 2882 10.3390/ijms21082882 32326096
    [Google Scholar]
  77. Sun H. Sheng J. Hassan A.E.A. Jiang S. Gan J. Huang Z. Novel RNA base pair with higher specificity using single selenium atom. Nucleic. Acids. Res. 2012 40 11 5171 5179 10.1093/nar/gks010 22323523
    [Google Scholar]
  78. Kumar R. Davis D.R. Synthesis and studies on the effect of 2-thiouridine and 4-thiouridine on sugar conformation and RNA duplex stability. Nucleic. Acids. Res. 1997 25 6 1272 1280 10.1093/nar/25.6.1272 9092639
    [Google Scholar]
  79. Kuwerska P. Bartosik K. Kulik K. Dziergowska A. Jakubowska J. Nawrot B. Leszczynska G. Synthesis and Hybridization Properties of RNA Oligomers Containing Biologically Relevant 5-Aminomethyl-2-thiouridines (xnm5S2U). Curr. Med. Chem. 2025
    [Google Scholar]
  80. Sochacka E. Szczepanowski R.H. Cypryk M. Sobczak M. Janicka M. Kraszewska K. Bartos P. Chwialkowska A. Nawrot B. 2-Thiouracil deprived of thiocarbonyl function preferentially base pairs with guanine rather than adenine in RNA and DNA duplexes. Nucleic Acids Res. 2015 43 5 2499 2512 10.1093/nar/gkv109 25690900
    [Google Scholar]
  81. Westhof E. Yusupov M. Yusupova G. The multiple flavors of GoU pairs in RNA. J. Mol. Recognit. 2019 32 8 e2782 10.1002/jmr.2782 31033092
    [Google Scholar]
  82. Reich H.J. Hondal R.J. Why nature chose selenium. ACS Chem. Biol. 2016 11 4 821 841 10.1021/acschembio.6b00031 26949981
    [Google Scholar]
  83. Payne N.C. Geissler A. Button A. Sasuclark A.R. Schroll A.L. Ruggles E.L. Gladyshev V.N. Hondal R.J. Comparison of the redox chemistry of sulfur- and selenium-containing analogs of uracil. Free Radic. Biol. Med. 2017 104 249 261 10.1016/j.freeradbiomed.2017.01.028 28108278
    [Google Scholar]
  84. Clayden J. Greeves N. Warren S. Wothers P. Conjugate addition. Organic chemistry. Oxford University Press: Oxford, UK, 2001, 227-42
    [Google Scholar]
  85. de Levie R. Senozan N.M. The henderson-hasselbalch equation: Its history and limitations. J. Chem. Educ. 2003 80 2 146 10.1021/ed080p146
    [Google Scholar]
  86. Henderson L.J. Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am. J. Physiol. 1908 21 2 173 179 10.1152/ajplegacy.1908.21.2.173
    [Google Scholar]
  87. Henderson L.J. The theory of neutrality regulation in the animal organism. Am. J. Physiol. 1908 21 4 427 448 10.1152/ajplegacy.1908.21.4.427
    [Google Scholar]
  88. Tomoda E. Nagao A. Shirai Y. Asano K. Suzuki T. Battersby B.J. Suzuki T. Restoration of mitochondrial function through activation of hypomodified tRNAs with pathogenic mutations associated with mitochondrial diseases. Nucleic Acids Res. 2023 51 14 7563 7579 10.1093/nar/gkad139 36928678
    [Google Scholar]
  89. Yasukawa T. Kirino Y. Ishii N. Holt I.J. Jacobs H.T. Makifuchi T. Fukuhara N. Ohta S. Suzuki T. Watanabe K. Wobble modification deficiency in mutant tRNAs in patients with mitochondrial diseases. FEBS Lett. 2005 579 13 2948 2952 10.1016/j.febslet.2005.04.038 15893315
    [Google Scholar]
  90. Hanus M. Ryjáček F. Kabeláč M. Kubař T. Bogdan T.V. Trygubenko S.A. Hobza P. Correlated ab initio study of nucleic acid bases and their tautomers in the gas phase, in a microhydrated environment and in aqueous solution. guanine: surprising stabilization of rare tautomers in aqueous solution. J. Am. Chem. Soc. 2003 125 25 7678 7688 10.1021/ja034245y 12812509
    [Google Scholar]
  91. Wang W. Hellinga H.W. Beese L.S. Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proc. Natl. Acad. Sci. USA 2011 108 43 17644 17648 10.1073/pnas.1114496108 22006298
    [Google Scholar]
  92. Singh U.C. Kollman P.A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 1984 5 129 145
    [Google Scholar]
  93. Rozov A. Demeshkina N. Khusainov I. Westhof E. Yusupov M. Yusupova G. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code. Nat. Commun. 2016 7 10457 10466 26791911
    [Google Scholar]
  94. Rozov A. Westhof E. Yusupov M. Yusupova G. The ribosome prohibits the G•U wobble geometry at the first position of the codon-anticodon helix. Nucleic Acids Res. 2016 44 13 6434 6441 27174928
    [Google Scholar]
  95. Weixlbaumer A. Murphy F.V. IV Dziergowska A. Malkiewicz A. Vendeix F.A. Agris P.F. Ramakrishnan V. Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nat. Struct. Mol. Biol. 2007 14 6 498 502 17496902
    [Google Scholar]
  96. Murphy F.V. IV Ramakrishnan V. Malkiewicz A. Agris P.F. The role of modifications in codon discrimination by tRNA(Lys)UUU. Nat. Struct. Mol. Biol. 2004 11 12 1186 1191 15558052
    [Google Scholar]
  97. Vendeix F.A. Murphy F.V. IV Cantara W.A. Leszczyńska G. Gustilo E.M. Sproat B. Malkiewicz A. Agris P.F. Human tRNA(Lys3)(UUU) is pre-structured by natural modifications for cognate and wobble codon binding through keto-enol tautomerism. J. Mol. Biol. 2012 416 4 467 485 22227389
    [Google Scholar]
  98. Nasvall S.J. Chen P. Bjork G.R. The modified wobble nucleoside uridine-5-oxyacetic acid in tRNAPro(cmo5UGG) promotes reading of all four proline codons in vivo. RNA 2004 10 10 1662 1673 15383682
    [Google Scholar]
  99. Hillen W. Egert E. Lindner H.J. Gassen H.G. Vorbrueggen H. 5-Methoxyuridine: The influence of 5 substituents on the keto-enol tautomerism of the 4-carbonyl group. J. Carbohydrates-Nucleosides Nucleotides 1978 5 23 32
    [Google Scholar]
  100. Asano K. Suzuki T. Saito A. Wei F.Y. Ikeuchi Y. Numata T. Tanaka R. Yamane Y. Yamamoto T. Goto T. Kishita Y. Murayama K. Ohtake A. Okazaki Y. Tomizawa K. Sakaguchi Y. Suzuki T. Metabolic and chemical regulation of tRNA modification associated with taurine deficiency and human disease. Nucleic Acids Res. 2018 46 4 1565 1583 29390138
    [Google Scholar]
  101. Chujo T. Tomizawa K. Human transfer RNA modopathies: diseases caused by aberrations in transfer RNA modifications. FEBS J. 2021 288 24 7096 7122 10.1111/febs.15736 33513290
    [Google Scholar]
  102. Zinshteyn B. Gilbert W.V. Loss of a conserved tRNA anticodon modification perturbs cellular signaling. PLoS Genet. 2013 9 8 e1003675 10.1371/journal.pgen.1003675 23935536
    [Google Scholar]
  103. Delaunay S. Rapino F. Tharun L. Zhou Z. Heukamp L. Termathe M. Shostak K. Klevernic I. Florin A. Desmecht H. Desmet C.J. Nguyen L. Leidel S.A. Willis A.E. Büttner R. Chariot A. Close P. Elp3 links tRNA modification to IRES-dependent translation of LEF1 to sustain metastasis in breast cancer. J. Exp. Med. 2016 213 11 2503 2523 10.1084/jem.20160397 27811057
    [Google Scholar]
  104. Fukuhara N. Tokiguchi S. Shirakawa K. Tsubaki T. Myoclonus epilepsy associated with ragged-red fibres (mitochondrial abnormalities): Disease entity or a syndrome? J. Neurol. Sci. 1980 47 1 117 133 10.1016/0022‑510X(80)90031‑3 6774061
    [Google Scholar]
  105. Pavlakis S.G. Phillips P.C. DiMauro S. De Vivo D.C. Rowland L.P. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: A distinctive clinical syndrome. Ann. Neurol. 1984 16 4 481 488 10.1002/ana.410160409 6093682
    [Google Scholar]
  106. Goto Y. Nonaka I. Horai S. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1990 348 6302 651 653 10.1038/348651a0 2102678
    [Google Scholar]
  107. Yoneda M. Tanno Y. Horai S. Ozawa T. Miyatake T. Tsuji S. A common mitochondrial DNA mutation in the t-RNA(Lys) of patients with myoclonus epilepsy associated with ragged-red fibers. Biochem. Int. 1990 21 5 789 796 2124116
    [Google Scholar]
  108. Sochacka E. Kraszewska K. Sochacki M. Sobczak M. Janicka M. Nawrot B. The 2-thiouridine unit in the RNA strand is desulfured predominantly to 4-pyrimidinone nucleoside under in vitro oxidative stress conditions. Chem. Commun. (Camb.) 2011 47 17 4914 4916 10.1039/c1cc10973a 21431224
    [Google Scholar]
  109. Bartos P. Ebenryter-Olbinska K. Sochacka E. Nawrot B. The influence of the C5 substituent on the 2-thiouridine desulfuration pathway and the conformational analysis of the resulting 4-pyrimidinone products. Bioorg. Med. Chem. 2015 23 17 5587 5594 10.1016/j.bmc.2015.07.030 26254829
    [Google Scholar]
  110. Sierant M. Kulik K. Sochacka E. Szewczyk R. Sobczak M. Nawrot B. Cytochrome c catalyzes the hydrogen peroxide-assisted oxidative desulfuration of 2-Thiouridines in Transfer RNAs. ChemBioChem 2018 19 7 687 695 10.1002/cbic.201700692 29287127
    [Google Scholar]
  111. Sochacka E. Bartos P. Kraszewska K. Nawrot B. Desulfuration of 2-thiouridine with hydrogen peroxide in the physiological pH range 6.6–7.6 is pH-dependent and results in two distinct products. Bioorg. Med. Chem. Lett. 2013 23 21 5803 5805 10.1016/j.bmcl.2013.08.114 24064499
    [Google Scholar]
  112. Kulik K. Sadowska K. Wielgus E. Pacholczyk-Sienicka B. Sochacka E. Nawrot B. Different oxidation pathways of 2-Selenouracil and 2-Thiouracil, natural components of transfer RNA. Int. J. Mol. Sci. 2020 21 17 5956 10.3390/ijms21175956 32825053
    [Google Scholar]
  113. Kulik K. Sadowska K. Wielgus E. Pacholczyk-Sienicka B. Sochacka E. Nawrot B. 2-Selenouridine, a modified nucleoside of bacterial tRNAs, Its reactivity in the presence of oxidizing and reducing reagents. Int. J. Mol. Sci. 2022 23 14 7973 10.3390/ijms23147973 35887319
    [Google Scholar]
  114. Sierant M. Szewczyk R. Dziergowska A. Krolewska-Golinska K. Szczupak P. Bernat P. Nawrot B. Studies on the oxidative damage of the wobble 5-Methylcarboxymethyl-2-Thiouridine in the tRNA of eukaryotic cells with disturbed homeostasis of the antioxidant system. Int. J. Mol. Sci. 2024 25 22 12336 10.3390/ijms252212336 39596401
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673367883250716201037
Loading
/content/journals/cmc/10.2174/0109298673367883250716201037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test