Skip to content
2000
image of Hybrids/Conjugates/Chimera Drugs-Antimicrobial Hybrids: Antibiotics, Antifungals, Antituberculars, Antimalarials

Abstract

Antimicrobial hybrids are compounds that can inhibit, stop the growth of, or kill microorganisms, including bacteria, fungi, and parasites. Antibiotics, a subset of antimicrobial agents, specifically target bacteria and include well-established classes such as β-lactams, macrolides, quinolones, and oxazolidinones. Other antimicrobial hybrids are designed for treating a wide range of diseases, including fungal infections, leishmaniasis, parasitic diseases (such as trypanosomiasis and malaria), leprosy, and tuberculosis. Some hybrids are designed to treat a variety of diseases. This review highlights studies primarily published between 2000 and 2023, with a few from 2024, underscoring the dynamic and rapidly evolving nature of antimicrobial hybrid research.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673362583250705102313
2025-08-04
2025-10-25
Loading full text...

Full text loading...

References

  1. Nudelman A. Hybrid/Chimera drugs - Part 1 - Drug hybrids affecting diseases of the central nervous system. Curr. Med. Chem. 2024 1 7 10.2174/0109298673305662240702071354
    [Google Scholar]
  2. Guan Q. Xing S. Wang L. Zhu J. Guo C. Xu C. Zhao Q. Wu Y. Chen Y. Sun H. Triazoles in medicinal chemistry: Physicochemical properties, bioisosterism, and application. J. Med. Chem. 2024 67 10 7788 7824 10.1021/acs.jmedchem.4c00652 38699796
    [Google Scholar]
  3. Fedorowicz J. Sączewski J. Modifications of quinolones and fluoroquinolones: Hybrid compounds and dual-action molecules. Monatsh. Chem. 2018 149 7 1199 1245 10.1007/s00706‑018‑2215‑x 29983452
    [Google Scholar]
  4. Xu Z. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem. 2020 206 112686 10.1016/j.ejmech.2020.112686 32795773
    [Google Scholar]
  5. Deng C. Yan H. Wang J. Liu K. Liu B. Shi Y. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against ESKAPE pathogens. Eur. J. Med. Chem. 2022 244 114888 10.1016/j.ejmech.2022.114888 36334453
    [Google Scholar]
  6. Gao J. Hou H. Gao F. Current scenario of quinolone hybrids with potential antibacterial activity against ESKAPE pathogens. Eur. J. Med. Chem. 2023 247 115026 10.1016/j.ejmech.2022.115026 36577217
    [Google Scholar]
  7. Xu Z. Zhao S.J. Lv Z.S. Gao F. Wang Y. Zhang F. Bai L. Deng J.L. Fluoroquinolone-isatin hybrids and their biological activities. Eur. J. Med. Chem. 2019 162 396 406 10.1016/j.ejmech.2018.11.032 30453247
    [Google Scholar]
  8. Gao F. Xiao J. Huang G. Current scenario of tetrazole hybrids for antibacterial activity. Eur. J. Med. Chem. 2019 184 111744 10.1016/j.ejmech.2019.111744 31605865
    [Google Scholar]
  9. Klahn P. Brönstrup M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat. Prod. Rep. 2017 34 7 832 885 10.1039/C7NP00006E 28530279
    [Google Scholar]
  10. Bremner J. Ambrus J. Samosorn S. Dual action-based approaches to antibacterial agents. Curr. Med. Chem. 2007 14 13 1459 1477 10.2174/092986707780831168 17584056
    [Google Scholar]
  11. Pokrovskaya V. Baasov T. Dual-acting hybrid antibiotics: A promising strategy to combat bacterial resistance. Expert Opin. Drug Discov. 2010 5 9 883 902 10.1517/17460441.2010.508069 22823262
    [Google Scholar]
  12. Domalaon R. Idowu T. Zhanel G.G. Schweizer F. Antibiotic hybrids: The next generation of agents and adjuvants against G- pathogens? Clin. Microbiol. Rev. 2018 31 2 e00077 e17 10.1128/CMR.00077‑17 29540434
    [Google Scholar]
  13. Henriquez-Figuereo A. Morán-Serradilla C. Angulo-Elizari E. Sanmartín C. Plano D. Small molecules containing chalcogen elements (S, Se, Te) as new warhead to fight neglected tropical diseases. Eur. J. Med. Chem. 2023 246 115002 10.1016/j.ejmech.2022.115002 36493616
    [Google Scholar]
  14. Saadeh H. Mubarak M. Hybrid drugs as potential combatants against drug-resistant microbes: A review. Curr. Top. Med. Chem. 2017 17 8 895 906 10.2174/1568026616666160927155251 27697051
    [Google Scholar]
  15. Quorum sensing. Available from: en.wikipedia.org/wiki/Quorum_sensing 2024
  16. Biofilm. Available from: en.wikipedia.org/wiki/Biofilm 2021
  17. Wang Y-Y. Zhang X-Y. Zhong X-L. Huang Y-J. Lin J. Chen W-M. Design and synthesis of 3-hydroxy-pyridin-4(1H)-ones−ciprofloxacin conjugates as dual antibacterial and antibiofilm agents against Pseudomonas aeruginosa. J. Med. Chem. 2021 64 14728 14744 10.1021/acs.jmedchem.2c02044 36692083
    [Google Scholar]
  18. Verderosa A.D. de la Fuente-Núñez C. Mansour S.C. Cao J. Lu T.K. Hancock R.E.W. Fairfull-Smith K.E. Ciprofloxacin-nitroxide hybrids with potential for biofilm control. Eur. J. Med. Chem. 2017 138 590 601 10.1016/j.ejmech.2017.06.058 28709125
    [Google Scholar]
  19. Singh B. Bhat H.R. Kumawat M.K. Singh U.P. Structure-guided discovery of 1,3,5-triazine-pyrazole conjugates as antibacterial and antibiofilm agent against pathogens causing human diseases with favorable metabolic fate. Bioorg. Med. Chem. Lett. 2014 24 15 3321 3325 10.1016/j.bmcl.2014.05.103 24961639
    [Google Scholar]
  20. Fedorowicz J. Cruz C.D. Morawska M. Ciura K. Gilbert-Girard S. Mazur L. Mäkkylä H. Ilina P. Savijoki K. Fallarero A. Tammela P. Sączewski J. Antibacterial and antibiofilm activity of permanently ionized quaternary ammonium fluoroquinolones. Eur. J. Med. Chem. 2023 254 115373 10.1016/j.ejmech.2023.115373 37084595
    [Google Scholar]
  21. Liu J. Meng Y. Yang M.H. Zhang X.Y. Zhao J.F. Sun P.H. Chen W.M. Design, synthesis and biological evaluation of novel 3-hydroxypyridin-4(1H)-ones based hybrids as Pseudomonas aeruginosa biofilm inhibitors. Eur. J. Med. Chem. 2023 259 115665 10.1016/j.ejmech.2023.115665 37506546
    [Google Scholar]
  22. Suresh L. Sagar Vijay Kumar P. Poornachandra Y. Ganesh Kumar C. Chandramouli G.V.P. Design, synthesis and evaluation of novel pyrazolo-pyrimido[4,5-d]pyrimidine derivatives as potent antibacterial and biofilm inhibitors. Bioorg. Med. Chem. Lett. 2017 27 6 1451 1457 10.1016/j.bmcl.2017.01.087 28209374
    [Google Scholar]
  23. Suresh L. Kumar P.S.V. Poornachandra Y. Kumar C.G. Chandramouli G.V.P. Design, synthesis and evaluation of novel pyrazolo-pyrimido[4,5-d]. pyrimidine derivatives as potent antibacterial and biofilm inhibitors. Bioorg. Med. Chem. Lett. 2016 26 5931 5935 10.1016/j.bmcl.2016.10.091 28209374
    [Google Scholar]
  24. Yang X.C. Zeng C.M. Avula S.R. Peng X.M. Geng R.X. Zhou C.H. Novel coumarin aminophosphonates as potential multitargeting antibacterial agents against Staphylococcus aureus. Eur. J. Med. Chem. 2023 245 Pt 1 114891 10.1016/j.ejmech.2022.114891 36343412
    [Google Scholar]
  25. Rineh A. Bremner J.B. Hamblin M.R. Ball A.R. Tegos G.P. Kelso M.J. Attaching NorA efflux pump inhibitors to methylene blue enhances antimicrobial photodynamic inactivation of Escherichia coli and Acinetobacter baumannii in vitro and in vivo. Bioorg. Med. Chem. Lett. 2018 28 16 2736 2740 10.1016/j.bmcl.2018.02.041 29519734
    [Google Scholar]
  26. Rineh A. Dolla N.K. Ball A.R. Magana M. Bremner J.B. Hamblin M.R. Tegos G.P. Kelso M.J. Attaching the NorA efflux pump inhibitor INF55 to methylene blue enhances antimicrobial photodynamic inactivation of methicillin-resistant Staphylococcus aureus in vitro and in vivo. ACS Infect. Dis. 2017 3 10 756 766 10.1021/acsinfecdis.7b00095 28799332
    [Google Scholar]
  27. Yaqub G. Sadiq Z. Hamid A. Fatima A. Ijaz Z. Conventional-microwave mediated synthesis and in vitro antimicrobial activity of novel carbazole-efflux pump inhibitor hybrid antibacterials. J. Chem. 2017 2017 1-5 1 5 10.1155/2017/7243279
    [Google Scholar]
  28. Kumar M. Singh K. Naran K. Hamzabegovic F. Hoft D.F. Warner D.F. Ruminski P. Abate G. Chibale K. Design, Synthesis, and evaluation of novel hybrid efflux pump inhibitors for use against Mycobacterium tuberculosis. ACS Infect. Dis. 2016 2 10 714 725 10.1021/acsinfecdis.6b00111 27737555
    [Google Scholar]
  29. Bremner J.B. Some approaches to new antibacterial agents. Pure Appl. Chem. 2007 79 12 2143 2153 10.1351/pac200779122143
    [Google Scholar]
  30. Samosorn S. Tanwirat B. Muhamad N. Casadei G. Tomkiewicz D. Lewis K. Suksamrarn A. Prammananan T. Gornall K.C. Beck J.L. Bremner J.B. Antibacterial activity of berberine-NorA pump inhibitor hybrids with a methylene ether linking group. Bioorg. Med. Chem. 2009 17 11 3866 3872 10.1016/j.bmc.2009.04.028 19419877
    [Google Scholar]
  31. Guo J. Xie Z. Ruan W. Tang Q. Qiao D. Zhu W. Thiazole-based analogues as potential antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA) and their SAR elucidation. Eur. J. Med. Chem. 2023 259 115689 10.1016/j.ejmech.2023.115689 37542993
    [Google Scholar]
  32. Verma S.K. Verma R. Kumar K.S.S. Banjare L. Shaik A.B. Bhandare R.R. Rakesh K.P. Rangappa K.S. A key review on oxadiazole analogs as potential methicillin-resistant Staphylococcus aureus (MRSA) activity: Structure-activity relationship studies. Eur. J. Med. Chem. 2021 219 113442 10.1016/j.ejmech.2021.113442 33878562
    [Google Scholar]
  33. Bera S. Zhanel G.G. Schweizer F. Evaluation of amphiphilic aminoglycoside-peptide triazole conjugates as antibacterial agents. Bioorg. Med. Chem. Lett. 2010 20 10 3031 3035 10.1016/j.bmcl.2010.03.116 20413307
    [Google Scholar]
  34. Cheng C.Y. Chang C.P. Lauderdale T.L.Y. Yu G.Y. Lee J.C. Jhang Y.W. Wu C.H. Ke Y.Y. Sadani A.A. Yeh C.F. Huang I.W. Kuo Y.P. Tsai D.J. Yeh T.K. Tseng C.T. Song J.S. Liu Y.W. Tsou L.K. Shia K.S. Bromomethylthioindole inspired carbazole hybrids as promising class of anti-MRSA agents. ACS Med. Chem. Lett. 2016 7 12 1191 1196 10.1021/acsmedchemlett.6b00289 27994762
    [Google Scholar]
  35. Xia J. Xin L. Li J. Tian L. Wu K. Zhang S. Yan W. Li H. Zhao Q. Liang C. Discovery of quaternized pyridine-thiazole-pleuromutilin derivatives with broad-spectrum antibacterial and potent anti-MRSA activity. J. Med. Chem. 2023 66 7 5061 5078 10.1021/acs.jmedchem.2c02135 37051724
    [Google Scholar]
  36. Hu Y. Hu C. Pan G. Yu C. Ansari M.F. Yadav Bheemanaboina R.R. Cheng Y. Zhou C. Zhang J. Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus. Eur. J. Med. Chem. 2021 222 113628 10.1016/j.ejmech.2021.113628 34139627
    [Google Scholar]
  37. Zha L. Xie Y. Wu C. Lei M. Lu X. Tang W. Zhang J. Novel benzothiazole‒urea hybrids: Design, synthesis and biological activity as potent anti-bacterial agents against MRSA. Eur. J. Med. Chem. 2022 236 114333 10.1016/j.ejmech.2022.114333 35397402
    [Google Scholar]
  38. Kokot M. Weiss M. Zdovc I. Senerovic L. Radakovic N. Anderluh M. Minovski N. Hrast M. Amide containing NBTI antibacterials with reduced hERG inhibition, retained antimicrobial activity against gram-positive bacteria and in vivo efficacy. Eur. J. Med. Chem. 2023 250 115160 10.1016/j.ejmech.2023.115160 36753879
    [Google Scholar]
  39. Chanawanno K. Chantrapromma S. Anantapong T. Kanjana-Opas A. Fun H.K. Synthesis, structure and in vitro antibacterial activities of new hybrid disinfectants quaternary ammonium compounds: Pyridinium and quinolinium stilbene benzenesulfonates. Eur. J. Med. Chem. 2010 45 9 4199 4208 10.1016/j.ejmech.2010.06.014 20619939
    [Google Scholar]
  40. Liu J. Zhao S.Y. Hu J.Y. Chen Q.X. Jiao S.M. Xiao H.C. Zhang Q. Xu J. Zhao J.F. Zhou H.B. Zheng J.X. Sun P.H. Novel coumarin derivatives inhibit the quorum sensing system and iron homeostasis as antibacterial synergists against Pseudomonas aeruginosa. J. Med. Chem. 2023 66 21 14735 14754 10.1021/acs.jmedchem.3c01268 37874867
    [Google Scholar]
  41. Ressler A.J. Frate M. Hontoria A. Ream A. Timms E. Li H. Stettler L.D. Bollinger A. Poor J.E. Parra M.A. Ma H. Seeram N.P. Meschwitz S.M. Henry G.E. Synthesis, anti-ferroptosis, anti-quorum sensing, antibacterial and DNA interaction studies of chromene-hydrazone derivatives. Bioorg. Med. Chem. 2023 90 117369 10.1016/j.bmc.2023.117369 37320993
    [Google Scholar]
  42. Lin H. Song L. Zhou S. Fan C. Zhang M. Huang R. Zhou R. Qiu J. Ma S. He J. A hybrid antimicrobial peptide targeting Staphylococcus aureus with a dual function of inhibiting quorum sensing signaling and an antibacterial effect. J. Med. Chem. 2023 66 24 17105 17117 10.1021/acs.jmedchem.3c02027 38099725
    [Google Scholar]
  43. Zhang P. Ma Y. Wang Y. Dong E. Ma S. Design, synthesis, and biological evaluation of 2-phenoxyalkylhyd-] razide benzoxazole derivatives as quorum sensing inhibitors with strong antibiofilm effect. J. Med. Chem. 2024 67 7 5721 5743 10.1021/acs.jmedchem.3c02379 38564271
    [Google Scholar]
  44. Cherian P.T. Cheramie M.N. Marreddy R.K.R. Fernando D.M. Hurdle J.G. Lee R.E. New β-lactam - Tetramic acid hybrids show promising antibacterial activities. Bioorg. Med. Chem. Lett. 2018 28 18 3105 3112 10.1016/j.bmcl.2018.07.018 30097368
    [Google Scholar]
  45. Raj R. Singh P. Haberkern N.T. Faucher R.M. Patel N. Land K.M. Kumar V. Synthesis of 1H-1,2,3-triazole linked β-lactam-isatin bi-functional hybrids and preliminary analysis of in vitro activity against the protozoal parasite Trichomonas vaginalis. Eur. J. Med. Chem. 2013 63 897 906 10.1016/j.ejmech.2013.03.019 23631874
    [Google Scholar]
  46. Michaut M. Steffen A. Contreras J.M. Morice C. Paulen A. Schalk I.J. Plésiat P. Mislin G.L.A. Chryso-lactams:Gold(I) derivatives of ampicillin with specific activity against Gram-positive pathogens. Bioorg. Med. Chem. Lett. 2020 30 9 127098 10.1016/j.bmcl.2020.127098 32173196
    [Google Scholar]
  47. Liu F. Kou Q. Li H. Cao Y. Chen M. Meng X. Zhang Y. Wang T. Wang H. Zhang D. Yang Y. Discovery of YFJ-36: Design, synthesis, and antibacterial activities of catechol-conjugated β-lactams against G- bacteria. J. Med. Chem. 2024 67 8 6705 6725 10.1021/acs.jmedchem.4c00265 38596897
    [Google Scholar]
  48. Hutinec A. Đerek M. Lazarevski G. Šunjić V. Paljetak H.Č. Alihodžić S. Haber V.E. Dumić M. Maršić N. Mutak S. Novel 8a-aza-8a-homoerythromycin-4″-(3-substituted-amino)propionates with broad spectrum antibacterial activity. Bioorg. Med. Chem. Lett. 2010 20 11 3244 3249 10.1016/j.bmcl.2010.04.062 20462754
    [Google Scholar]
  49. Pavlović D. Mutak S. Discovery of 4′'-ether linked azithromycin-quinolone hybrid series: Influence of the central linker on the antibacterial activity. ACS Med. Chem. Lett. 2011 2 5 331 336 10.1021/ml100253p 24900314
    [Google Scholar]
  50. Ma C.X. Lv W. Li Y.X. Fan B.Z. Han X. Kong F.S. Tian J.C. Cushman M. Liang J.H. Design, synthesis and structure-activity relationships of novel macrolones: Hybrids of 2-fluoro 9-oxime ketolides and carbamoyl quinolones with highly improved activity against resistant pathogens. Eur. J. Med. Chem. 2019 169 1 20 10.1016/j.ejmech.2019.02.073 30852383
    [Google Scholar]
  51. Daher S.S. Lee M. Jin X. Teijaro C.N. Barnett P.R. Freundlich J.S. Andrade R.B. Alternative approaches utilizing click chemistry to develop next-generation analogs of solithromycin. Eur. J. Med. Chem. 2022 233 114213 10.1016/j.ejmech.2022.114213 35240514
    [Google Scholar]
  52. Domalaon R. Yang X. Lyu Y. Zhanel G.G. Schweizer F. Polymyxin B3−tobramycin hybrids with Pseudomonas aeruginosa-selective antibacterial activity and strong potentiation of rifampicin, minocycline, and vancomycin. ACS Infect. Dis. 2017 3 12 941 954 10.1021/acsinfecdis.7b00145 29045123
    [Google Scholar]
  53. Dhiman S. Ramirez D. Li Y. Kumar A. Arthur G. Schweizer F. Chimeric tobramycin-based adjuvant TOB-TOB-CIP potentiates fluoroquinolone and β-lactam antibiotics against multidrug-resistant Pseudomonas aeruginosa. ACS Infect. Dis. 2023 9 4 864 885 10.1021/acsinfecdis.2c00549 36917096
    [Google Scholar]
  54. Gambato S. Bellotto O. Mardirossian M. Di Stasi A. Gennaro R. Pacor S. Caporale A. Berti F. Scocchi M. Tossi A. Designing new hybrid antibiotics: Proline-rich antimicrobial peptides conjugated to the aminoglycoside tobramycin. Bioconjug. Chem. 2023 34 7 1212 1220 10.1021/acs.bioconjchem.2c00467 37379329
    [Google Scholar]
  55. Gorityala B.K. Guchhait G. Fernando D.M. Deo S. McKenna S.A. Zhanel G.G. Kumar A. Schweizer F. Adjuvants based on hybrid antibiotics overcome resistance in Pseudomonas aeruginosa and enhance fluoroquinolone efficacy. Angew. Chem. Int. Ed. 2016 55 2 555 559 10.1002/anie.201508330 26610184
    [Google Scholar]
  56. Hiraiwa Y. Minowa N. Usui T. Akiyama Y. Maebashi K. Ikeda D. Effect of varying the 4″-position of arbekacin derivatives on antibacterial activity against MRSA and Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett. 2007 17 22 6369 6372 10.1016/j.bmcl.2007.08.059 17889537
    [Google Scholar]
  57. Yang X. Ammeter D. Idowu T. Domalaon R. Brizuela M. Okunnu O. Bi L. Guerrero Y.A. Zhanel G.G. Kumar A. Schweizer F. Amphiphilic nebramine-based hybrids Rescue legacy antibiotics from intrinsic resistance in multidrug-resistant Gram-negative bacilli. Eur. J. Med. Chem. 2019 175 187 200 10.1016/j.ejmech.2019.05.003 31078866
    [Google Scholar]
  58. van Groesen E. Slingerland C.J. Innocenti P. Mihajlovic M. Masereeuw R. Martin N.I. Vancomyxins: Vancomycin-polymyxin nonapeptide conjugates that retain anti-G+ activity with enhanced potency against G- strains. ACS Infect. Dis. 2021 7 2746 2754 10.1021/acsinfecdis.1c00318 34387988
    [Google Scholar]
  59. Ma Z. He S. Yuan Y. Zhuang Z. Liu Y. Wang H. Chen J. Xu X. Ding C. Molodtsov V. Lin W. Robertson G.T. Weiss W.J. Pulse M. Nguyen P. Duncan L. Doyle T. Ebright R.H. Lynch A.S. Design, synthesis, and characterization of TNP-2198, a dual-targeted rifamycin-nitroimidazole conjugate with potent activity against microaerophilic and anaerobic bacterial pathogens. J. Med. Chem. 2022 65 6 4481 4495 10.1021/acs.jmedchem.1c02045 35175750
    [Google Scholar]
  60. Robertson G.D. Bonventre E.J. Doyle D.B. Du Q. Duncan L. Morris D.W. Roche E.D. Yan D. Lynch A.S. In vitro evaluation of CBR-2092, a novel rifamycin-quinolone hybrid antibiotic: Microbiology profiling studies with staphylococci and streptococci. Streptococci Antimicrob Ag Chemother 2008 52 7 2324 2334 10.1128/AAC.01651‑07
    [Google Scholar]
  61. Peek J. Koirala B. Brady S.F. Synthesis and evaluation of dual-action kanglemycin-fluoroquinolone hybrid antibiotics. Bioorg. Med. Chem. Lett. 2022 57 128484 10.1016/j.bmcl.2021.128484 34861348
    [Google Scholar]
  62. Pokrovskaya V. Belakhov V. Hainrichson M. Yaron S. Baasov T. Design, synthesis, and evaluation of novel fluoroquinolone-aminoglycoside hybrid antibiotics. J. Med. Chem. 2009 52 8 2243 2254 10.1021/jm900028n 19301822
    [Google Scholar]
  63. Findlay B. Zhanel G.G. Schweizer F. Neomycin-phenolic conjugates: Polycationic amphiphiles with broad-spectrum antibacterial activity, low hemolytic activity and weak serum protein binding. Bioorg. Med. Chem. Lett. 2012 22 4 1499 1503 10.1016/j.bmcl.2012.01.025 22285320
    [Google Scholar]
  64. Wang K.K. Stone L.K. Lieberman T.D. Shavit M. Baasov T. Kishony R. A hybrid drug limits resistance by evading the action of the multiple antibiotic resistance pathway. Mol. Biol. Evol. 2016 33 2 492 500 10.1093/molbev/msv243 26538141
    [Google Scholar]
  65. Dorst A. Berg R. Gertzen C.G.W. Schäfle D. Zerbe K. Gwerder M. Schnell S.D. Sander P. Gohlke H. Gademann K. Semisynthetic analogs of the antibiotic fidaxomicin - Design, synthesis, and biological evaluation. ACS Med. Chem. Lett. 2020 11 12 2414 2420 10.1021/acsmedchemlett.0c00381 33329763
    [Google Scholar]
  66. Shavit M. Pokrovskaya V. Belakhov V. Baasov T. Covalently linked kanamycin - Ciprofloxacin hybrid antibiotics as a tool to fight bacterial resistance. Bioorg. Med. Chem. 2017 25 11 2917 2925 10.1016/j.bmc.2017.02.068 28343755
    [Google Scholar]
  67. Hanessian S. Kothakonda K.K. 3-N,N-Dimethylamino-3-deoxy lincomycin: A structure-based hybrid between lincomycin and the desosamine unit of erythromycin. Bioorg. Med. Chem. 2005 13 17 5283 5288 10.1016/j.bmc.2005.05.070 15994084
    [Google Scholar]
  68. Debast S.B. Bauer M.P. Kuijper E.J. European society of clinical microbiology and infectious diseases: Update of the treatment guidance document for Clostridium difficile infection. Clin. Microbiol. Infect. 2014 20 Suppl. 2 1 26 10.1111/1469‑0691.12418 24118601
    [Google Scholar]
  69. Renslo A.R. Luehr G.W. Gordeev M.F. Recent developments in the identification of novel oxazolidinone antibacterial agents. Bioorg. Med. Chem. 2006 14 12 4227 4240 10.1016/j.bmc.2006.01.068 16527486
    [Google Scholar]
  70. Michalska K. Karpiuk I. Król M. Tyski S. Recent development of potent analogues of oxazolidinone antibacterial agents. Bioorg. Med. Chem. 2013 21 3 577 591 10.1016/j.bmc.2012.11.036 23273607
    [Google Scholar]
  71. Yuan S. Shen D.D. Bai Y.R. Zhang M. Zhou T. Sun C. Zhou L. Wang S.Q. Liu H.M. Oxazolidinone: A promising scaffold for the development of antibacterial drugs. Eur. J. Med. Chem. 2023 250 115239 10.1016/j.ejmech.2023.115239 36893700
    [Google Scholar]
  72. Liu P. Jiang Y. Jiao L. Luo Y. Wang X. Yang T. Strategies for the discovery of oxazolidinone antibacterial agents: Development and future perspectives. J. Med. Chem. 2023 66 20 13860 13873 10.1021/acs.jmedchem.3c01040 37807849
    [Google Scholar]
  73. Spaulding A. Takrouri K. Mahalingam P. Cleary D.C. Cooper H.D. Zucchi P. Tear W. Koleva B. Beuning P.J. Hirsch E.B. Aggen J.B. Compound design guidelines for evading the efflux and permeation barriers of Escherichia coli with the oxazolidinone class of antibacterials: Test case for a general approach to improving whole cell Gram-negative activity. Bioorg. Med. Chem. Lett. 2017 27 23 5310 5321 10.1016/j.bmcl.2017.10.018 29102393
    [Google Scholar]
  74. Louie T. Nord C.E. Talbot G.H. Wilcox M. Gerding D.N. Buitrago M. Kracker H. Charef P. Cornely O.A. Miller M.A. Multicenter, double-blind, randomized, Phase 2 study evaluating the novel antibiotic cadazolid in patients with Clostridium difficile Infection. Antimicrob. Agents Chemother. 2015 59 10 6266 6273 10.1128/AAC.00504‑15 26248357
    [Google Scholar]
  75. Gerding D.N. Cornely O.A. Grill S. Kracker H. Marrast A.C. Nord C.E. Talbot G.H. Buitrago M. Gheorghe Diaconescu I. Murta de Oliveira C. Preotescu L. Pullman J. Louie T.J. Wilcox M.H. Cadazolid for the treatment of Clostridium difficile infection: Results of two double-blind, placebo-controlled, non-inferiority, randomised phase 3 trials. Lancet Infect. Dis. 2019 19 3 265 274 10.1016/S1473‑3099(18)30614‑5 30709665
    [Google Scholar]
  76. Gordeev M.F. Hackbarth C. Barbachyn M.R. Banitt L.S. Gage J.R. Luehr G.W. Gomez M. Trias J. Morin S.E. Zurenko G.E. Parker C.N. Evans J.M. White R.J. Patel D.V. Novel oxazolidinone-quinolone hybrid antimicrobials. Bioorg. Med. Chem. Lett. 2003 13 23 4213 4216 10.1016/j.bmcl.2003.07.021 14623004
    [Google Scholar]
  77. Hubschwerlen C. Specklin J.L. Baeschlin D.K. Borer Y. Haefeli S. Sigwalt C. Schroeder S. Locher H.H. Structure-activity relationship in the oxazolidinone-quinolone hybrid series: Influence of the central spacer on the antibacterial activity and the mode of action. Bioorg. Med. Chem. Lett. 2003 13 23 4229 4233 10.1016/j.bmcl.2003.07.028 14623007
    [Google Scholar]
  78. Rueedi G. Panchaud P. Friedli A. Specklin J-L. Hubschwerlen C. Blumstein A-C. Caspers P. Enderlin-Paput M. Jacob L. Kohl C. Locher H.H. Pfaff P. Schmitt C. Seiler P. Ritz D. Discovery and structure−activity relationship of cadazolid: A first-in-class quinoxolidinone antibiotic for the treatment of infection. J. Med. Chem. 2024 67 9465 9484 10.1021/acs.jmedchem.4c00558 38753983
    [Google Scholar]
  79. Griera R. Cantos-Llopart C. Amat M. Bosch J. del Castillo J.C. Huguet J. New potential antibacterials: A synthetic route to N-aryloxazolidinone/3-aryltetrahydroiso-] quinoline hybrids. Bioorg. Med. Chem. Lett. 2006 16 3 529 531 10.1016/j.bmcl.2005.10.053 16275066
    [Google Scholar]
  80. Selvakumar N. Kumar G.S. Malar Azhagan A. Govinda Rajulu G. Sharma S. Kumar M.S. Das J. Iqbal J. Trehan S. Synthesis, SAR and antibacterial studies on novel chalcone oxazolidinone hybrids. Eur. J. Med. Chem. 2007 42 4 538 543 10.1016/j.ejmech.2006.10.013 17150281
    [Google Scholar]
  81. Varshney V. Mishra N.N. Shukla P.K. Sahu D.P. Synthesis and antibacterial evaluation of isoxazolinyl oxazolidinones: Search for potent antibacterial. Bioorg. Med. Chem. Lett. 2009 19 13 3573 3576 10.1016/j.bmcl.2009.04.133 19447611
    [Google Scholar]
  82. Khalaj A. Nakhjiri M. Negahbani A.S. Samadizadeh M. Firoozpour L. Rajabalian S. Samadi N. Faramarzi M.A. Adibpour N. Shafiee A. Foroumadi A. Discovery of a novel nitroimidazolyl-oxazolidinone hybrid with potent anti Gram-positive activity: Synthesis and antibacterial evaluation. Eur. J. Med. Chem. 2011 46 1 65 70 10.1016/j.ejmech.2010.10.015 21071113
    [Google Scholar]
  83. Haroun M. Tratrat C. Petrou A. Geronikaki A. Ivanov M. Ciric A. Sokovic M. 2-Aryl-3-(6-trifluoromethoxy)] benzo[d]thiazole-based thiazolidinone hybrids as potential anti-infective agents: Synthesis, biological evaluation and molecular docking studies. Bioorg. Med. Chem. Lett. 2021 32 127718 10.1016/j.bmcl.2020.127718 33253880
    [Google Scholar]
  84. Ahmed S. Mital A. Akhir A. Saxena D. Ahmad M.N. Dasgupta A. Chopra S. Jain R. Pyrrole-thiazolidinone hybrids as a new structural class of broad-spectrum anti-infectives. Eur. J. Med. Chem. 2023 260 115757 10.1016/j.ejmech.2023.115757 37659197
    [Google Scholar]
  85. Hansen A.M. Peng P. Baldry M. Perez-Gassol I. Christensen S.B. Vinther J.M.O. Ingmer H. Franzyk H. Lactam hybrid analogues of solonamide B and autoinducing peptides as potent S. aureus AgrC antagonists. Eur. J. Med. Chem. 2018 152 370 376 10.1016/j.ejmech.2018.04.053 29738955
    [Google Scholar]
  86. Zhou J. Bhattacharjee A. Chen S. Chen Y. Duffy E. Farmer J. Goldberg J. Hanselmann R. Ippolito J.A. Lou R. Orbin A. Oyelere A. Salvino J. Springer D. Tran J. Wang D. Wu Y. Johnson G. Design at the atomic level: Design of biaryloxazolidinones as potent orally active antibiotics. Bioorg. Med. Chem. Lett. 2008 18 23 6175 6178 10.1016/j.bmcl.2008.10.011 18947996
    [Google Scholar]
  87. Dhiman P. Arora N. Thanikachalam P.V. Monga V. Recent advances in the synthetic and medicinal perspective of quinolones: A review. Bioorg. Chem. 2019 92 103291 10.1016/j.bioorg.2019.103291 31561107
    [Google Scholar]
  88. Pham T.D.M. Ziora Z.M. Blaskovich M.A.T. Quinolone antibiotics. Med. Chem. Comm 2019 10 10 1719 1739 10.1039/C9MD00120D 31803393
    [Google Scholar]
  89. Hu Y.Q. Zhang S. Xu Z. Lv Z.S. Liu M.L. Feng L.S. 4-Quinolone hybrids and their antibacterial activities. Eur. J. Med. Chem. 2017 141 335 345 10.1016/j.ejmech.2017.09.050 29031077
    [Google Scholar]
  90. Jia Y. Zhao L. The antibacterial activity of fluoroquinolone derivatives: An update (2018-2021). Eur. J. Med. Chem. 2021 224 113741 10.1016/j.ejmech.2021.113741 34365130
    [Google Scholar]
  91. Gu X.L. Liu H.B. Jia Q.H. Li J.F. Liu Y.L. Design and synthesis of novel miconazole-based ciprofloxacin hybrids as potential antimicrobial agents. Monatsh. Chem. 2015 146 4 713 720 10.1007/s00706‑014‑1364‑9
    [Google Scholar]
  92. Wang Y. Damu G.L.V. Lv J.S. Geng R.X. Yang D.C. Zhou C.H. Design, synthesis and evaluation of clinafloxacin triazole hybrids as a new type of antibacterial and antifungal agents. Bioorg. Med. Chem. Lett. 2012 22 17 5363 5366 10.1016/j.bmcl.2012.07.064 22884108
    [Google Scholar]
  93. Wang X.D. Wei W. Wang P.F. Tang Y.T. Deng R.C. Li B. Zhou S.S. Zhang J.W. Zhang L. Xiao Z.P. Ouyang H. Zhu H.L. Novel 3-arylfuran-2(5H)-one-fluoroquinolone hybrid: Design, synthesis and evaluation as antibacterial agent. Bioorg. Med. Chem. 2014 22 14 3620 3628 10.1016/j.bmc.2014.05.018 24882676
    [Google Scholar]
  94. Cui S.F. Peng L.P. Zhang H.Z. Rasheed S. Vijaya Kumar K. Zhou C.H. Novel hybrids of metronidazole and quinolones: Synthesis, bioactive evaluation, cytotoxicity, preliminary antimicrobial mechanism and effect of metal ions on their transportation by human serum albumin. Eur. J. Med. Chem. 2014 86 318 334 10.1016/j.ejmech.2014.08.063 25173851
    [Google Scholar]
  95. Zhang L. Kumar K.V. Geng R.X. Zhou C.H. Design and biological evaluation of novel quinolone-based metronidazole derivatives as potent Cu2+ mediated DNA-targeting antibacterial agents. Bioorg. Med. Chem. Lett. 2015 25 17 3699 3705 10.1016/j.bmcl.2015.06.041 26149183
    [Google Scholar]
  96. Karoli T. Mamidyala S.K. Zuegg J. Fry S.R. Tee E.H.L. Bradford T.A. Madala P.K. Huang J.X. Ramu S. Butler M.S. Cooper M.A. Structure aided design of chimeric antibiotics. Bioorg. Med. Chem. Lett. 2012 22 7 2428 2433 10.1016/j.bmcl.2012.02.019 22406152
    [Google Scholar]
  97. Xiao Z.P. Wang X.D. Wang P.F. Zhou Y. Zhang J.W. Zhang L. Zhou J. Zhou S.S. Ouyang H. Lin X.Y. Mustapa M. Reyinbaike A. Zhu H.L. Design, synthesis, and evaluation of novel fluoroquinolone-flavonoid hybrids as potent antibiotics against drug-resistant microorganisms. Eur. J. Med. Chem. 2014 80 92 100 10.1016/j.ejmech.2014.04.037 24769347
    [Google Scholar]
  98. Ibrahim N.M. Fahim S.H. Hassan M. Farag A.E. Georgey H.H. Design and synthesis of ciprofloxacin-sulfonamide hybrids to manipulate ciprofloxacin pharmacological qualities: Potency and side effects. Eur. J. Med. Chem. 2022 228 114021 10.1016/j.ejmech.2021.114021 34871841
    [Google Scholar]
  99. Foroumadi A. Emami S. Hassanzadeh A. Rajaee M. Sokhanvar K. Moshafi M.H. Shafiee A. Synthesis and antibacterial activity of N-(5-benzylthio-1,3,4-thiadiazol-2-yl) and N-(5-benzylsulfonyl-1,3,4-thiadiazol-2-yl)piperazinyl quinolone derivatives. Bioorg. Med. Chem. Lett. 2005 15 20 4488 4492 10.1016/j.bmcl.2005.07.016 16105736
    [Google Scholar]
  100. Panda S.S. Liaqat S. Girgis A.S. Samir A. Hall C.D. Katritzky A.R. Novel antibacterial active quinolone-fluoroquinolone conjugates and 2D-QSAR studies. Bioorg. Med. Chem. Lett. 2015 25 18 3816 3821 10.1016/j.bmcl.2015.07.077 26253630
    [Google Scholar]
  101. Mentese M.Y. Bayrak H. Uygun Y. Mermer A. Ulker S. Karaoglu S.A. Demirbas N. Microwave-assisted synthesis of some hybrid molecules derived from norfloxacin and investigation of their biological activities. Eur. J. Med. Chem. 2013 67 230 242 10.1016/j.ejmech.2013.06.045
    [Google Scholar]
  102. Tan Y.M. Li D. Li F.F. Fawad Ansari M. Fang B. Zhou C.H. Pyrimidine-conjugated fluoroquinolones as new potential broad-spectrum antibacterial agents. Bioorg. Med. Chem. Lett. 2022 73 128885 10.1016/j.bmcl.2022.128885 35835379
    [Google Scholar]
  103. Panda S.S. Detistov O.S. Girgis A.S. Mohapatra P.P. Samir A. Katritzky A.R. Synthesis and molecular modeling of antimicrobial active fluoroquinolone-pyrazine conjugates with amino acid linkers. Bioorg. Med. Chem. Lett. 2016 26 9 2198 2205 10.1016/j.bmcl.2016.03.062 27025339
    [Google Scholar]
  104. Jazayeri S. Moshafi M.H. Firoozpour L. Emami S. Rajabalian S. Haddad M. Pahlavanzadeh F. Esnaashari M. Shafiee A. Foroumadi A. Synthesis and antibacterial activity of nitroaryl thiadiazole-gatifloxacin hybrids. Eur. J. Med. Chem. 2009 44 3 1205 1209 10.1016/j.ejmech.2008.09.012 18950903
    [Google Scholar]
  105. Plech T. Wujec M. Kosikowska U. Malm A. Rajtar B. Polz-Dacewicz M. Synthesis and in vitro activity of 1,2,4-triazole-ciprofloxacin hybrids against drug-susceptible and drug-resistant bacteria. Eur. J. Med. Chem. 2013 60 128 134 10.1016/j.ejmech.2012.11.040 23287058
    [Google Scholar]
  106. Plech T. Kaproń B. Paneth A. Kosikowska U. Malm A. Strzelczyk A. Stączek P. Świątek Ł. Rajtar B. Polz-Dacewicz M. Search for factors affecting antibacterial activity and toxicity of 1,2,4-triazole-ciprofloxacin hybrids. Eur. J. Med. Chem. 2015 97 94 103 10.1016/j.ejmech.2015.04.058 25951434
    [Google Scholar]
  107. Wang R. Yin X. Zhang Y. Yan W. Design, synthesis and antimicrobial evaluation of propylene-tethered ciprofloxacin-isatin hybrids. Eur. J. Med. Chem. 2018 156 580 586 10.1016/j.ejmech.2018.07.025 30025351
    [Google Scholar]
  108. Chen J.P. Battini N. Ansari M.F. Zhou C.H. Membrane active 7-thiazoxime quinolones as novel DNA binding agents to decrease the genes expression and exert potent anti-methicillin-resistant Staphylococcus aureus activity. Eur. J. Med. Chem. 2021 217 113340 10.1016/j.ejmech.2021.113340 33725630
    [Google Scholar]
  109. Li S.R. Zeng C.M. Peng X.M. Chen J.P. Li S. Zhou C.H. Benzopyrone-mediated quinolones as potential multitargeting antibacterial agents. Eur. J. Med. Chem. 2023 262 115878 10.1016/j.ejmech.2023.115878 37866337
    [Google Scholar]
  110. Fedorowicz J. Sączewski J. Konopacka A. Waleron K. Lejnowski D. Ciura K. Tomašič T. Skok Ž. Savijoki K. Morawska M. Gilbert-Girard S. Fallarero A. Synthesis and biological evaluation of hybrid quinolone-based quaternary ammonium antibacterial agents. Eur. J. Med. Chem. 2019 179 576 590 10.1016/j.ejmech.2019.06.071 31279292
    [Google Scholar]
  111. Cui S.F. Ren Y. Zhang S.L. Peng X.M. Damu G.L.V. Geng R.X. Zhou C.H. Synthesis and biological evaluation of a class of quinolone triazoles as potential antimicrobial agents and their interactions with calf thymus DNA. Bioorg. Med. Chem. Lett. 2013 23 11 3267 3272 10.1016/j.bmcl.2013.03.118 23602443
    [Google Scholar]
  112. Zhou Y. Chow C. Murphy D.E. Sun Z. Bertolini T. Froelich J.M. Webber S.E. Hermann T. Wall D. Antibacterial activity in serum of the 3,5-diamino-piperidine translation inhibitors. Bioorg. Med. Chem. Lett. 2008 18 11 3369 3375 10.1016/j.bmcl.2008.04.023 18440814
    [Google Scholar]
  113. Chugunova E. Akylbekov N. Bulatova A. Gavrilov N. Voloshina A. Kulik N. Zobov V. Dobrynin A. Syakaev V. Burilov A. Synthesis and biological evaluation of novel structural hybrids of benzofuroxan derivatives and fluoroquinolones. Eur. J. Med. Chem. 2016 116 165 172 10.1016/j.ejmech.2016.03.086 27061980
    [Google Scholar]
  114. Bhunia S. Das A. Jana S.K. Mandal S. Samanta S. Photoswitchable antibiotic hybrids: Spacer length-dependent photochemical control of antibacterial activity. Bioconjug. Chem. 2024 35 1 92 98 10.1021/acs.bioconjchem.3c00488 38111208
    [Google Scholar]
  115. Neeraja P. Srinivas S. Mukkanti K. Dubey P.K. Pal S. 1H-1,2,3-Triazolyl-substituted 1,3,4-oxadiazole derivatives containing structural features of ibuprofen/naproxen: Their synthesis and antibacterial evaluation. Bioorg. Med. Chem. Lett. 2016 26 21 5212 5217 10.1016/j.bmcl.2016.09.059 27727124
    [Google Scholar]
  116. Triloknadh S. Venkata Rao C. Nagaraju K. Hari Krishna N. Venkata Ramaiah C. Rajendra W. Trinath D. Suneetha Y. Design, synthesis, neuroprotective, antibacterial activities and docking studies of novel thieno[2,3-d]pyrimidine-alkyne Mannich base and oxadiazole hybrids. Bioorg. Med. Chem. Lett. 2018 28 9 1663 1669 10.1016/j.bmcl.2018.03.030 29602681
    [Google Scholar]
  117. Wang J. Ansari M.F. Zhou C.H. Unique para-aminobenzenesulfonyl oxadiazoles as novel structural potential membrane active antibacterial agents towards drug-resistant methicillin resistant Staphylococcus aureus. Bioorg. Med. Chem. Lett. 2021 41 127995 10.1016/j.bmcl.2021.127995 33775834
    [Google Scholar]
  118. Zhao Y. Shadrick W.R. Wallace M.J. Wu Y. Griffith E.C. Qi J. Yun M.K. White S.W. Lee R.E. Pterin-sulfa conjugates as dihydropteroate synthase inhibitors and antibacterial agents. Bioorg. Med. Chem. Lett. 2016 26 16 3950 3954 10.1016/j.bmcl.2016.07.006 27423480
    [Google Scholar]
  119. Sui Y.F. Li D. Wang J. Bheemanaboina R.R.Y. Ansari M.F. Gan L.L. Zhou C.H. Design and biological evaluation of a novel type of potential multi-targeting antimicrobial sulfanilamide hybrids in combination of pyrimidine and azoles. Bioorg. Med. Chem. Lett. 2020 30 6 126982 10.1016/j.bmcl.2020.126982 32001137
    [Google Scholar]
  120. Ansari M.F. Tan Y.M. Sun H. Li S. Zhou C.H. Unique iminotetrahydroberberine-corbelled metronidazoles as potential membrane active broad-spectrum antibacterial agents. Bioorg. Med. Chem. Lett. 2022 76 129012 10.1016/j.bmcl.2022.129012 36182008
    [Google Scholar]
  121. Zhang T.Y. Yu Z.K. Jin X.J. Li M.Y. Sun L.P. Zheng C.J. Piao H.R. Synthesis and evaluation of the antibacterial activities of aryl substituted dihydrotriazine derivatives. Bioorg. Med. Chem. Lett. 2018 28 9 1657 1662 10.1016/j.bmcl.2018.03.037 29588213
    [Google Scholar]
  122. Shareef M.A. Sirisha K. Sayeed I.B. Khan I. Ganapathi T. Akbar S. Ganesh Kumar C. Kamal A. Nagendra Babu B. Synthesis of new triazole fused imidazo[2,1-b]thiazole hybrids with emphasis on Staphylococcus aureus virulence factors. Bioorg. Med. Chem. Lett. 2019 29 19 126621 10.1016/j.bmcl.2019.08.025 31431360
    [Google Scholar]
  123. Kodama T. Ito T. Dibwe D.F. Woo S.Y. Morita H. Syntheses of benzophenone-xanthone hybrid polyketides and their antibacterial activities. Bioorg. Med. Chem. Lett. 2017 27 11 2397 2400 10.1016/j.bmcl.2017.04.017 28416134
    [Google Scholar]
  124. Durcik M. Nyerges Á. Skok Ž. Skledar D.G. Trontelj J. Zidar N. Ilaš J. Zega A. Cruz C.D. Tammela P. Welin M. Kimbung Y.R. Focht D. Benek O. Révész T. Draskovits G. Szili P.É. Daruka L. Pál C. Kikelj D. Mašič L.P. Tomašič T. New dual ATP-competitive inhibitors of bacterial DNA gyrase and topoisomerase IV active against ESKAPE pathogens. Eur. J. Med. Chem. 2021 213 113200 10.1016/j.ejmech.2021.113200 33524686
    [Google Scholar]
  125. Marzi M. Farjam M. Kazeminejad Z. Shiroudi A. Kouhpayeh A. Zarenezhad E. A recent overview of 1,2,3-triazole-containing hybrids as novel antifungal agents: Focusing on synthesis, mechanism of action, and structure-activity relationship (SAR). J. Chem. 2022 2022 1 50 10.1155/2022/7884316
    [Google Scholar]
  126. Ghani U. Azole inhibitors of mushroom and human tyrosinases: Current advances and prospects of drug development for melanogenic dermatological disorders. Eur. J. Med. Chem. 2022 239 114525 10.1016/j.ejmech.2022.114525 35717871
    [Google Scholar]
  127. Wang S.Q. Wang Y.F. Xu Z. Tetrazole hybrids and their antifungal activities. Eur. J. Med. Chem. 2019 170 225 234 10.1016/j.ejmech.2019.03.023 30904780
    [Google Scholar]
  128. Chandrika K.V.S. Mani; Sharma, Sahida. Promising antifungal agents: A mini review. Bioorg. Med. Chem. Lett. 2020 28 115398 10.1016/j.bmc.2020.115398
    [Google Scholar]
  129. Jin Y.S. Recent advances in natural antifungal flavonoids and their derivatives. Bioorg. Med. Chem. Lett. 2019 29 19 126589 10.1016/j.bmcl.2019.07.048 31427220
    [Google Scholar]
  130. Dai J.K. Dan W.J. Wan J.B. Natural and synthetic β-carboline as a privileged antifungal scaffolds. Eur. J. Med. Chem. 2022 229 114057 10.1016/j.ejmech.2021.114057 34954591
    [Google Scholar]
  131. Girase P.S. Dhawan S. Kumar V. Shinde S.R. Palkar M.B. Karpoormath R. An appraisal of anti-mycobacterial activity with structure-activity relationship of piperazine and its analogues: A review. Eur. J. Med. Chem. 2021 210 112967 10.1016/j.ejmech.2020.112967 33190957
    [Google Scholar]
  132. Ghobadi E. Saednia S. Emami S. Synthetic approaches and structural diversity of triazolylbutanols derived from voriconazole in the antifungal drug development. Eur. J. Med. Chem. 2022 231 114161 10.1016/j.ejmech.2022.114161 35134679
    [Google Scholar]
  133. Muszalska-Kolos I. Dwiecki P.M. Searching for conjugates as new structures for antifungal therapies. J. Med. Chem. 2024 67 6 4298 4321 10.1021/acs.jmedchem.3c01750 38470824
    [Google Scholar]
  134. Elsaman T. Mohamed M.S. Mohamed M.A. Current development of 5-nitrofuran-2-yl derivatives as antitubercular agents. Bioorg. Chem. 2019 88 102969 10.1016/j.bioorg.2019.102969 31077910
    [Google Scholar]
  135. Trotsko N. Antitubercular properties of thiazolidin-4-ones - A review. Eur. J. Med. Chem. 2021 215 113266 10.1016/j.ejmech.2021.113266 33588179
    [Google Scholar]
  136. Sharma A. Agrahari A.K. Rajkhowa S. Tiwari V.K. Emerging impact of triazoles as anti-tubercular agent. Eur. J. Med. Chem. 2022 238 114454 10.1016/j.ejmech.2022.114454 35597009
    [Google Scholar]
  137. Dhameliya T.M. Bhakhar K.A. Gajjar N.D. Patel K.A. Devani A.A. Hirani R.V. Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J. Mol. Struct. 2022 1248 131473 10.1016/j.molstruc.2021.131473
    [Google Scholar]
  138. Singh G. Arora A. Kalra P. Maurya I.K. Ruizc C.E. Estebanc M.A. Sinha S. Goyal K. Sehgal R. A strategic approach to the synthesis of ferrocene appended chalcone linked triazole allied organosilatranes: Antibacterial, antifungal, antiparasitic and antioxidant studies. Bioorg. Med. Chem. 2019 27 1 188 195 10.1016/j.bmc.2018.11.038 30522900
    [Google Scholar]
  139. Lv M. Ma J. Li Q. Xu H. Discovery of benzotriazole-azo-phenol/aniline derivatives as antifungal agents. Bioorg. Med. Chem. Lett. 2018 28 2 181 187 10.1016/j.bmcl.2017.11.032 29191555
    [Google Scholar]
  140. Chen R. Zhang H. Ma T. Xue H. Miao Z. Chen L. Shi X. Ciprofloxacin-1,2,3-triazole-isatin hybrids tethered via amide: Design, synthesis, and in vitro anti-mycobacterial activity evaluation. Bioorg. Med. Chem. Lett. 2019 29 18 2635 2637 10.1016/j.bmcl.2019.07.041 31358466
    [Google Scholar]
  141. Blokhina S.V. Sharapova A.V. Ol’khovich M.V. Doroshenko I.A. Levshin I.B. Perlovich G.L. Synthesis and antifungal activity of new hybrids thiazolo[4,5-d]pyrimidines with (1H-1,2,4)triazole. Bioorg. Med. Chem. Lett. 2021 40 127944 10.1016/j.bmcl.2021.127944 33713781
    [Google Scholar]
  142. Borate H.B. Sawargave S.P. Chavan S.P. Chandavarkar M.A. Iyer R. Tawte A. Rao D. Deore J.V. Kudale A.S. Mahajan P.S. Kangire G.S. Novel hybrids of fluconazole and furanones: Design, synthesis and antifungal activity. Bioorg. Med. Chem. Lett. 2011 21 16 4873 4878 10.1016/j.bmcl.2011.06.022 21757344
    [Google Scholar]
  143. Fang X.F. Li D. Tangadanchu V.K.R. Gopala L. Gao W.W. Zhou C.H. Novel potentially antifungal hybrids of 5-flucytosine and fluconazole: Design, synthesis and bioactive evaluation. Bioorg. Med. Chem. Lett. 2017 27 22 4964 4969 10.1016/j.bmcl.2017.10.020 29050784
    [Google Scholar]
  144. Biot C. François N. Maciejewski L. Brocard J. Poulain D. Synthesis and antifungal activity of a ferrocene-fluconazole analogue. Bioorg. Med. Chem. Lett. 2000 10 8 839 841 10.1016/S0960‑894X(00)00120‑7 10782698
    [Google Scholar]
  145. Wang F. Wu J. Yuan M. Yan Z. Liu X. Li W. Zhang Y. Sheng C. Liu N. Huang Z. Novel nitric oxide donor−azole conjugation strategy for efficient treatment of Cryptococcus neoformans infections. J. Med. Chem. 2023 66 20 14221 14240 10.1021/acs.jmedchem.3c01308 37820326
    [Google Scholar]
  146. Hu C. Xu Z. Huang Z. Wang R. Zhang Y. Mao Z. Synthesis and antifungal evaluation of new azole derivatives against Candida albicans. ACS Med. Chem. Lett. 2023 14 10 1448 1454 10.1021/acsmedchemlett.3c00361 37849555
    [Google Scholar]
  147. Ni T. Hao Y. Ding Z. Chi X. Xie F. Wang R. Bao J. Yan L. Li L. Wang T. Zhang D. Jiang Y. Discovery of a novel potent tetrazole antifungal candidate with high selectivity and broad spectrum. J. Med. Chem. 2024 67 8 6238 6252 10.1021/acs.jmedchem.3c02188 38598688
    [Google Scholar]
  148. Ghobadi E. Hashemi S.M. Fakhim H. Hosseini-khah Z. Badali H. Emami S. Design, synthesis and biological activity of hybrid antifungals derived from fluconazole and mebendazole. Eur. J. Med. Chem. 2023 249 115146 10.1016/j.ejmech.2023.115146 36709648
    [Google Scholar]
  149. Gaikwad N.D. Patil S.V. Bobade V.D. Hybrids of ravuconazole: Synthesis and biological evaluation. Eur. J. Med. Chem. 2012 54 295 302 10.1016/j.ejmech.2012.05.010 22652223
    [Google Scholar]
  150. Emami S. Foroumadi A. Falahati M. Lotfali E. Rajabalian S. Ebrahimi S.A. Farahyar S. Shafiee A. 2-Hydroxyphenacyl azoles and related azolium derivatives as antifungal agents. Bioorg. Med. Chem. Lett. 2008 18 1 141 146 10.1016/j.bmcl.2007.10.111 18032039
    [Google Scholar]
  151. Li Z. Huang Y. Tu J. Yang W. Liu N. Wang W. Sheng C. Discovery of BRD4−HDAC dual inhibitors with improved fungal selectivity and potent synergistic antifungal activity against fluconazole-resistant Candida albicans. J. Med. Chem. 2023 66 8 5950 5964 10.1021/acs.jmedchem.3c00165 37037787
    [Google Scholar]
  152. Zhang A. Zhou J. Tao K. Hou T. Jin H. Design, synthesis and antifungal evaluation of novel pyrazole carboxamides with diarylamines scaffold as potent succinate dehydrogenase inhibitors. Bioorg. Med. Chem. Lett. 2018 28 18 3042 3045 10.1016/j.bmcl.2018.08.001 30097371
    [Google Scholar]
  153. Radakovic N. Nikolić A. Jovanović N.T. Stojković P. Stankovic N. Šolaja B. Opsenica I. Pavic A. Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis. Eur. J. Med. Chem. 2022 230 114137 10.1016/j.ejmech.2022.114137 35077918
    [Google Scholar]
  154. Staniszewska M. Zdrojewski T. Gizińska M. Rogalska M. Kuryk Ł. Kowalkowska A. Łukowska-Chojnacka E. Tetrazole derivatives bearing benzodiazepine moiety-synthesis and action mode against virulence of Candida albicans. Eur. J. Med. Chem. 2022 230 114060 10.1016/j.ejmech.2021.114060 35066404
    [Google Scholar]
  155. Adamec J. Beckert R. Weiß D. Klimešová V. Waisser K. Möllmann U. Kaustová J. Buchta V. Hybrid molecules of estrone: New compounds with potential antibacterial, antifungal, and antiproliferative activities. Bioorg. Med. Chem. 2007 15 8 2898 2906 10.1016/j.bmc.2007.02.021 17321746
    [Google Scholar]
  156. Liu W. Liu Y. Fan H. Liu M. Han J. An Y. Dong Y. Sun B. Design, synthesis, and biological evaluation of dual-target COX-2/CYP51 inhibitors for the treatment of fungal infectious diseases. J. Med. Chem. 2022 65 18 12219 12239 10.1021/acs.jmedchem.2c00878 36074863
    [Google Scholar]
  157. Liu Y. Liu W. Yu S. Wang Q. Liu M. Han J. Sun B. Novel aryl alkamidazole derivatives as multifunctional antifungal inhibitors: Design, synthesis, and biological evaluation. J. Med. Chem. 2022 65 21 14916 14937 10.1021/acs.jmedchem.2c01451 36282007
    [Google Scholar]
  158. Thamban Chandrika N. Shrestha S.K. Ranjan N. Sharma A. Arya D.P. Garneau-Tsodikova S. New application of neomycin B−bisbenzimidazole hybrids as antifungal agents. ACS Infect. Dis. 2018 4 2 196 207 10.1021/acsinfecdis.7b00254 29227087
    [Google Scholar]
  159. Yan Z. Huang Y. Zhao D. Li Z. Wang X. Guo M. Wei Y. Wang Y. Mou Y. Hou Z. Guo C. Developing novel coumarin-containing azoles antifungal agents by the scaffold merging strategy for treating azole-resistant candidiasis. J. Med. Chem. 2023 66 18 13247 13265 10.1021/acs.jmedchem.3c01254 37725043
    [Google Scholar]
  160. Bolous M. Arumugam N. Almansour A.I. Suresh Kumar R. Maruoka K. Antharam V.C. Thangamani S. Broad-spectrum antifungal activity of spirooxindolo-pyrrolidine tethered indole/imidazole hybrid heterocycles against fungal pathogens. Bioorg. Med. Chem. Lett. 2019 29 16 2059 2063 10.1016/j.bmcl.2019.07.022 31320146
    [Google Scholar]
  161. Thanusu J. Kanagarajan V. Gopalakrishnan M. Synthesis, spectral analysis and in vitro microbiological evaluation of 3-(3-alkyl-2,6-diarylpiperin-4-ylidene)-2-thioxoimidazo-] lidin-4-ones as a new class of antibacterial and antifungal agents. Bioorg. Med. Chem. Lett. 2010 20 2 713 717 10.1016/j.bmcl.2009.11.074 20004098
    [Google Scholar]
  162. Nagesh H.N. Suresh A. Sathya Sri Sairam S.D. Sriram D. Yogeeswari P. Chandra Sekhar K.V.G.C. Design, synthesis and antimycobacterial evaluation of 1-(4-(2-substitutedthiazol-4-yl)phenethyl)-4-(3-(4-substitutedpiperazin-1-yl)alkyl)piperazine hybrid analogues. Eur. J. Med. Chem. 2014 87 605 613 10.1016/j.ejmech.2014.07.067
    [Google Scholar]
  163. Gao Z. Lv M. Li Q. Xu H. Synthesis of heterocycle-attached methylidenebenzenesulfonohydrazones as antifungal agents. Bioorg. Med. Chem. Lett. 2015 25 22 5092 5096 10.1016/j.bmcl.2015.10.017
    [Google Scholar]
  164. Xu H. Su X. Liu X. Zhang K. Hou Z. Guo C. Design, synthesis and biological evaluation of novel semicarbazone-selenochroman-4-ones hybrids as potent antifungal agents. Bioorg. Med. Chem. Lett. 2019 29 23 126726 10.1016/j.bmcl.2019.126726 31615700
    [Google Scholar]
  165. Rozada A.M.F. Rodrigues-Vendramini F.A.V. Gonçalves D.S. Rosa F.A. Basso E.A. Seixas F.A.V. Kioshima É.S. Gauze G.F. Synthesis and antifungal activity of new hybrids pyrimido[4,5-d]pyridazinone-N-acylhydrazones. Bioorg. Med. Chem. Lett. 2020 30 14 127244 10.1016/j.bmcl.2020.127244 32527546
    [Google Scholar]
  166. Kubra I.R. Bettadaiah B.K. Murthy P.S. Rao L.J.M. Structure-function activity of dehydrozingerone and its derivatives as antioxidant and antimicrobial compounds. J. Food Sci. Technol. 2014 51 2 245 255 10.1007/s13197‑011‑0488‑8 24493881
    [Google Scholar]
  167. Hampannavar G.A. Karpoormath R. Palkar M.B. Shaikh M.S. Chandrasekaran B. Dehydrozingerone inspired styryl hydrazine thiazole hybrids as promising class of antimycobacterial agents. ACS Med. Chem. Lett. 2016 7 7 686 691 10.1021/acsmedchemlett.6b00088 27437078
    [Google Scholar]
  168. Chimenti F. Bizzarri B. Maccioni E. Secci D. Bolasco A. Fioravanti R. Chimenti P. Granese A. Carradori S. Rivanera D. Lilli D. Zicari A. Distinto S. Synthesis and in vitro activity of 2-thiazolylhydrazone derivatives compared with the activity of clotrimazole against clinical isolates of Candida spp. Bioorg. Med. Chem. Lett. 2007 17 16 4635 4640 10.1016/j.bmcl.2007.05.078 17560783
    [Google Scholar]
  169. Ozadali K. Tan O.U. Yogeeswari P. Dharmarajan S. Balkan A. Synthesis and antimycobacterial activities of some new thiazolylhydrazone derivatives. Bioorg. Med. Chem. Lett. 2014 24 7 1695 1697 10.1016/j.bmcl.2014.02.052
    [Google Scholar]
  170. Kumar L. Lal N. Kumar V. Sarswat A. Jangir S. Bala V. Kumar L. Kushwaha B. Pandey A.K. Siddiqi M.I. Shukla P.K. Maikhuri J.P. Gupta G. Sharma V.L. Azole-carbodithioate hybrids as vaginal anti-Candida contraceptive agents: Design, synthesis and docking studies. Eur. J. Med. Chem. 2013 70 68 77 10.1016/j.ejmech.2013.09.007 24140949
    [Google Scholar]
  171. Pete U.D. Zade C.M. Bhosale J.D. Tupe S.G. Chaudhary P.M. Dikundwar A.G. Bendre R.S. Hybrid molecules of carvacrol and benzoyl urea/thiourea with potential applications in agriculture and medicine. Bioorg. Med. Chem. Lett. 2012 22 17 5550 5554 10.1016/j.bmcl.2012.07.017 22850211
    [Google Scholar]
  172. Ma J. Jiang Y. Zhuang X. Chen H. Shen Y. Mao Z. Rao G. Wang R. Discovery of novel indole and indoline derivatives against Candida albicans as potent antifungal agents. Bioorg. Med. Chem. Lett. 2022 71 128826 10.1016/j.bmcl.2022.128826 35661686
    [Google Scholar]
  173. Chai N. Sun A. Zhu X. Li Y. Wang R. Zhang Y. Mao Z. Antifungal evaluation of quinoline-chalcone derivatives combined with FLC against drug-resistant Candida albicans. Bioorg. Med. Chem. Lett. 2023 86 129242 10.1016/j.bmcl.2023.129242 36931351
    [Google Scholar]
  174. Sun A. Chai N. Zhu X. Li Y. Wang R. Zhang Y. Mao Z. Optimization and antifungal activity of quinoline derivatives linked to chalcone moiety combined with FLC against Candida albicans. Eur. J. Med. Chem. 2023 260 115782 10.1016/j.ejmech.2023.115782 37672929
    [Google Scholar]
  175. Wang X. Jin X. Xie Z. Zhang H. Liu T. Zheng H. Luan X. Sun Y. Fang W. Chang W. Lou H. Benzamidine conjugation converts expelled potential active agents into antifungals against drug-resistant fungi. J. Med. Chem. 2023 66 19 13684 13704 10.1021/acs.jmedchem.3c01068 37787457
    [Google Scholar]
  176. Sui Y.F. Ansari M.F. Fang B. Zhang S.L. Zhou C.H. Discovery of novel purinylthiazolylethanone derivatives as anti-Candida albicans agents through possible multifaceted mechanisms. Eur. J. Med. Chem. 2021 221 113557 10.1016/j.ejmech.2021.113557 34087496
    [Google Scholar]
  177. Wang H. Gao X. Zhang X. Jin H. Tao K. Hou T. Design, synthesis and antifungal activity of novel fenfuram-diarylamine hybrids. Bioorg. Med. Chem. Lett. 2017 27 1 90 93 10.1016/j.bmcl.2016.11.026 27884696
    [Google Scholar]
  178. Lee S. Ku A.F. Vippila M.R. Wang Y. Zhang M. Wang X. Hedstrom L. Cuny G.D. Mycophenolic anilides as broad specificity inosine-5′-monophosphate dehydrogenase (IMPDH) inhibitors. Bioorg. Med. Chem. Lett. 2020 30 24 127543 10.1016/j.bmcl.2020.127543 32931912
    [Google Scholar]
  179. Delong W. Yongling W. Lanying W. Juntao F. Xing Z. Design, synthesis and evaluation of 3-arylidene azetidin-2-ones as potential antifungal agents against Alternaria solani Sorauer. Bioorg. Med. Chem. 2017 25 24 6661 6673 10.1016/j.bmc.2017.11.003 29137937
    [Google Scholar]
  180. Ragno R. Marshall G.R. Di Santo R. Costi R. Massa S. Rompei R. Artico M. Antimycobacterial pyrroles: Synthesis, anti- Mycobacterium tuberculosis activity and QSAR studies. Bioorg. Med. Chem. 2000 8 6 1423 1432 10.1016/S0968‑0896(00)00061‑4 10896119
    [Google Scholar]
  181. Touitou M. Manetti F. Ribeiro C.M. Pavan F.R. Scalacci N. Zrebna K. Begum N. Semenya D. Gupta A. Bhakta S. McHugh T.D. Senderowitz H. Kyriazi M. Castagnolo D. Improving the potency of N-aryl-2,5-dimethylpyrroles against multidrug-resistant and intracellular mycobacteria. ACS Med. Chem. Lett. 2020 11 5 638 644 10.1021/acsmedchemlett.9b00515 32435364
    [Google Scholar]
  182. Semenya D. Touitou M. Ribeiro C.M. Pavan F.R. Pisano L. Singh V. Chibale K. Bano G. Toscani A. Manetti F. Gianibbi B. Castagnolo D. Structural rigidification of N‐aryl-pyrroles into indoles active against intracellular and drug-resistant mycobacteria. ACS Med. Chem. Lett. 2022 13 1 63 69 10.1021/acsmedchemlett.1c00431 35059125
    [Google Scholar]
  183. Gao F. Yang H. Lu T. Chen Z. Ma L. Xu Z. Schaffer P. Lu G. Design, synthesis and anti-mycobacterial activity evaluation of benzofuran-isatin hybrids. Eur. J. Med. Chem. 2018 159 277 281 10.1016/j.ejmech.2018.09.049 30296686
    [Google Scholar]
  184. Gao F. Chen Z. Ma L. Qiu L. Lin J. Lu G. Benzofuran-isatin hybrids tethered via different length alkyl linkers and their in vitro anti-mycobacterial activities. Bioorg. Med. Chem. 2019 27 12 2652 2656 10.1016/j.bmc.2019.04.017 30992202
    [Google Scholar]
  185. Reis W.J. Bozzi Í.A.O. Ribeiro M.F. Halicki P.C.B. Ferreira L.A. Almeida da Silva P.E. Ramos D.F. de Simone C.A. da Silva Júnior E.N. Design of hybrid molecules as antimycobacterial compounds: Synthesis of isoniazid-naphthoquinone derivatives and their activity against susceptible and resistant strains of Mycobacterium tuberculosis. Bioorg. Med. Chem. 2019 27 18 4143 4150 10.1016/j.bmc.2019.07.045 31378595
    [Google Scholar]
  186. Velezheva V. Brennan P. Ivanov P. Kornienko A. Lyubimov S. Kazarian K. Nikonenko B. Majorov K. Apt A. Synthesis and antituberculosis activity of indole-pyridine derived hydrazides, hydrazide-hydrazones, and thiosemicarbazones. Bioorg. Med. Chem. Lett. 2016 26 3 978 985 10.1016/j.bmcl.2015.12.049 26725953
    [Google Scholar]
  187. Alcaraz M. Sharma B. Roquet-Banères F. Conde C. Cochard T. Biet F. Kumar V. Kremer L. Designing quinoline-isoniazid hybrids as potent anti-tubercular agents inhibiting mycolic acid biosynthesis. Eur. J. Med. Chem. 2022 239 114531 10.1016/j.ejmech.2022.114531 35759907
    [Google Scholar]
  188. Reddyrajula R. Dalimba U. Madan Kumar S. Molecular hybridization approach for phenothiazine incorporated 1,2,3-triazole hybrids as promising antimicrobial agents: Design, synthesis, molecular docking and in silico ADME studies. Eur. J. Med. Chem. 2019 168 263 282 10.1016/j.ejmech.2019.02.010 30822714
    [Google Scholar]
  189. Salve P.S. Alegaon S.G. Sriram D. Three-component, one-pot synthesis of anthranilamide Schiff bases bearing 4-aminoquinoline moiety as Mycobacterium tuberculosis gyrase inhibitors. Bioorg. Med. Chem. Lett. 2017 27 8 1859 1866 10.1016/j.bmcl.2017.02.031 28274627
    [Google Scholar]
  190. Torres E. Moreno E. Ancizu S. Barea C. Galiano S. Aldana I. Monge A. Pérez-Silanes S. New 1,4-di-N-oxide-quinoxaline-2-ylmethylene isonicotinic acid hydrazide derivatives as anti-Mycobacterium tuberculosis agents. Bioorg. Med. Chem. Lett. 2011 21 12 3699 3703 10.1016/j.bmcl.2011.04.072 21570839
    [Google Scholar]
  191. Rane R.A. Naphade S.S. Bangalore P.K. Palkar M.B. Shaikh M.S. Karpoormath R. Synthesis of novel 4-nitropyrrole-based semicarbazide and thiosemicarbazide hybrids with antimicrobial and anti-tubercular activity. Bioorg. Med. Chem. Lett. 2014 24 14 3079 3083 10.1016/j.bmcl.2014.05.018 24878195
    [Google Scholar]
  192. Angelova V.T. Valcheva V. Vassilev N.G. Buyukliev R. Momekov G. Dimitrov I. Saso L. Djukic M. Shivachev B. Antimycobacterial activity of novel hydrazide-hydrazone derivatives with 2 H -chromene and coumarin scaffold. Bioorg. Med. Chem. Lett. 2017 27 2 223 227 10.1016/j.bmcl.2016.11.071
    [Google Scholar]
  193. Patil P.S. Kasare S.L. Haval N.B. Khedkar V.M. Dixit P.P. Rekha E.M. Sriram D. Haval K.P. Novel isoniazid embedded triazole derivatives: Synthesis, antitubercular and antimicrobial activity evaluation. Bioorg. Med. Chem. Lett. 2020 30 19 127434 10.1016/j.bmcl.2020.127434 32717369
    [Google Scholar]
  194. Rani A. Johansen M.D. Roquet-Banères F. Kremer L. Awolade P. Ebenezer O. Singh P. Sumanjit Kumar V. Design and synthesis of 4-Aminoquinoline-isoindoline-dione-isoniazid triads as potential anti-mycobacterials. Bioorg. Med. Chem. Lett. 2020 30 22 127576 10.1016/j.bmcl.2020.127576 32980514
    [Google Scholar]
  195. Mahajan A. Kremer L. Louw S. Guéradel Y. Chibale K. Biot C. Synthesis and in vitro antitubercular activity of ferrocene-based hydrazones. Bioorg. Med. Chem. Lett. 2011 21 10 2866 2868 10.1016/j.bmcl.2011.03.082 21507641
    [Google Scholar]
  196. Raghu M.S. Pradeep Kumar C.B. Yogesh Kumar K. Prashanth M.K. Alshahrani M.Y. Ahmad I. Jain R. Design, synthesis and molecular docking studies of imidazole and benzimidazole linked ethionamide derivatives as inhibitors of InhA and antituberculosis agents. Bioorg. Med. Chem. Lett. 2022 60 128604 10.1016/j.bmcl.2022.128604 35123004
    [Google Scholar]
  197. Sirim M.M. Krishna V.S. Sriram D. Unsal Tan O. Novel benzimidazole-acrylonitrile hybrids and their derivatives: Design, synthesis and antimycobacterial activity. Eur. J. Med. Chem. 2020 188 112010 10.1016/j.ejmech.2019.112010 31893548
    [Google Scholar]
  198. Shalini. Viljoen A. Kremer L. Kumar V. Alkylated/] aminated nitroimidazoles and nitroimidazole-7-chloroquinoline conjugates: Synthesis and anti-mycobacterial evaluation. Bioorg. Med. Chem. Lett. 2018 28 8 1309 1312 10.1016/j.bmcl.2018.03.021 29551480
    [Google Scholar]
  199. Desai N.C. Trivedi A.R. Khedkar V.M. Preparation, biological evaluation and molecular docking study of imidazolyl dihydropyrimidines as potential Mycobacterium tuberculosis dihydrofolate reductase inhibitors. Bioorg. Med. Chem. Lett. 2016 26 16 4030 4035 10.1016/j.bmcl.2016.06.082 27397497
    [Google Scholar]
  200. Majewski M.W. Tiwari R. Miller P.A. Cho S. Franzblau S.G. Miller M.J. Design, syntheses, and anti-tuberculosis activities of conjugates of piperazino-1,3-benzothiazin-4-ones (pBTZs) with 2,7-dimethylimidazo [1,2-a]pyridine-3-carboxylic acids and 7-phenylacetyl cephalosporins. Bioorg. Med. Chem. Lett. 2016 26 8 2068 2071 10.1016/j.bmcl.2016.02.076 26951749
    [Google Scholar]
  201. Malasala S. Ahmad M.N. Akunuri R. Shukla M. Kaul G. Dasgupta A. Madhavi Y.V. Chopra S. Nanduri S. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur. J. Med. Chem. 2021 212 112996 10.1016/j.ejmech.2020.112996 33190958
    [Google Scholar]
  202. Kumar Sahoo S. Maddipatla S. Nageswara Rao Gajula S. Naiyaz Ahmad M. Kaul G. Nanduri S. Sonti R. Dasgupta A. Chopra S. Madhavi Yaddanapudi V. Identification of nitrofuranylchalcone tethered benzoxazole-2-amines as potent inhibitors of drug resistant Mycobacterium tuberculosis demonstrating bactericidal efficacy. Bioorg. Med. Chem. 2022 64 116777 10.1016/j.bmc.2022.116777
    [Google Scholar]
  203. Tawari N.R. Bairwa R. Ray M.K. Rajan M.G.R. Degani M.S. Design, synthesis, and biological evaluation of 4-(5-nitrofuran-2-yl)prop-2-en-1-one derivatives as potent antitubercular agents. Bioorg. Med. Chem. Lett. 2010 20 21 6175 6178 10.1016/j.bmcl.2010.08.127 20850299
    [Google Scholar]
  204. Kantevari S. Yempala T. Yogeeswari P. Sriram D. Sridhar B. Synthesis and antitubercular evaluation of amidoalkyl dibenzofuranols and 1H-benzo[2,3]benzofuro[4,5-e][1,3]oxazin-3(2H)-ones. Bioorg. Med. Chem. Lett. 2011 21 14 4316 4319 10.1016/j.bmcl.2011.05.054 21665469
    [Google Scholar]
  205. Yempala T. Sridevi J.P. Yogeeswari P. Sriram D. Kantevari S. Design, synthesis and antitubercular evaluation of novel 2-substituted-3H-benzofuro benzofurans via palladium-copper catalysed Sonagashira coupling reaction. Bioorg. Med. Chem. Lett. 2013 23 19 5393 5396 10.1016/j.bmcl.2013.07.048 23953191
    [Google Scholar]
  206. Yempala T. Sriram D. Yogeeswari P. Kantevari S. Molecular hybridization of bioactives: Synthesis and antitubercular evaluation of novel dibenzofuran embodied homoisoflavonoids via Baylis-Hillman reaction. Bioorg. Med. Chem. Lett. 2012 22 24 7426 7430 10.1016/j.bmcl.2012.10.056 23151429
    [Google Scholar]
  207. Gao F. Wang T. Gao M. Zhang X. Liu Z. Zhao S. Lv Z. Xiao J. Benzofuran-isatin-imine hybrids tethered via different length alkyl linkers: Design, synthesis and in vitro evaluation of anti-tubercular and anti-bacterial activities as well as cytotoxicity. Eur. J. Med. Chem. 2019 165 323 331 10.1016/j.ejmech.2019.01.042 30690301
    [Google Scholar]
  208. Surineni G. Yogeeswari P. Sriram D. Kantevari S. Design and synthesis of novel carbazole tethered pyrrole derivatives as potent inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 2015 25 3 485 491 10.1016/j.bmcl.2014.12.040 25559743
    [Google Scholar]
  209. Shaikh M.S. Kanhed A.M. Chandrasekaran B. Palkar M.B. Agrawal N. Lherbet C. Hampannavar G.A. Karpoormath R. Discovery of novel N-methyl carbazole tethered rhodanine derivatives as direct inhibitors of Mycobacterium tuberculosis InhA. Bioorg. Med. Chem. Lett. 2019 29 16 2338 2344 10.1016/j.bmcl.2019.06.015 31227345
    [Google Scholar]
  210. De S.S. Khambete M.P. Degani M.S. Oxadiazole scaffolds in anti-tuberculosis drug discovery. Bioorg. Med. Chem. Lett. 2019 29 16 1999 2007 10.1016/j.bmcl.2019.06.054 31296357
    [Google Scholar]
  211. Verma S.K. Verma R. Verma S. Vaishnav Y. Tiwari S.P. Rakesh K.P. Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review. Eur. J. Med. Chem. 2021 209 112886 10.1016/j.ejmech.2020.112886 33032083
    [Google Scholar]
  212. Ranjith Kumar R. Perumal S. Menéndez J.C. Yogeeswari P. Sriram D. Antimycobacterial activity of novel 1,2,4-oxadiazole-pyranopyridine/chromene hybrids generated by chemoselective 1,3-dipolar cycloadditions of nitrile oxides. Bioorg. Med. Chem. 2011 19 11 3444 3450 10.1016/j.bmc.2011.04.033 21592801
    [Google Scholar]
  213. Shruthi T.G. Eswaran S. Shivarudraiah P. Narayanan S. Subramanian S. Synthesis, antituberculosis studies and biological evaluation of new quinoline derivatives carrying 1,2,4-oxadiazole moiety. Bioorg. Med. Chem. Lett. 2019 29 1 97 102 10.1016/j.bmcl.2018.11.002 30448235
    [Google Scholar]
  214. Wang A. Xu S. Chai Y. Xia G. Wang B. Lv K. Wang D. Qin X. Jiang B. Wu W. Liu M. Lu Y. Design, synthesis and biological evaluation of nitrofuran-1,3,4-oxadiazole hybrids as new antitubercular agents. Bioorg. Med. Chem. 2022 53 116529 10.1016/j.bmc.2021.116529 34861474
    [Google Scholar]
  215. Dhumal S.T. Deshmukh A.R. Bhosle M.R. Khedkar V.M. Nawale L.U. Sarkar D. Mane R.A. Synthesis and antitubercular activity of new 1,3,4-oxadiazoles bearing pyridyl and thiazolyl scaffolds. Bioorg. Med. Chem. Lett. 2016 26 15 3646 3651 10.1016/j.bmcl.2016.05.093 27301367
    [Google Scholar]
  216. Martinez-Grau M.A. Valcarcel I.C.G. Early J.V. Gessner R.K. de Melo C.S. de la Nava E.M.M. Korkegian A. Ovechkina Y. Flint L. Gravelle A. Cramer J.W. Desai P.V. Street L.J. Odingo J. Masquelin T. Chibale K. Parish T. Synthesis and biological evaluation of aryl-oxadiazoles as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 2018 28 10 1758 1764 10.1016/j.bmcl.2018.04.028 29680666
    [Google Scholar]
  217. Ningegowda R. Chandrashekharappa S. Singh V. Mohanlall V. Venugopala K.N. Design, synthesis and characterization of novel 2-(2, 3-dichlorophenyl)-5-aryl-1,3,4-oxadiazole derivatives for their anti-tubercular activity against Mycobacterium tuberculosis. Chemical Data Collections 2020 28 100431 10.1016/j.cdc.2020.100431
    [Google Scholar]
  218. Li D. Gao N. Zhu N. Lin Y. Li Y. Chen M. You X. Lu Y. Wan K. Jiang J.D. Jiang W. Si S. Discovery of the disubstituted oxazole analogues as a novel class anti-tuberculotic agents against MDR- and XDR-MTB. Bioorg. Med. Chem. Lett. 2015 25 22 5178 5181 10.1016/j.bmcl.2015.09.072 26459210
    [Google Scholar]
  219. Ramprasad J. Nayak N. Dalimba U. Yogeeswari P. Sriram D. One-pot synthesis of new triazole-Imidazo[2,1-b][1,3,4]thiadiazole hybrids via click chemistry and evaluation of their antitubercular activity. Bioorg. Med. Chem. Lett. 2015 25 19 4169 4173 10.1016/j.bmcl.2015.08.009 26298500
    [Google Scholar]
  220. Anand N. Ramakrishna K.K.G. Gupt M.P. Chaturvedi V. Singh S. Srivastava K.K. Sharma P. Rai N. Ramachandran R. Dwivedi A.K. Gupta V. Kumar B. Pandey S. Shukla P.K. Pandey S.K. Lal J. Tripathi R.P. Identification of 1-[4-benzyloxyphenyl)-but-3-enyl]-1H-azoles as new class of antitubercular and antimicrobial agents. ACS Med. Chem. Lett. 2013 4 10 958 963 10.1021/ml4002248 24900592
    [Google Scholar]
  221. Bhatt J.D. Chudasama C.J. Patel K.D. Pyrazole clubbed triazolo[1,5-a]pyrimidine hybrids as an anti-tubercular agents: Synthesis, in vitro screening and molecular docking study. Bioorg. Med. Chem. 2015 23 24 7711 7716 10.1016/j.bmc.2015.11.018 26631439
    [Google Scholar]
  222. Siddiqui A.B. Trivedi A.R. Kataria V.B. Shah V.H. 4,5-Dihydro-1H-pyrazolo[3,4-d]pyrimidine containing phenothiazines as antitubercular agents. Bioorg. Med. Chem. Lett. 2014 24 6 1493 1495 10.1016/j.bmcl.2014.02.012 24582983
    [Google Scholar]
  223. Takate S.J. Shinde A.D. Karale B.K. Akolkar H. Nawale L. Sarkar D. Mhaske P.C. Thiazolyl-pyrazole derivatives as potential antimycobacterial agents. Bioorg. Med. Chem. Lett. 2019 29 10 1199 1202 10.1016/j.bmcl.2019.03.020 30910461
    [Google Scholar]
  224. Chauhan K. Sharma M. Trivedi P. Chaturvedi V. Chauhan P.M.S. New class of methyl tetrazole based hybrid of (Z)-5-benzylidene-2-(piperazin-1-yl)thiazol-4(%H)-one as potent antitubercular agents. Bioorg. Med. Chem. Lett. 2014 24 17 4166 4170 10.1016/j.bmcl.2014.07.061 25127167
    [Google Scholar]
  225. Henches R. Ozga T. Gao Y. Tu Z. Zhang T. Francis C.L. Synthesis and biological evaluation of 2-(Tetrazol-5-yl)sulfonylacetamides as inhibitors of Mycobacterium tuberculosis and Mycobacterium marinum. Bioorg. Med. Chem. Lett. 2023 92 129391 10.1016/j.bmcl.2023.129391 37369331
    [Google Scholar]
  226. Bharkavi C. Vivek Kumar S. Ashraf Ali M. Osman H. Muthusubramanian S. Perumal S. A facile stereoselective synthesis of dispiro-indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids and evaluation of their antimycobacterial, anticancer and AchE inhibitory activities. Bioorg. Med. Chem. 2016 24 22 5873 5883 10.1016/j.bmc.2016.09.044 27687968
    [Google Scholar]
  227. Maheswari S.U. Balamurugan K. Perumal S. Yogeeswari P. Sriram D. A facile 1,3-dipolar cycloaddition of azomethine ylides to 2-arylidene-1,3-indanediones: Synthesis of dispiro-oxindolylpyrrolothiazoles and their antimycobacterial evaluation. Bioorg. Med. Chem. Lett. 2010 20 24 7278 7282 10.1016/j.bmcl.2010.10.080 21071220
    [Google Scholar]
  228. Mhiri C. Boudriga S. Askri M. Knorr M. Sriram D. Yogeeswari P. Nana F. Golz C. Strohmann C. Design of novel dispirooxindolopyrrolidine and dispirooxindolopyrrolothiazole derivatives as potential antitubercular agents. Bioorg. Med. Chem. Lett. 2015 25 19 4308 4313 10.1016/j.bmcl.2015.07.069 26271585
    [Google Scholar]
  229. Ponnuchamy S. Kanchithalaivan S. Ranjith Kumar R. Ashraf Ali M. Soo Choon T. Antimycobacterial evaluation of novel hybrid arylidene thiazolidine-2,4-diones. Bioorg. Med. Chem. Lett. 2014 24 4 1089 1093 10.1016/j.bmcl.2014.01.007 24472146
    [Google Scholar]
  230. Telvekar V.N. Bairwa V.K. Satardekar K. Bellubi A. Novel 2-(2-(4-aryloxybenzylidene) hydrazinyl) benzothiazole derivatives as anti-tubercular agents. Bioorg. Med. Chem. Lett. 2012 22 1 649 652 10.1016/j.bmcl.2011.10.064 22079026
    [Google Scholar]
  231. Li Z. Bai X. Deng Q. Zhang G. Zhou L. Liu Y. Wang J. Wang Y. Preliminary SAR and biological evaluation of antitubercular triazolothiadiazine derivatives against drug-susceptible and drug-resistant Mtb strains. Bioorg. Med. Chem. 2017 25 1 213 220 10.1016/j.bmc.2016.10.027 27810439
    [Google Scholar]
  232. Kamal A. Hussaini S.M.A. Faazil S. Poornachandra Y. Narender Reddy G. Kumar C.G. Rajput V.S. Rani C. Sharma R. Khan I.A. Jagadeesh Babu N. Anti-tubercular agents. Part 8: Synthesis, antibacterial and antitubercular activity of 5-nitrofuran based 1,2,3-triazoles. Bioorg. Med. Chem. Lett. 2013 23 24 6842 6846 10.1016/j.bmcl.2013.10.010 24206766
    [Google Scholar]
  233. Addla D. Jallapally A. Gurram D. Yogeeswari P. Sriram D. Kantevari S. Rational design, synthesis and antitubercular evaluation of novel 2-(trifluoromethyl) phenothiazine-[1,2,3]triazole hybrids. Bioorg. Med. Chem. Lett. 2014 24 1 233 236 10.1016/j.bmcl.2013.11.031 24314670
    [Google Scholar]
  234. Addla D. Jallapally A. Gurram D. Yogeeswari P. Sriram D. Kantevari S. Design, synthesis and evaluation of 1,2,3-triazole-adamantylacetamide hybrids as potent inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 2014 24 8 1974 1979 10.1016/j.bmcl.2014.02.061 24679703
    [Google Scholar]
  235. Anand A. Kulkarni M.V. Joshi S.D. Dixit S.R. One pot Click chemistry: A three component reaction for the synthesis of 2-mercaptobenzimidazole linked coumarinyl triazoles as anti-tubercular agents. Bioorg. Med. Chem. Lett. 2016 26 19 4709 4713 10.1016/j.bmcl.2016.08.045 27595420
    [Google Scholar]
  236. Marvadi S.K. Krishna V.S. Sinegubova E.O. Volobueva A.S. Esaulkova Y.L. Muryleva A.A. Tentler D.G. Sriram D. Zarubaev V.V. Kantevari S. 5-Chloro-2-thiophenyl-1,2,3-triazolylmethyldihydroquinolines as dual inhibitors of Mycobacterium tuberculosis and influenza virus: Synthesis and evaluation. Bioorg. Med. Chem. Lett. 2019 29 18 2664 2669 10.1016/j.bmcl.2019.07.040 31375291
    [Google Scholar]
  237. Sajja Y. Vanguru S. Vulupala H.R. Bantu R. Yogeswari P. Sriram D. Nagarapu L. Design, synthesis and in vitro anti-tuberculosis activity of benzo[6,7]] cyclohepta[1,2-b]pyridine-1,2,3-triazole derivatives. Bioorg. Med. Chem. Lett. 2017 27 23 5119 5121 10.1016/j.bmcl.2017.10.071 29113761
    [Google Scholar]
  238. Emmadi N.R. Bingi C. Kotapalli S.S. Ummanni R. Nanubolu J.B. Atmakur K. Synthesis and evaluation of novel fluorinated pyrazolo-1,2,3-triazole hybrids as antimycobacterial agents. Bioorg. Med. Chem. Lett. 2015 25 2918 2922 10.1016/j.bmcl.2015.05.044
    [Google Scholar]
  239. Devi Bala B. Muthusaravanan S. Choon T.S. Ashraf Ali M. Perumal S. Sequential synthesis of amino-1,4-naphthoquinone-appended triazoles and triazole-chromene hybrids and their antimycobacterial evaluation. Eur. J. Med. Chem. 2014 85 737 746 10.1016/j.ejmech.2014.08.009 25129868
    [Google Scholar]
  240. Shiva Raju K. AnkiReddy S. Sabitha G. Siva Krishna V. Sriram D. Bharathi Reddy K. Rao Sagurthi S. Synthesis and biological evaluation of 1H-pyrrolo[2,3-d]pyrimidine-1,2,3-triazole derivatives as novel anti-tubercular agents. Bioorg. Med. Chem. Lett. 2019 29 2 284 290 10.1016/j.bmcl.2018.11.036 30497913
    [Google Scholar]
  241. Pogaku V. Krishna V.S. Sriram D. Rangan K. Basavoju S. Ultrasonication-ionic liquid synergy for the synthesis of new potent anti-tuberculosis 1,2,4-triazol-1-yl-pyrazole based spirooxindolopyrrolizidines. Bioorg. Med. Chem. Lett. 2019 29 13 1682 1687 10.1016/j.bmcl.2019.04.026 31047752
    [Google Scholar]
  242. Ramprasad J. Kumar Sthalam V. Linga Murthy Thampunuri R. Bhukya S. Ummanni R. Balasubramanian S. Pabbaraja S. Synthesis and evaluation of a novel quinoline-triazole analogs for antitubercular properties via molecular hybridization approach. Bioorg. Med. Chem. Lett. 2019 29 20 126671 10.1016/j.bmcl.2019.126671 31526604
    [Google Scholar]
  243. Phatak P.S. Bakale R.D. Kulkarni R.S. Dhumal S.T. Dixit P.P. Krishna V.S. Sriram D. Khedkar V.M. Haval K.P. Design and synthesis of new indanol-1,2,3-triazole derivatives as potent antitubercular and antimicrobial agents. Bioorg. Med. Chem. Lett. 2020 30 22 127579 10.1016/j.bmcl.2020.127579 32987135
    [Google Scholar]
  244. Melo de Oliveira V.N. Flávia do Amaral Moura C. Peixoto A.S. Gonçalves Ferreira V.P. Araújo H.M. Lapa Montenegro Pimentel L.M. Pessoa C.Ó. Nicolete R. Versiani dos Anjos J. Sharma P.P. Rathi B. Pena L.J. Rollin P. Tatibouët A. Nascimento de Oliveira R. Synthesis of alkynylated 1,2,4-oxadiazole/1,2,3-1H-triazole glycoconjugates: Discovering new compounds for use in chemotherapy against lung carcinoma and Mycobacterium tuberculosis. Eur. J. Med. Chem. 2021 220 113472 10.1016/j.ejmech.2021.113472
    [Google Scholar]
  245. Marvadi S.K. Krishna V.S. Sriram D. Kantevari S. Synthesis and evaluation of novel substituted 1,2,3-triazolyldihydroquinolines as promising antitubercular agents. Bioorg. Med. Chem. Lett. 2019 29 4 529 533 10.1016/j.bmcl.2019.01.004 30638877
    [Google Scholar]
  246. Reddyrajula R. Dalimba U. The bioisosteric modification of pyrazinamide derivatives led to potent antitubercular agents: Synthesis via click approach and molecular docking of pyrazine-1,2,3-triazoles. Bioorg. Med. Chem. Lett. 2020 30 2 126846 10.1016/j.bmcl.2019.126846 31839540
    [Google Scholar]
  247. Xu Z. Zhang S. Song X. Qiang M. Lv Z. Design, synthesis and in vitro anti-mycobacterial evaluation of gatifloxacin-1H-1,2,3-triazole-isatin hybrids. Bioorg. Med. Chem. Lett. 2017 27 16 3643 3646 10.1016/j.bmcl.2017.07.023 28720502
    [Google Scholar]
  248. Zhou F.W. Lei H.S. Fan L. Jiang L. Liu J. Peng X.M. Xu X.R. Chen L. Zhou C.H. Zou Y.Y. Liu C.P. He Z.Q. Yang D.C. Design, synthesis, and biological evaluation of dihydroartemisinin-fluoroquinolone conjugates as a novel type of potential antitubercular agents. Bioorg. Med. Chem. Lett. 2014 24 8 1912 1917 10.1016/j.bmcl.2014.03.010 24684842
    [Google Scholar]
  249. Yan X. Lv Z. Wen J. Zhao S. Xu Z. Synthesis and in vitro evaluation of novel substituted isatin-propylene-1H-1,2,3-triazole-4-methylene-moxifloxacin hybrids for their anti-mycobacterial activities. Eur. J. Med. Chem. 2018 143 899 904 10.1016/j.ejmech.2017.11.090 29227930
    [Google Scholar]
  250. Chebaiki M. Delfourne E. Tamhaev R. Danoun S. Rodriguez F. Hoffmann P. Grosjean E. Goncalves F. Azéma-Despeyroux J. Pál A. Korduláková J. Preuilh N. Britton S. Constant P. Marrakchi H. Maveyraud L. Mourey L. Lherbet C. Discovery of new diaryl ether inhibitors against Mycobacterium tuberculosis targeting the minor portal of InhA. Eur. J. Med. Chem. 2023 259 115646 10.1016/j.ejmech.2023.115646 37482022
    [Google Scholar]
  251. Tiwari R. Möllmann U. Cho S. Franzblau S.G. Miller P.A. Miller M.J. Design and syntheses of anti-tuberculosis agents inspired by BTZ043 using a scaffold simplification strategy. ACS Med. Chem. Lett. 2014 5 5 587 591 10.1021/ml500039g 24900885
    [Google Scholar]
  252. Kamal A. Hari Babu A. Venkata Ramana A. Sinha R. Yadav J.S. Arora S.K. Antitubercular agents. Part 1: Synthesis of phthalimido- and naphthalimido-linked phenazines as new prototype antitubercular agents. Bioorg. Med. Chem. Lett. 2005 15 7 1923 1926 10.1016/j.bmcl.2005.01.085 15780634
    [Google Scholar]
  253. Medapi B. Renuka J. Saxena S. Sridevi J.P. Medishetti R. Kulkarni P. Yogeeswari P. Sriram D. Design and synthesis of novel quinoline-aminopiperidine hybrid analogues as Mycobacterium tuberculosis DNA gyraseB inhibitors. Bioorg. Med. Chem. 2015 23 9 2062 2078 10.1016/j.bmc.2015.03.004 25801151
    [Google Scholar]
  254. Medapi B. Meda N. Kulkarni P. Yogeeswari P. Sriram D. Development of acridine derivatives as selective Mycobacterium tuberculosis DNA gyrase inhibitors. Bioorg. Med. Chem. 2016 24 4 877 885 10.1016/j.bmc.2016.01.011 26787274
    [Google Scholar]
  255. Sriram D. Yogeeswari P. Gopal G. Synthesis, anti-HIV and antitubercular activities of lamivudine prodrugs. Eur. J. Med. Chem. 2005 40 12 1373 1376 10.1016/j.ejmech.2005.07.006 16129516
    [Google Scholar]
  256. Himaja M. Simh M.V. Munirajasekhar D. Asif K. Mahima M. Synthesis and evaluation of antitubercular activity of some lamivudine-based hybrid drugs. IJRAP 2012 3 315 317
    [Google Scholar]
  257. Singh N. Pandey S.K. Anand N. Dwivedi R. Singh S. Sinha S.K. Chaturvedi V. Jaiswal N. Srivastava A.K. Shah P. Siddiqui M.I. Tripathi R.P. Synthesis, molecular modeling and bio-evaluation of cycloalkyl fused 2-aminopyrimidines as antitubercular and antidiabetic agents. Bioorg. Med. Chem. Lett. 2011 21 15 4404 4408 10.1016/j.bmcl.2011.06.040 21737274
    [Google Scholar]
  258. Erkin A.V. Serebryakov E.B. Krutikov V.I. 2-[(2-Amino-6-methylpyrimidin-4-yl)sulfanyl]-N-arylacetamides: Discovery of a new class of anti-tubercular agents and prospects for their further structural modification. Bioorg. Med. Chem. Lett. 2023 83 129189 10.1016/j.bmcl.2023.129189 36805047
    [Google Scholar]
  259. Limaye R.A. Kumbhar V.B. Natu A.D. Paradkar M.V. Honmore V.S. Chauhan R.R. Gample S.P. Sarkar D. One pot solvent free synthesis and in vitro antitubercular screening of 3-Aracylphthalides against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 2013 23 3 711 714 10.1016/j.bmcl.2012.11.097 23265877
    [Google Scholar]
  260. Ahmad I. Thakur J.P. Chanda D. Saikia D. Khan F. Dixit S. Kumar A. Konwar R. Negi A.S. Gupta A. Syntheses of lipophilic chalcones and their conformationally restricted analogues as antitubercular agents. Bioorg. Med. Chem. Lett. 2013 23 5 1322 1325 10.1016/j.bmcl.2012.12.096 23369537
    [Google Scholar]
  261. Slavchev I. Dobrikov G.M. Valcheva V. Ugrinova I. Pasheva E. Dimitrov V. Antimycobacterial activity generated by the amide coupling of (−)-fenchone derived aminoalcohol with cinnamic acids and analogues. Bioorg. Med. Chem. Lett. 2014 24 21 5030 5033 10.1016/j.bmcl.2014.09.021 25248685
    [Google Scholar]
  262. Chitre T.S. Asgaonkar K.D. Miniyar P.B. Dharme A.B. Arkile M.A. Yeware A. Sarkar D. Khedkar V.M. Jha P.C. Synthesis and docking studies of pyrazine-thiazolidinone hybrid scaffold targeting dormant tuberculosis. Bioorg. Med. Chem. Lett. 2016 26 9 2224 2228 10.1016/j.bmcl.2016.03.055 27017114
    [Google Scholar]
  263. Wang T. Tang Y. Yang Y. An Q. Sang Z. Yang T. Liu P. Zhang T. Deng Y. Luo Y. Discovery of novel anti-tuberculosis agents with pyrrolo[1,2-a]quinoxaline-based scaffold. Bioorg. Med. Chem. Lett. 2018 28 11 2084 2090 10.1016/j.bmcl.2018.04.043 29748048
    [Google Scholar]
  264. Farrell K.D. Gao Y. Hughes D.A. Henches R. Tu Z. Perkins M.V. Zhang T. Francis C.L. 3-Methoxy-2-phenylimidazo[1,2-b]pyridazines highly active against Mycobacterium tuberculosis and Mycobacterium marinum. Eur. J. Med. Chem. 2023 259 115637 10.1016/j.ejmech.2023.115637 37524009
    [Google Scholar]
  265. Mutai P. Pavadai E. Wiid I. Ngwane A. Baker B. Chibale K. Synthesis, antimycobacterial evaluation and pharmacophore modeling of analogues of the natural product formononetin. Bioorg. Med. Chem. Lett. 2015 25 12 2510 2513 10.1016/j.bmcl.2015.04.064 25977095
    [Google Scholar]
  266. Bairwa R. Kakwani M. Tawari N.R. Lalchandani J. Ray M.K. Rajan M.G.R. Degani M.S. Novel molecular hybrids of cinnamic acids and guanylhydrazones as potential antitubercular agents. Bioorg. Med. Chem. Lett. 2010 20 5 1623 1625 10.1016/j.bmcl.2010.01.031 20138519
    [Google Scholar]
  267. Jallapally A. Addla D. Yogeeswari P. Sriram D. Kantevari S. 2-Butyl-4-chloroimidazole based substituted piperazine-thiosemicarbazone hybrids as potent inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 2014 24 23 5520 5524 10.1016/j.bmcl.2014.09.084 25451998
    [Google Scholar]
  268. Walsh J. Bell A. Hybrid drugs for malaria. Curr. Pharm. Des. 2009 15 25 2970 2985 10.2174/138161209789058183 19754373
    [Google Scholar]
  269. Muregi F.W. Ishih A. Next‐generation antimalarial drugs: Hybrid molecules as a new strategy in drug design. Drug Dev. Res. 2010 71 1 20 32 10.1002/ddr.20345 21399701
    [Google Scholar]
  270. Alven S. Aderibigbe B. Combination therapy strategies for the treatment of malaria. Molecules 2019 24 19 3601 3627 10.3390/molecules24193601 31591293
    [Google Scholar]
  271. Peter S. Aderibigbe B.A. Ferrocene-based compounds with antimalaria/anticancer activity. Molecules 2019 24 19 3604 10.3390/molecules24193604 31591298
    [Google Scholar]
  272. Xiao J. Sun Z. Kong F. Gao F. Current scenario of ferrocene-containing hybrids for antimalarial activity. Eur. J. Med. Chem. 2020 185 111791 10.1016/j.ejmech.2019.111791 31669852
    [Google Scholar]
  273. Kouznetsov V.V. Gómez-Barrio A. Recent developments in the design and synthesis of hybrid molecules basedon aminoquinoline ring and their antiplasmodial evaluation. Eur. J. Med. Chem. 2009 44 8 3091 3113 10.1016/j.ejmech.2009.02.024 19361896
    [Google Scholar]
  274. Vandekerckhove S. D’hooghe M. Quinoline-based antimalarial hybrid compounds. Bioorg. Med. Chem. 2015 23 16 5098 5119 10.1016/j.bmc.2014.12.018 25593097
    [Google Scholar]
  275. Agarwal D. Gupta R.D. Awasthi S.K. Antimalarial hybrid molecules: A close reality or a distant dream? Antimicrob. Agents Chemother. 2017 61 5 e00249 e17 10.1128/AAC.00249‑17 28289029
    [Google Scholar]
  276. Sharma B. Singh P. Singh A.K. Awasthi S.K. Advancement of chimeric hybrid drugs to cure malaria infection: An overview with special emphasis on endoperoxide pharmacophores. Eur. J. Med. Chem. 2021 219 113408 10.1016/j.ejmech.2021.113408 33989911
    [Google Scholar]
  277. Patel O.P.S. Beteck R.M. Legoabe L.J. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research. Eur. J. Med. Chem. 2021 213 113193 10.1016/j.ejmech.2021.113193 33508479
    [Google Scholar]
  278. Meunier B. Chapter 21 Towards antimalarial hybrid drugs. Pharmacology in Drug Discovery. Peters J-U. Hoboken, New Jersey 2012 423 439 10.1002/9781118098141.ch21
    [Google Scholar]
  279. Oliveira R. Miranda D. Magalhães J. Capela R. Perry M.J. O’Neill P.M. Moreira R. Lopes F. From hybrid compounds to targeted drug delivery in antimalarial therapy. Bioorg. Med. Chem. 2015 23 16 5120 5130 10.1016/j.bmc.2015.04.017 25913864
    [Google Scholar]
  280. Qin H.L. Zhang Z.W. Lekkala R. Alsulami H. Rakesh K.P. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur. J. Med. Chem. 2020 193 112215 10.1016/j.ejmech.2020.112215 32179331
    [Google Scholar]
  281. Rathod G.K. Jain M. Sharma K.K. Das S. Basak A. Jain R. New structural classes of antimalarials. Eur. J. Med. Chem. 2022 242 114653 10.1016/j.ejmech.2022.114653 35985254
    [Google Scholar]
  282. Madhav H. Hoda N. An insight into the recent development of the clinical candidates for the treatment of malaria and their target proteins. Eur. J. Med. Chem. 2021 210 112955 10.1016/j.ejmech.2020.112955
    [Google Scholar]
  283. Tibon N.S. Ng C.H. Cheong S.L. Current progress in antimalarial pharmacotherapy and multi-target drug discovery. Eur. J. Med. Chem. 2020 188 111983 10.1016/j.ejmech.2019.111983 31911292
    [Google Scholar]
  284. Hu Y.Q. Gao C. Zhang S. Xu L. Xu Z. Feng L.S. Wu X. Zhao F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem. 2017 139 22 47 10.1016/j.ejmech.2017.07.061 28800458
    [Google Scholar]
  285. Van de Walle T. Cools L. Mangelinckx S. D’hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur. J. Med. Chem. 2021 226 113865 10.1016/j.ejmech.2021.113865 34655985
    [Google Scholar]
  286. Chauhan M. Saxena A. Saha B. An insight in anti-malarial potential of indole scaffold: A review. Eur. J. Med. Chem. 2021 218 113400 10.1016/j.ejmech.2021.113400 33823394
    [Google Scholar]
  287. Kamboj A. Sihag B. Brar D.S. Kaur A. Salunke D.B. Structure activity relationship in β-carboline derived anti-malarial agents. Eur. J. Med. Chem. 2021 221 113536 10.1016/j.ejmech.2021.113536 34058709
    [Google Scholar]
  288. Yang J. Wang Y. Guan W. Su W. Li G. Zhang S. Yao H. Spiral molecules with antimalarial activities: A review. Eur. J. Med. Chem. 2022 237 114361 10.1016/j.ejmech.2022.114361 35461019
    [Google Scholar]
  289. Patra J. Rana D. Arora S. Pal M. Mahindroo N. Falcipains: Biochemistry, target validation and structure-activity relationship studies of inhibitors as antimalarials. Eur. J. Med. Chem. 2023 252 115299 10.1016/j.ejmech.2023.115299 36996716
    [Google Scholar]
  290. Umumararungu T. Nkuranga J.B. Habarurema G. Nyandwi J.B. Mukazayire M.J. Mukiza J. Muganga R. Hahirwa I. Mpenda M. Katembezi A.N. Olawode E.O. Kayitare E. Kayumba P.C. Recent developments in antimalarial drug discovery. Bioorg. Med. Chem. 2023 88-89 117339 10.1016/j.bmc.2023.117339 37236020
    [Google Scholar]
  291. Cheuka P.M. Njaria P. Mayoka G. Funjika E. Emerging drug targets for antimalarial drug discovery: Validation and insights into molecular mechanisms of function. J. Med. Chem. 2024 67 2 838 863 10.1021/acs.jmedchem.3c01828 38198596
    [Google Scholar]
  292. Lödige M. Hiersch L. Design and synthesis of novel hybrid molecules against malaria. Int. J. Med. Chem. 2015 2015 1 23 10.1155/2015/458319 25734014
    [Google Scholar]
  293. Sashidhara K.V. Avula S.R. Palnati G.R. Singh S.V. Srivastava K. Puri S.K. Saxena J.K. Synthesis and in vitro evaluation of new chloroquine-chalcone hybrids against chloroquine-resistant strain of Plasmodium falciparum. Bioorg. Med. Chem. Lett. 2012 22 17 5455 5459 10.1016/j.bmcl.2012.07.028 22850213
    [Google Scholar]
  294. Burgess S.J. Selzer A. Kelly J.X. Smilkstein M.J. Riscoe M.K. Peyton D.H. A chloroquine-like molecule designed to reverse resistance in Plasmodium falciparum. J. Med. Chem. 2006 49 18 5623 5625 10.1021/jm060399n 16942036
    [Google Scholar]
  295. Lödige M. Lewis M.D. Paulsen E.S. Esch H.L. Pradel G. Lehmann L. Brun R. Bringmann G. Mueller A.K. A primaquine-chloroquine hybrid with dual activity against Plasmodium liver and blood stages. Int. J. Med. Microbiol. 2013 303 8 539 547 10.1016/j.ijmm.2013.07.005 23992634
    [Google Scholar]
  296. Tremblay T. Bergeron C. Gagnon D. Bérubé C. Voyer N. Richard D. Giguère D. Squaramide tethered clindamycin, chloroquine, and mortiamide hybrids: Design, synthesis, and antimalarial activity. ACS Med. Chem. Lett. 2023 14 2 217 222 10.1021/acsmedchemlett.2c00531 36793432
    [Google Scholar]
  297. Pretorius S.I. Breytenbach W.J. de Kock C. Smith P.J. N’Da D.D. Synthesis, characterization and antimalarial activity of quinoline-pyrimidine hybrids. Bioorg. Med. Chem. 2013 21 1 269 277 10.1016/j.bmc.2012.10.019 23168082
    [Google Scholar]
  298. Chowdhary S. Mosnier J. Fonta I. Synthesis, antiplasmodial activities, and mechanistic insights of 4-aminoquinoline-triazolopyrimidine hybrids. ACS Med. Chem. Lett. 2022 13 1068 1076 10.1021/acsmedchemlett.2c00078 35859870
    [Google Scholar]
  299. Soares R.R. da Silva J.M.F. Carlos B.C. da Fonseca C.C. de Souza L.S.A. Lopes F.V. de Paula Dias R.M. Moreira P.O.L. Abramo C. Viana G.H.R. de Pila Varotti F. da Silva A.D. Scopel K.K.G. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg. Med. Chem. Lett. 2015 25 11 2308 2313 10.1016/j.bmcl.2015.04.014 25920564
    [Google Scholar]
  300. Raj R. Gut J. Rosenthal P.J. Kumar V. 1H-1,2,3-Triazole-tethered isatin-7-chloroquinoline and 3-hydroxy-indole-7-chloroquinoline conjugates: Synthesis and antimalarial evaluation. Bioorg. Med. Chem. Lett. 2014 24 3 756 759 10.1016/j.bmcl.2013.12.109 24424135
    [Google Scholar]
  301. Poje G. Pessanha de Carvalho L. Held J. Moita D. Prudêncio M. Perković I. Tandarić T. Vianello R. Rajić Z. Design and synthesis of harmiquins, harmine and chloroquine hybrids as potent antiplasmodial agents. Eur. J. Med. Chem. 2022 238 114408 10.1016/j.ejmech.2022.114408 35551033
    [Google Scholar]
  302. Marinović M. Poje G. Perković I. Fontinha D. Prudêncio M. Held J. Pessanha de Carvalho L. Tandarić T. Vianello R. Rajić Z. Further investigation of harmicines as novel antiplasmodial agents: Synthesis, structure-activity relationship and insight into the mechanism of action. Eur. J. Med. Chem. 2021 224 113687 10.1016/j.ejmech.2021.113687 34274829
    [Google Scholar]
  303. Marinović M. Rimac H. de Carvalho L.P. Rôla C. Santana S. Pavić K. Held J. Prudêncio M. Rajić Z. Design, synthesis and antiplasmodial evaluation of new amide-, carbamate-, and ureido-type harmicines. Bioorg. Med. Chem. 2023 94 117468 10.1016/j.bmc.2023.117468 37696205
    [Google Scholar]
  304. Perković I. Raić-Malić S. Fontinha D. Prudêncio M. Pessanha de Carvalho L. Held J. Tandarić T. Vianello R. Zorc B. Rajić Z. Harmicines − harmine and cinnamic acid hybrids as novel antiplasmodial hits. Eur. J. Med. Chem. 2020 187 111927 10.1016/j.ejmech.2019.111927 31812035
    [Google Scholar]
  305. Kushwaha P. Kumar V. Saha B. Current development of β-carboline derived potential antimalarial scaffolds. Eur. J. Med. Chem. 2023 252 115247 10.1016/j.ejmech.2023.115247 36931118
    [Google Scholar]
  306. Bonilla-Ramirez L. Rios A. Quiliano M. Ramirez-Calderon G. Beltrán-Hortelano I. Franetich J.F. Corcuera L. Bordessoulles M. Vettorazzi A. López de Cerain A. Aldana I. Mazier D. Pabón A. Galiano S. Novel antimalarial chloroquine- and primaquine-quinoxaline 1,4-di-N-oxide hybrids: Design, synthesis, Plasmodium life cycle stage profile, and preliminary toxicity studies. Eur. J. Med. Chem. 2018 158 68 81 10.1016/j.ejmech.2018.08.063 30199706
    [Google Scholar]
  307. Kayamba F. Malimabe T. Ademola I.K. Pooe O.J. Kushwaha N.D. Mahlalela M. van Zyl R.L. Gordon M. Mudau P.T. Zininga T. Shonhai A. Nyamori V.O. Karpoormath R. Design and synthesis of quinoline-pyrimidine inspired hybrids as potential plasmodial inhibitors. Eur. J. Med. Chem. 2021 217 113330 10.1016/j.ejmech.2021.113330 33744688
    [Google Scholar]
  308. Tripathi M. Taylor D. Khan S.I. Tekwani B.L. Ponnan P. Das U.S. Velpandian T. Rawat D.S. Hybridization of fluoro-amodiaquine (FAQ) with pyrimidines: Synthesis and antimalarial efficacy of FAQ−pyrimidines. ACS Med. Chem. Lett. 2019 10 5 714 719 10.1021/acsmedchemlett.8b00496 31097988
    [Google Scholar]
  309. Maurya S.S. Khan S.I. Bahuguna A. Kumar D. Rawat D.S. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids. Eur. J. Med. Chem. 2017 129 175 185 10.1016/j.ejmech.2017.02.024 28222317
    [Google Scholar]
  310. Kholiya R. Khan S.I. Bahuguna A. Tripathi M. Rawat D.S. N-Piperonyl substitution on aminoquinoline-pyrimidine hybrids: Effect on the antiplasmodial potency. Eur. J. Med. Chem. 2017 131 126 140 10.1016/j.ejmech.2017.03.007 28315598
    [Google Scholar]
  311. Maurya S.S. Bahuguna A. Khan S.I. Kumar D. Kholiya R. Rawat D.S. N-Substituted aminoquinoline-pyrimidine hybrids: Synthesis, in vitro antimalarial activity evaluation and docking studies. Eur. J. Med. Chem. 2019 162 277 289 10.1016/j.ejmech.2018.11.021 30448417
    [Google Scholar]
  312. Singh K. Kaur H. Chibale K. Balzarini J. Synthesis of 4-aminoquinoline-pyrimidine hybrids as potent antimalarials and their mode of action studies. Eur. J. Med. Chem. 2013 66 314 323 10.1016/j.ejmech.2013.05.046 23811093
    [Google Scholar]
  313. Chopra R. Chibale K. Singh K. Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial activity. Eur. J. Med. Chem. 2018 148 39 53 10.1016/j.ejmech.2018.02.021 29454189
    [Google Scholar]
  314. Kaur H. Machado M. de Kock C. Smith P. Chibale K. Prudêncio M. Singh K. Primaquine-pyrimidine hybrids: Synthesis and dual-stage antiplasmodial activity. Eur. J. Med. Chem. 2015 101 266 273 10.1016/j.ejmech.2015.06.045 26142491
    [Google Scholar]
  315. Kaur H. Balzarini J. de Kock C. Smith P.J. Chibale K. Singh K. Synthesis, antiplasmodial activity and mechanistic studies of pyrimidine-5-carbonitrile and quinoline hybrids. Eur. J. Med. Chem. 2015 101 52 62 10.1016/j.ejmech.2015.06.024 26114811
    [Google Scholar]
  316. Claudia B. Sorger D. Deuther-Conrad W. Scheunemann M. New systematically modified vesamicol analogs and their affinity and selectivity for the vesicular acetylcholine transporter - A critical examination of the lead structure. Eur. J. Med. Chem. 2015 100 52 67 10.1016/j.ejmech.2015.05.033 26071858
    [Google Scholar]
  317. Kannan M. Raichurkar A.V. Khan F.R.N. Iyer P.S. Synthesis and in vitro evaluation of novel 8-aminoquinoline-pyrazolopyrimidine hybrids as potent antimalarial agents. Bioorg. Med. Chem. Lett. 2015 25 5 1100 1103 10.1016/j.bmcl.2015.01.003 25650255
    [Google Scholar]
  318. Manohar S. Khan S.I. Rawat D.S. Synthesis, antimalarial activity and cytotoxicity of 4-aminoquinoline-triazine conjugates. Bioorg. Med. Chem. Lett. 2010 20 1 322 325 10.1016/j.bmcl.2009.10.106 19910192
    [Google Scholar]
  319. Kumar A. Srivastava K. Raja Kumar S. Siddiqi M.I. Puri S.K. Sexana J.K. Chauhan P.M.S. 4-Anilinoquinoline triazines: A novel class of hybrid antimalarial agents. Eur. J. Med. Chem. 2011 46 2 676 690 10.1016/j.ejmech.2010.12.003 21194812
    [Google Scholar]
  320. Kumar A. Srivastava K. Raja Kumar S. Puri S.K. Chauhan P.M.S. Synthesis and bioevaluation of hybrid 4-aminoquinoline triazines as a new class of antimalarial agents. Bioorg. Med. Chem. Lett. 2008 18 24 6530 6533 10.1016/j.bmcl.2008.10.049 18951791
    [Google Scholar]
  321. Kumar A. Srivastava K. Raja Kumar S. Puri S.K. Chauhan P.M.S. Synthesis of new 4-aminoquinolines and quinoline-acridine hybrids as antimalarial agents. Bioorg. Med. Chem. Lett. 2010 20 23 7059 7063 10.1016/j.bmcl.2010.09.107 20951034
    [Google Scholar]
  322. Sunduru N. Sharma M. Srivastava K. Rajakumar S. Puri S.K. Saxena J.K. Chauhan P.M.S. Synthesis of oxalamide and triazine derivatives as a novel class of hybrid 4-aminoquinoline with potent antiplasmodial activity. Bioorg. Med. Chem. 2009 17 17 6451 6462 10.1016/j.bmc.2009.05.075 19665899
    [Google Scholar]
  323. Kumar A. Srivastava K. Raja Kumar S. Puri S.K. Chauhan P.M.S. Synthesis of 9-anilinoacridine triazines as new class of hybrid antimalarial agents. Bioorg. Med. Chem. Lett. 2009 19 24 6996 6999 10.1016/j.bmcl.2009.10.010 19879137
    [Google Scholar]
  324. Fonte M. Fontinha D. Moita D. Caño-Prades O. Avalos-Padilla Y. Fernàndez-Busquets X. Prudêncio M. Gomes P. Teixeira C. New 4-(N-cinnamoylbutyl)amino-] acridines as potential multi-stage antiplasmodial leads. Eur. J. Med. Chem. 2023 258 115575 10.1016/j.ejmech.2023.115575 37390511
    [Google Scholar]
  325. Yvette O.M. Malan S.F. Taylor D. Kapp E. Joubert J. Adamantane amine-linked chloroquinoline derivatives as chloroquine resistance modulating agents in Plasmodium falciparum. Bioorg. Med. Chem. Lett. 2018 28 8 1287 1291 10.1016/j.bmcl.2018.03.026 29559277
    [Google Scholar]
  326. Gordey E.E. Yadav P.N. Merrin M.P. Davies J. Ward S.A. Woodman G.M.J. Sadowy A.L. Smith T.G. Gossage R.A. Synthesis and biological activities of 4-N-(anilinyl-n-[oxazolyl])-7-chloroquinolines (n=3′ or 4′) against Plasmodium falciparum in in vitro models. Bioorg. Med. Chem. Lett. 2011 21 15 4512 4515 10.1016/j.bmcl.2011.05.131 21723121
    [Google Scholar]
  327. Andayi W.A. Egan T.J. Chibale K. Kojic acid derived hydroxypyridinone-chloroquine hybrids: Synthesis, crystal structure, antiplasmodial activity and β-haematin inhibition. Bioorg. Med. Chem. Lett. 2014 24 15 3263 3267 10.1016/j.bmcl.2014.06.012 24974345
    [Google Scholar]
  328. Andayi W.A. Egan T.J. Gut J. Rosenthal P.J. Chibale K. Synthesis, antiplasmodial activity, and β-hematin inhibition of hydroxypyridone−chloroquine hybrids. ACS Med. Chem. Lett. 2013 4 7 642 646 10.1021/ml4001084 24900724
    [Google Scholar]
  329. Dana S. Valissery P. Kumar S. Gurung S.K. Mondal N. Dhar S.K. Mukhopadhyay P. Synthesis of novel ciprofloxacin-based hybrid molecules toward potent antimalarial activity. ACS Med. Chem. Lett. 2020 11 7 1450 1456 10.1021/acsmedchemlett.0c00196 32676153
    [Google Scholar]
  330. Pinheiro L.C.S. Boechat N. Ferreira M.L.G. Júnior C.C.S. Jesus A.M.L. Leite M.M.M. Souza N.B. Krettli A.U. Anti-Plasmodium falciparum activity of quinoline-sulfonamide hybrids. Bioorg. Med. Chem. 2015 23 17 5979 5984 10.1016/j.bmc.2015.06.056 26190461
    [Google Scholar]
  331. Shalini Legac J. Adeniyi A.A. Kisten P. Rosenthal P.J. Singh P. Kumar V. Functionalized naphthalimide-4-aminoquinoline conjugates as promising antiplasmodials, with mechanistic insights. ACS Med. Chem. Lett. 2020 11 2 154 161 10.1021/acsmedchemlett.9b00521
    [Google Scholar]
  332. Kumar S. Gendrot M. Fonta I. Amide tethered 4-aminoquinoline-hybrids: A new class of possible dual function antiplasmodials. ACS Med. Chem. Lett. 2020 11 2544 2552 10.1021/acsmedchemlett.0c00536
    [Google Scholar]
  333. Rojas Ruiz F.A. García-Sánchez R.N. Estupiñan S.V. Gómez-Barrio A. Torres Amado D.F. Pérez-Solórzano B.M. Nogal-Ruiz J.J. Martínez-Fernández A.R. Kouznetsov V.V. Synthesis and antimalarial activity of new heterocyclic hybrids based on chloroquine and thiazolidinone scaffolds. Bioorg. Med. Chem. 2011 19 15 4562 4573 10.1016/j.bmc.2011.06.025 21723734
    [Google Scholar]
  334. Sashidhara K.V. Kumar M. Modukuri R.K. Srivastava R.K. Soni A. Srivastava K. Singh S.V. Saxena J.K. Gauniyal H.M. Puri S.K. Antiplasmodial activity of novel keto-enamine chalcone-chloroquine based hybrid pharmacophores. Bioorg. Med. Chem. 2012 20 9 2971 2981 10.1016/j.bmc.2012.03.011 22464685
    [Google Scholar]
  335. Rani A. Sharma A. Legac J. Rosenthal P.J. Singh P. Kumar V. A trio of quinoline-isoniazid-phthalimide with promising antiplasmodial potential: Synthesis, in-vitro evaluation and heme-polymerization inhibition studies. Bioorg. Med. Chem. 2021 39 116159 10.1016/j.bmc.2021.116159 33895706
    [Google Scholar]
  336. Guantai E.M. Ncokazi K. Egan T.J. Gut J. Rosenthal P.J. Smith P.J. Chibale K. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg. Med. Chem. 2010 18 23 8243 8256 10.1016/j.bmc.2010.10.009 21044845
    [Google Scholar]
  337. Pavić K. Perković I. Pospíšilová Š. Machado M. Fontinha D. Prudêncio M. Jampílek J. Coffey A. Endersen L. Rimac H. Zorc B. Primaquine hybrids as promising antimycobacterial and antimalarial agents. Eur. J. Med. Chem. 2018 143 769 779 10.1016/j.ejmech.2017.11.083 29220797
    [Google Scholar]
  338. Relitti N. Federico S. Pozzetti L. Butini S. Lamponi S. Taramelli D. D’Alessandro S. Martin R.E. Shafik S.H. Summers R.L. Babij S.K. Habluetzel A. Tapanelli S. Caldelari R. Gemma S. Campiani G. Synthesis and biological evaluation of benzhydryl-based antiplasmodial agents possessing Plasmodium falciparum chloroquine resistance transporter (PfCRT) inhibitory activity. Eur. J. Med. Chem. 2021 215 113227 10.1016/j.ejmech.2021.113227 33601312
    [Google Scholar]
  339. Chauhan K. Sharma M. Saxena J. Singh S.V. Trivedi P. Srivastava K. Puri S.K. Saxena J.K. Chaturvedi V. Chauhan P.M.S. Synthesis and biological evaluation of a new class of 4-aminoquinoline-rhodanine hybrid as potent anti-infective agents. Eur. J. Med. Chem. 2013 62 693 704 10.1016/j.ejmech.2013.01.017 23454512
    [Google Scholar]
  340. Reddy P.L. Khan S.I. Ponnan P. Tripathi M. Rawat D.S. Design, synthesis and evaluation of 4-aminoquinoline-purine hybrids as potential antiplasmodial agents. Eur. J. Med. Chem. 2017 126 675 686 10.1016/j.ejmech.2016.11.057 27936446
    [Google Scholar]
  341. Boechat N. Carvalho R.C.C. Ferreira M.L.G. Coutinho J.P. Sa P.M. Seito L.N. Rosas E.C. Krettli A.U. Bastos M.M. Pinheiro L.C.S. Antimalarial and anti-inflammatory activities of new chloroquine and primaquine hybrids: Targeting the blockade of malaria parasite transmission. Bioorg. Med. Chem. 2020 28 24 115832 10.1016/j.bmc.2020.115832 33166927
    [Google Scholar]
  342. Marinho J.A. Martins Guimarães D.S. Glanzmann N. de Almeida Pimentel G. Karine da Costa Nunes I. Gualberto Pereira H.M. Navarro M. de Pilla Varotti F. David da Silva A. Abramo C. In vitro and in vivo antiplasmodial activity of novel quinoline derivative compounds by molecular hybridization. Eur. J. Med. Chem. 2021 215 113271 10.1016/j.ejmech.2021.113271 33596489
    [Google Scholar]
  343. Teng Y. Suwanarusk R. Ngai M.H. Srinivasan R. Ong A.S.M. Ho B. Rénia L. Chai C.L.L. An amidation/cyclization approach to the synthesis of N-hydroxyquinolinones and their biological evaluation as potential anti-plasmodial, anti-bacterial, and iron(II)-chelating agents. Bioorg. Med. Chem. Lett. 2015 25 3 607 610 10.1016/j.bmcl.2014.12.014 25544370
    [Google Scholar]
  344. Bokosi F.R.B. Beteck R.M. Mbaba M. Mtshare T.E. Laming D. Hoppe H.C. Khanye S.D. Design, synthesis and biological evaluation of mono- and bisquinoline methanamine derivatives as potential antiplasmodial agents. Bioorg. Med. Chem. Lett. 2021 38 127855 10.1016/j.bmcl.2021.127855 33609655
    [Google Scholar]
  345. Carvalho R.C.C. Martins W.A. Silva T.P. Kaiser C.R. Bastos M.M. Pinheiro L.C.S. Krettli A.U. Boechat N. New pentasubstituted pyrrole hybrid atorvastatin-quinoline derivatives with antiplasmodial activity. Bioorg. Med. Chem. Lett. 2016 26 8 1881 1884 10.1016/j.bmcl.2016.03.027 26988303
    [Google Scholar]
  346. da Silva R.M.R.J. Gandi M.O. Mendonça J.S. Carvalho A.S. Coutinho J.P. Aguiar A.C.C. Krettli A.U. Boechat N. New hybrid trifluoromethylquinolines as antiplasmodium agents. Bioorg. Med. Chem. 2019 27 6 1002 1008 10.1016/j.bmc.2019.01.044 30737133
    [Google Scholar]
  347. Vandekerckhove S. Desmet T. Tran H.G. de Kock C. Smith P.J. Chibale K. D’hooghe M. Synthesis of halogenated 4-quinolones and evaluation of their antiplasmodial activity. Bioorg. Med. Chem. Lett. 2014 24 4 1214 1217 10.1016/j.bmcl.2013.12.067 24468411
    [Google Scholar]
  348. Walsh J.J. Coughlan D. Heneghan N. Gaynor C. Bell A. A novel artemisinin-quinine hybrid with potent antimalarial activity. Bioorg. Med. Chem. Lett. 2007 17 13 3599 3602 10.1016/j.bmcl.2007.04.054 17482816
    [Google Scholar]
  349. Capela R. Cabal G.G. Rosenthal P.J. Gut J. Mota M.M. Moreira R. Lopes F. Prudêncio M. Design and evaluation of primaquine-artemisinin hybrids as a multistage antimalarial strategy. Antimicrob. Agents Chemother. 2011 55 10 4698 4706 10.1128/AAC.05133‑11 21807973
    [Google Scholar]
  350. Fröhlich T. Kiss A. Wölfling J. Mernyák E. Kulmány Á.E. Minorics R. Zupkó I. Leidenberger M. Friedrich O. Kappes B. Hahn F. Marschall M. Schneider G. Tsogoeva S.B. Synthesis of artemisinin−estrogen hybrids highly active against HCMV, P. falciparum, and cervical and breast cancer. ACS Med. Chem. Lett. 2018 9 11 1128 1133 10.1021/acsmedchemlett.8b00381 30429957
    [Google Scholar]
  351. Wang N. Wicht K.J. Shaban E. Ngoc T.A. Wang M.Q. Hayashi I. Hossain M.I. Takemasa Y. Kaiser M. El Tantawy El Sayed I. Egan T.J. Inokuchi T. Synthesis and evaluation of artesunate-indoloquinoline hybrids as antimalarial drug candidates. MedChemComm 2014 5 7 927 931 10.1039/C4MD00091A
    [Google Scholar]
  352. Joubert J.P. Smit F.J. du Plessis L. Smith P.J. N’Da D.D. Synthesis and in vitro biological evaluation of aminoacridines and artemisinin-acridine hybrids. Eur. J. Pharm. Sci. 2014 56 16 27 10.1016/j.ejps.2014.01.014 24560941
    [Google Scholar]
  353. Cloete T.T. de Kock C. Smith P.J. N’Da D.D. Synthesis, in vitro antiplasmodial activity and cytotoxicity of a series of artemisinin-triazine hybrids and hybrid-dimers. Eur. J. Med. Chem. 2014 76 470 481 10.1016/j.ejmech.2014.01.040 24602791
    [Google Scholar]
  354. Lombard M.C. N’Da D.D. Breytenbach J.C. Smith P.J. Lategan C.A. Synthesis, in vitro antimalarial and cytotoxicity of artemisinin-aminoquinoline hybrids. Bioorg. Med. Chem. Lett. 2011 21 6 1683 1686 10.1016/j.bmcl.2011.01.103 21316959
    [Google Scholar]
  355. Lombard M.C. N’Da D.D. Breytenbach J.C. Smith P.J. Lategan C.A. Artemisinin-quinoline hybrid-dimers: Synthesis and in vitro antiplasmodial activity. Bioorg. Med. Chem. Lett. 2010 20 23 6975 6977 10.1016/j.bmcl.2010.09.130 20971006
    [Google Scholar]
  356. Bertinaria M. Orjuela-Sanchez P. Marini E. Guglielmo S. Hofer A. Martins Y.C. Zanini G.M. Frangos J.A. Gasco A. Fruttero R. Carvalho L.J.M. NO-donor dihydroartemisinin derivatives as multitarget agents for the treatment of cerebral malaria. J. Med. Chem. 2015 58 19 7895 7899 10.1021/acs.jmedchem.5b01036 26367273
    [Google Scholar]
  357. Aminake M.N. Mahajan A. Kumar V. Hans R. Wiesner L. Taylor D. de Kock C. Grobler A. Smith P.J. Kirschner M. Rethwilm A. Pradel G. Chibale K. Synthesis and evaluation of hybrid drugs for a potential HIV/AIDS-malaria combination therapy. Bioorg. Med. Chem. 2012 20 17 5277 5289 10.1016/j.bmc.2012.06.038 22858300
    [Google Scholar]
  358. Aratikatla E.K. Kalamuddin M. Rana K.C. Datta G. Asad M. Sundararaman S. Malhotra P. Mohmmed A. Bhattacharya A.K. Combating multi-drug resistant malaria parasite by inhibiting falcipain-2 and heme-polymerization: Artemisinin-peptidyl vinyl phosphonate hybrid molecules as new antimalarials. Eur. J. Med. Chem. 2021 220 113454 10.1016/j.ejmech.2021.113454 33901900
    [Google Scholar]
  359. Capela R. Oliveira R. Gonçalves L.M. Domingos A. Gut J. Rosenthal P.J. Lopes F. Moreira R. Artemisinin-dipeptidyl vinyl sulfone hybrid molecules: Design, synthesis and preliminary SAR for antiplasmodial activity and falcipain-2 inhibition. Bioorg. Med. Chem. Lett. 2009 19 12 3229 3232 10.1016/j.bmcl.2009.04.100 19435664
    [Google Scholar]
  360. Njogu P.M. Gut J. Rosenthal P.J. Chibale K. Design, Synthesis, and antiplasmodial activity of hybrid compounds based on (2R,3S)-N-benzoyl-3-phenylisoserine. ACS Med. Chem. Lett. 2013 4 7 637 641 10.1021/ml400164t 24900723
    [Google Scholar]
  361. Fröhlich T. Reiter C. Saeed M.E.M. Hutterer C. Hahn F. Leidenberger M. Friedrich O. Kappes B. Marschall M. Efferth T. Tsogoeva S.B. Synthesis of thymoquinone−artemisinin hybrids: New potent antileukemia, antiviral, and antimalarial agents. ACS Med. Chem. Lett. 2018 9 6 534 539 10.1021/acsmedchemlett.7b00412 29937978
    [Google Scholar]
  362. Araújo N.C.P. Barton V. Jones M. Stocks P.A. Ward S.A. Davies J. Bray P.G. Shone A.E. Cristiano M.L.S. O’Neill P.M. Semi-synthetic and synthetic 1,2,4-trioxaquines and 1,2,4-trioxolaquines: Synthesis, preliminary SAR and comparison with acridine endoperoxide conjugates. Bioorg. Med. Chem. Lett. 2009 19 7 2038 2043 10.1016/j.bmcl.2009.02.013 19251414
    [Google Scholar]
  363. Oliveira R. Newton A.S. Guedes R.C. Miranda D. Amewu R.K. Srivastava A. Gut J. Rosenthal P.J. O’Neill P.M. Ward S.A. Lopes F. Moreira R. An endoperoxide-based hybrid approach to deliver falcipain inhibitors inside malaria parasites. ChemMedChem 2013 8 9 1528 1536 10.1002/cmdc.201300202 23853126
    [Google Scholar]
  364. Oliveira R. Guedes R.C. Meireles P. Albuquerque I.S. Gonçalves L.M. Pires E. Bronze M.R. Gut J. Rosenthal P.J. Prudêncio M. Moreira R. O’Neill P.M. Lopes F. Tetraoxane-pyrimidine nitrile hybrids as dual stage antimalarials. J. Med. Chem. 2014 57 11 4916 4923 10.1021/jm5004528 24824551
    [Google Scholar]
  365. Miranda D. Capela R. Albuquerque I.S. Meireles P. Paiva I. Nogueira F. Amewu R. Gut J. Rosenthal P.J. Oliveira R. Mota M.M. Moreira R. Marti F. Prudêncio M. O’Neill P.M. Lopes F. Novel endoperoxide-based transmission-blocking antimalarials with liver- and blood-schizontocidal activities. ACS Med. Chem. Lett. 2014 5 2 108 112 10.1021/ml4002985 24900781
    [Google Scholar]
  366. Capela R. Magalhães J. Miranda D. Machado M. Sanches-Vaz M. Albuquerque I.S. Sharma M. Gut J. Rosenthal P.J. Frade R. Perry M.J. Moreira R. Prudêncio M. Lopes F. Endoperoxide-8-aminoquinoline hybrids as dual-stage antimalarial agents with enhanced metabolic stability. Eur. J. Med. Chem. 2018 149 69 78 10.1016/j.ejmech.2018.02.048 29499488
    [Google Scholar]
  367. Pepe D.A. Toumpa D. André-Barrès C. Menendez C. Mouray E. Baltas M. Grellier P. Papaioannou D. Athanassopoulos C.M. Synthesis of novel G factor or chloroquine-artemisinin hybrids and conjugates with potent antiplasmodial activity. ACS Med. Chem. Lett. 2020 11 5 921 927 10.1021/acsmedchemlett.9b00669 32435406
    [Google Scholar]
  368. Benoit-Vical F. Lelièvre J. Berry A. Deymier C. Dechy-Cabaret O. Cazelles J. Loup C. Robert A. Magnaval J.F. Meunier B. Trioxaquines are new antimalarial agents active on all erythrocytic forms, including gametocytes. Antimicrob. Agents Chemother. 2007 51 4 1463 1472 10.1128/AAC.00967‑06 17242150
    [Google Scholar]
  369. Sashidhara K.V. Kumar A. Dodda R.P. Krishna N.N. Agarwal P. Srivastava K. Puri S.K. Coumarin-trioxane hybrids: Synthesis and evaluation as a new class of antimalarial scaffolds. Bioorg. Med. Chem. Lett. 2012 22 12 3926 3930 10.1016/j.bmcl.2012.04.100 22607674
    [Google Scholar]
  370. Çapcı Karagöz A. Reiter C. Seo E.J. Gruber L. Hahn F. Leidenberger M. Klein V. Hampel F. Friedrich O. Marschall M. Kappes B. Efferth T. Tsogoeva S.B. Access to new highly potent antileukemia, antiviral and antimalarial agents via hybridization of natural products (homo)egonol, thymoquinone and artemisinin. Bioorg. Med. Chem. 2018 26 12 3610 3618 10.1016/j.bmc.2018.05.041 29887512
    [Google Scholar]
  371. Bellot F. Coslédan F. Vendier L. Brocard J. Meunier B. Robert A. Trioxaferroquines as new hybrid antimalarial drugs. J. Med. Chem. 2010 53 10 4103 4109 10.1021/jm100117e 20443628
    [Google Scholar]
  372. Biot C. Nosten F. Fraisse L. Ter-Minassian D. Khalife J. Dive D. The antimalarial ferroquine: From bench to clinic. Parasite 2011 18 3 207 214 10.1051/parasite/2011183207 21894260
    [Google Scholar]
  373. Wani W.A. Jameel E. Baig U. Mumtazuddin S. Hun L.T. Ferroquine and its derivatives: New generation of antimalarial agents. Eur. J. Med. Chem. 2015 101 534 551 10.1016/j.ejmech.2015.07.009 26188909
    [Google Scholar]
  374. Salas P.F. Herrmann C. Cawthray J.F. Nimphius C. Kenkel A. Chen J. de Kock C. Smith P.J. Patrick B.O. Adam M.J. Orvig C. Structural characteristics of chloroquine-bridged ferrocenophane analogues of ferroquine may obviate malaria drug-resistance mechanisms. J. Med. Chem. 2013 56 4 1596 1613 10.1021/jm301422h 23327489
    [Google Scholar]
  375. Delhaes L. Biot C. Berry L. Maciejewski L.A. Camus D. Brocard J.S. Dive D. Novel ferrocenic artemisinin derivatives: Synthesis, in vitro antimalarial activity and affinity of binding with ferroprotoporphyrin IX. Bioorg. Med. Chem. 2000 8 12 2739 2745 10.1016/S0968‑0896(00)00206‑6 11131165
    [Google Scholar]
  376. de Lange C. Coertzen D. Smit F.J. Wentzel J.F. Wong H.N. Birkholtz L.M. Haynes R.K. N’Da D.D. Synthesis, antimalarial activities and cytotoxicities of amino-artemisinin-1,2-disubstituted ferrocene hybrids. Bioorg. Med. Chem. Lett. 2018 28 19 3161 3163 10.1016/j.bmcl.2018.08.037 30174153
    [Google Scholar]
  377. Biot C. Pradines B. Sergeant M.H. Gut J. Rosenthal P.J. Chibale K. Design, synthesis, and antimalarial activity of structural chimeras of thiosemicarbazone and ferroquine analogues. Bioorg. Med. Chem. Lett. 2007 17 23 6434 6438 10.1016/j.bmcl.2007.10.003 17949976
    [Google Scholar]
  378. Chopin N. Bosson J. Iikawa S. Picot S. Bienvenu A.L. Lavoignat A. Bonnot G. Riou M. Beaugé C. Guillory V. Biot C. Pilet G. Chessé M. Davioud-Charvet E. Elhabiri M. Bouillon J.P. Médebielle M. Evaluation of ferrocenyl-containing γ-hydroxy-γ-lactam-derived tetramates as potential antiplasmodials. Eur. J. Med. Chem. 2022 243 114735 10.1016/j.ejmech.2022.114735 36122550
    [Google Scholar]
  379. Herrmann C. Salas P.F. Patrick B.O. Kock C. Smith P.J. Adam M.J. Orvig C. Modular synthesis of 1,2- and 1,1′-disubstituted ferrocenyl carbohydrate chloroquine and mefloquine conjugates as potential antimalarial agents. Organometallics 2012 31 16 5748 5759 10.1021/om300392q
    [Google Scholar]
  380. Aksić J. Genčić M. Stojanović N. Radulović N. Zlatković D. Dimitrijević M. Stojanović-Radić Z. Srbljanović J. Štajner T. Jovanović L. New iron twist to chloroquine upgrading antimalarials with immunomodulatory and antimicrobial features. J. Med. Chem. 2023 66 3 2084 2101 10.1021/acs.jmedchem.2c01851 36661364
    [Google Scholar]
  381. Sharma N. Mohanakrishnan D. Shard A. Sharma A. Saima Sinha A.K. Sahal D. Stilbene-chalcone hybrids: Design, synthesis, and evaluation as a new class of antimalarial scaffolds that trigger cell death through stage specific apoptosis. J. Med. Chem. 2012 55 1 297 311 10.1021/jm201216y 22098429
    [Google Scholar]
  382. Berger O. Ortial S. Wein S. Denoyelle S. Bressolle F. Durand T. Escale R. Vial H.J. Vo-Hoang Y. Evaluation of amidoxime derivatives as prodrug candidates of potent bis-cationic antimalarials. Bioorg. Med. Chem. Lett. 2019 29 16 2203 2207 10.1016/j.bmcl.2019.06.045 31255483
    [Google Scholar]
  383. Agarwal A. Srivastava K. Puri S.K. Chauhan P.M.S. Synthesis of substituted indole derivatives as a new class of antimalarial agents. Bioorg. Med. Chem. Lett. 2005 15 12 3133 3136 10.1016/j.bmcl.2005.04.011 15925306
    [Google Scholar]
  384. Hans R.H. Wiid I.J.F. van Helden P.D. Wan B. Franzblau S.G. Gut J. Rosenthal P.J. Chibale K. Novel thiolactone-isatin hybrids as potential antimalarial and antitubercular agents. Bioorg. Med. Chem. Lett. 2011 21 7 2055 2058 10.1016/j.bmcl.2011.02.008 21376591
    [Google Scholar]
  385. Himangini Pathak D.P. Sharma V. Kumar S. Designing novel inhibitors against falcipain-2 of Plasmodium falciparum. Bioorg. Med. Chem. Lett. 2018 28 9 1566 1569 10.1016/j.bmcl.2018.03.058 29602682
    [Google Scholar]
  386. Pandey A.R. Singh S.P. Joshi P. Srivastav K.S. Srivastava S. Yadav K. Chandra R. Bisen A.C. Agrawal S. Sanap S.N. Bhatta R.S. Tripathi R. Barthwal M.K. Sashidhara K.V. Design, synthesis and evaluation of novel pyrrole-hydroxybutenolide hybrids as promising antiplasmodial and anti-inflammatory agents. Eur. J. Med. Chem. 2023 254 115340 10.1016/j.ejmech.2023.115340 37054559
    [Google Scholar]
  387. Costa Souza R.M. Montenegro Pimentel L.M.L. Ferreira L.K.M. Pereira V.R.A. Santos A.C.D.S. Dantas W.M. Silva C.J.O. De Medeiros Brito R.M. Andrade J.L. De Andrade-Neto V.F. Fujiwara R.T. Bueno L.L. Silva Junior V.A. Pena L. Camara C.A. Rathi B. De Oliveira R.N. Biological activity of 1,2,3-triazole-2-amino-1,4-naphthoquinone derivatives and their evaluation as therapeutic strategy for malaria control. Eur. J. Med. Chem. 2023 255 115400 10.1016/j.ejmech.2023.115400
    [Google Scholar]
  388. Pal K. Raza M.K. Legac J. Rahman A. Manzoor S. Bhattacharjee S. Rosenthal P.J. Hoda N. Identification, in-vitro anti-plasmodial assessment and docking studies of series of tetrahydrobenzothieno[2,3-d]pyrimidine-acetamide molecular hybrids as potential antimalarial agents. Eur. J. Med. Chem. 2023 248 115055 10.1016/j.ejmech.2022.115055 36621136
    [Google Scholar]
  389. Singh V. Hada R.S. Jain R. Vashistha M. Kumari G. Singh S. Sharma N. Bansal M. Poonam Zoltner M. Caffrey C.R. Rathi B. Singh S. Designing and development of phthalimides as potent anti-tubulin hybrid molecules against malaria. Eur. J. Med. Chem. 2022 239 114534 10.1016/j.ejmech.2022.114534 35749989
    [Google Scholar]
  390. Thakur R.K. Joshi P. Baranwal P. Sharma G. Shukla S.K. Tripathi R. Tripathi R.P. Synthesis and antiplasmodial activity of glyco-conjugate hybrids of phenylhydrazono-indolinones and glycosylated 1,2,3-triazolyl-methyl-indoline-2,3-diones. Eur. J. Med. Chem. 2018 155 764 771 10.1016/j.ejmech.2018.06.042 29940466
    [Google Scholar]
  391. Pandey A.K. Sharma S. Pandey M. Alam M.M. Shaquiquzzaman M. Akhter M. 4, 5-Dihydrooxazole-pyrazoline hybrids: Synthesis and their evaluation as potential antimalarial agents. Eur. J. Med. Chem. 2016 123 476 486 10.1016/j.ejmech.2016.07.055 27494165
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673362583250705102313
Loading
/content/journals/cmc/10.2174/0109298673362583250705102313
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test