Skip to content
2000
image of Diverse Development Approaches for Xanthine Oxidase Inhibitors: Synthetic Chemistry, Natural Product Chemistry, and Drug Repositioning

Abstract

Xanthine oxidase (XOD) plays a crucial role in the biosynthesis of uric acid, and inhibiting its activity can effectively reduce the production of uric acid at its source. Currently, clinically used xanthine oxidase inhibitors (XODIs), such as allopurinol and febuxostat, are effective but associated with notable side effects. Allopurinol may induce hypersensitivity reactions, while febuxostat has been reported to potentially increase the risk of severe cardiovascular events. Therefore, the development of Xanthine oxidase inhibitors(XODIs) that lower serum uric acid levels through the inhibition of uric acid production has been a key focus in the research and development of anti-gout medications. This review is based on research literature from 2014 to 2025, sourced from multiple authoritative databases both domestically and internationally, including international databases such as Google Scholar, PubMed, Web of Science, Baidu Scholar, CNKI, Wanfang database. This review systematically summarizes 109 XODIs with urate-lowering or anti-gout pharmacological activities, categorized into chemical synthetic compounds, natural products and their derivatives, and repurposed drugs. The aim is to provide meaningful insights for the development of new therapeutic agents for gout and hyperuricemia. Notably, amides and carboxylic acids among chemically synthesized compounds exhibit promising prospects, while natural products with multiple mechanisms of uric acid reduction hold significant potential for the treatment of hyperuricemia.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673384402250727014932
2025-08-15
2025-11-04
Loading full text...

Full text loading...

References

  1. George, C.; Leslie, SW.; Minter, DA.; Hyperuricemia. InStatPearls 2023. StatPearls Publishing.
    [Google Scholar]
  2. ZHANG C. Research progress on the pathogenesis and treatment strategies of hyperuricemia. J. Air. Force. Med. Univ. 2024 45 10 1184 1190 10.13276/j.issn.2097‑1656.2024.10.019
    [Google Scholar]
  3. Shahin L. Patel K.M. Heydari M.K. Kesselman M.M. Hyperuricemia and cardiovascular risk. Cureus 2021 13 5 14855 10.7759/cureus.14855 34104597
    [Google Scholar]
  4. Yu F. Chen C.H. A brief discussion on gout. Sci. Lifestyle 2025 04 140 141 10.20197/j.cnki.kxsh.2025.04.076
    [Google Scholar]
  5. Piani F. Agnoletti D. Borghi C. Advances in pharmacotherapies for hyperuricemia. Expert Opin. Pharmacother. 2023 24 6 737 745 10.1080/14656566.2023.2197591 36999206
    [Google Scholar]
  6. SHI X.Y. Research progress and medicinal chemistry strategies of URAT1 inhibitors. Yao Xue Xue Bao 2022 57 10 2960 2971 10.16438/j.0513‑4870.2022‑0573
    [Google Scholar]
  7. Sekine M. Okamoto K. Pai E.F. Nagata K. Ichida K. Hille R. Nishino T. Allopurinol and oxypurinol differ in their strength and mechanisms of inhibition of xanthine oxidoreductase. J. Biol. Chem. 2023 299 9 105189 10.1016/j.jbc.2023.105189 37625592
    [Google Scholar]
  8. Bortolotti M. Polito L. Battelli M.G. Bolognesi A. Xanthine oxidoreductase: One enzyme for multiple physiological tasks. Redox Biol. 2021 41 101882 10.1016/j.redox.2021.101882 33578127
    [Google Scholar]
  9. Bai Y. Wu B. Gou L. Fang Z. Xu T. Zhang T. Li Y. Cardiovascular safety evaluation of Febuxostat and allopurinol: Findings from the FDA adverse event reporting system. J. Clin. Med. 2023 12 18 6089 10.3390/jcm12186089 37763029
    [Google Scholar]
  10. Vickneson K. George J. Xanthine Oxidoreductase Inhibitors. Handb. Exp. Pharmacol. 2020 264 205 228 10.1007/164_2020_383 32789757
    [Google Scholar]
  11. Cicero A.F.G. Fogacci F. Cincione R.I. Tocci G. Borghi C. Clinical effects of xanthine oxidase inhibitors in hyperuricemic patients. Med. Princ. Pract. 2021 30 2 122 130 10.1159/000512178 33040063
    [Google Scholar]
  12. Wang J. Inhibition of xanthine oxidase by purpurogallin and its structure modification. Qingdao University 2021 10.27262/d.cnki.gqdau.2021.001102
    [Google Scholar]
  13. Gao J. Li Q. Su H.X. Synthesis and vitro inhibition investigation of A novel XO inhibitor. Chemical Reagents 2023 45 09 56 60 10.13822/j.cnki.hxsj.2023.0343
    [Google Scholar]
  14. Zhang L. Yan D.A. Tian J.Y. Design, synthesis and biological evaluation of amide derivatives as xanthine oxidase inhibitors. Yao Xue Xue Bao 2017 52 06 952 958 10.16438/j.0513‑4870.2017‑0251
    [Google Scholar]
  15. Ho S.L. Lin C.T. Lee S.S. In silico design and synthesis of N-arylalkanyl 2-naphthamides as a new class of non-purine xanthine oxidase inhibitors. Drug Dev. Res. 2021 82 6 789 801 10.1002/ddr.21782 33398913
    [Google Scholar]
  16. Zhang T. Tu S. Zhang X. Wang Q. Hu S. Zhang Y. Zhang Z. Wang Z. Meng F. Amide-based xanthine oxidase inhibitors bearing an N-(1-alkyl-3-cyano-1H-indol-5-yl) moiety: Design, synthesis and structure-activity relationship investigation. Bioorg. Chem. 2021 117 105417 10.1016/j.bioorg.2021.105417 34673452
    [Google Scholar]
  17. Tu S. Zhang T. Zhang Y. Zhang X. Zhang Z. Meng F. N-(3-cyano-1H-indol-5-yl)isonicotinamide and N-(3- cyano-1H-indol-5-yl)-1H-benzo[d]imidazole-5-carboxami- de derivatives: Novel amide-based xanthine oxidase inhibitors. Bioorg. Chem. 2021 115 105181 10.1016/j.bioorg.2021.105181 34329991
    [Google Scholar]
  18. Zhang T. Zhang Y. Tu S. Wu Y. Zhang Z. Meng F. Design, synthesis and biological evaluation of N-(3-(1H-tetrazol-1-yl)phenyl)isonicotinamide derivatives as novel xanthine oxidase inhibitors. Eur. J. Med. Chem. 2019 183 111717 10.1016/j.ejmech.2019.111717 31557611
    [Google Scholar]
  19. Zhang T. Zhang X. Xu E. Wang Z. Zhang Z. Wang Q. Wang L. Wen Y. Meng F. A possible covalent xanthine oxidase inhibitor TS10: Inhibition mechanism, metabolites identification and PDPK assessment. Bioorg. Chem. 2022 128 106064 10.1016/j.bioorg.2022.106064 35987190
    [Google Scholar]
  20. Gunduğdu Ö. Noma S.A.A. Taskin-Tok T. Ateş B. Kishali N. Evaluation of xanthine oxidase inhibitor properties on isoindoline-1,3-dion derivatives and calculation of interaction mechanism. J. Mol. Struct. 2020 1204 127523 10.1016/j.molstruc.2019.127523
    [Google Scholar]
  21. Zhang B. Dai X. Bao Z. Mao Q. Duan Y. Yang Y. Wang S. Targeting the subpocket in xanthine oxidase: Design, synthesis, and biological evaluation of 2-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5- carboxylic acid derivatives. Eur. J. Med. Chem. 2019 181 111559 10.1016/j.ejmech.2019.07.062 31376568
    [Google Scholar]
  22. Zhou H. Li X. Li Y. Zhu X. Zhang L. Li J. Synthesis and bioevaluation of 1-phenylimidazole-4-carboxylic acid derivatives as novel xanthine oxidoreductase inhibitors. Eur. J. Med. Chem. 2020 186 111883 10.1016/j.ejmech.2019.111883 31761385
    [Google Scholar]
  23. Li W.Y. Design and Synthesis of Indole Inhibitors of Xanthine Oxidase. Wuhan Institute of Technology 2023 10.27727/d.cnki.gwhxc.2023.000336
    [Google Scholar]
  24. Xu X. Deng L. Nie L. Chen Y. Liu Y. Xie R. Li Z. Discovery of 2-phenylthiazole-4-carboxylic acid, a novel and potent scaffold as xanthine oxidase inhibitors. Bioorg. Med. Chem. Lett. 2019 29 4 525 528 10.1016/j.bmcl.2019.01.005 30630716
    [Google Scholar]
  25. Guan Q. Cheng Z. Ma X. Wang L. Feng D. Cui Y. Bao K. Wu L. Zhang W. Synthesis and bioevaluation of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acids as potent xanthine oxidase inhibitors. Eur. J. Med. Chem. 2014 85 508 516 10.1016/j.ejmech.2014.08.014 25113879
    [Google Scholar]
  26. Ali M.R. Kumar S. Afzal O. Shalmali N. Sharma M. Bawa S. Development of 2-(substituted benzylamino)-4-methyl-1, 3-thiazole-5-carboxylic acid derivatives as xanthine oxidase inhibitors and free radical scavengers. Chem. Biol. Drug Des. 2016 87 4 508 516 10.1111/cbdd.12686 26575582
    [Google Scholar]
  27. Song J.U. Jang J.W. Kim T.H. Park H. Park W.S. Jung S.H. Kim G.T. Structure-based design and biological evaluation of novel 2-(indol-2-yl) thiazole derivatives as xanthine oxidase inhibitors. Bioorg. Med. Chem. Lett. 2016 26 3 950 954 10.1016/j.bmcl.2015.12.055 26774578
    [Google Scholar]
  28. Zhang B. Duan Y. Yang Y. Mao Q. Lin F. Gao J. Dai X. Zhang P. Li Q. Li J. Dai R. Wang S. Design, synthesis, and biological evaluation of N-(3-cyano-1H-indol-5/6-yl)-6-oxo-1,6-dihydropyrimidine-4-carboxamides and 5-(6-oxo-1,6-dihydropyrimidin-2-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors. Eur. J. Med. Chem. 2022 227 113928 10.1016/j.ejmech.2021.113928 34688012
    [Google Scholar]
  29. Zhao J. Mao Q. Lin F. Zhang B. Sun M. Zhang T. Wang S. Intramolecular hydrogen bond interruption and scaffold hopping of TMC-5 led to 2-(4-alkoxy-3- cyanophenyl)pyrimidine-4/5-carboxylic acids and 6-(4-alkoxy-3-cyanophenyl)-1,2-dihydro-3H-pyrazolo[3,4-d] pyrimidin-3-ones as potent pyrimidine-based xanthine oxidase inhibitors. Eur. J. Med. Chem. 2022 229 114086 10.1016/j.ejmech.2021.114086 34992040
    [Google Scholar]
  30. Rodrigues M.V.N. Barbosa A.F. da Silva J.F. dos Santos D.A. Vanzolini K.L. de Moraes M.C. Corrêa A.G. Cass Q.B. 9-Benzoyl 9-deazaguanines as potent xanthine oxidase inhibitors. Bioorg. Med. Chem. 2016 24 2 226 231 10.1016/j.bmc.2015.12.006 26712096
    [Google Scholar]
  31. Sun M. Zhao J. Mao Q. Yan C. Zhang B. Yang Y. Dai X. Gao J. Lin F. Duan Y. Zhang T. Wang S. Synthesis and biological evaluation of 2-(4-alkoxy-3- cyano)phenylpyrimidine derivatives with 4-amino or 4-hydroxy as a pharmacophore element binding with xanthine oxidase active site. Bioorg. Med. Chem. 2021 38 116117 10.1016/j.bmc.2021.116117 33838610
    [Google Scholar]
  32. Tan A. Novel 1,2,3-triazole compounds: Synthesis, in vitro xanthine oxidase inhibitory activity, and molecular docking studies. J. Mol. Struct. 2020 1211 128060 10.1016/j.molstruc.2020.128060
    [Google Scholar]
  33. Li S.Y. Zhang T.J. Wu Q.X. Olounfeh K.M. Zhang Y. Meng F.H. Synthesis and biological evaluation of 5-benzyl-3-pyridyl-1H-1, 2, 4-triazole derivatives as xanthine oxidase inhibitors. Med. Chem. 2020 16 1 119 127 10.2174/1573406415666190409112209 30963981
    [Google Scholar]
  34. Yang Y. Yan D. Cheng H. Nan G. Hou X. Ren L. Yang Y. Li X. Tian J. Ye F. Xiao Z. Discovery of novel 1,2,4-triazole derivatives as xanthine oxidoreductase inhibitors with hypouricemic effects. Bioorg. Chem. 2022 129 106162 10.1016/j.bioorg.2022.106162 36183564
    [Google Scholar]
  35. Sun Z.G. Zhou X.J. Zhu M.L. Ding W.Z. Li Z. Zhu H.L. Synthesis and biological evaluation of novel aryl-2H-pyrazole derivatives as potent non-purine xanthine oxidase inhibitors. Chem. Pharm. Bull. 2015 63 8 603 607 10.1248/cpb.c15‑00282 26040271
    [Google Scholar]
  36. Wang M.X. Qin H.W. Liu C. Lv S.M. Chen J.S. Wang C.G. Chen Y.Y. Wang J.W. Sun J.Y. Liao Z.X. Synthesis and biological evaluation of thiazolidine-2-thione derivatives as novel xanthine oxidase inhibitors. PLoS One 2022 17 5 0268531 10.1371/journal.pone.0268531 35584139
    [Google Scholar]
  37. Gao J. Zhang Z. Zhang B. Mao Q. Dai X. Zou Q. Lei Y. Feng Y. Wang S. Novel 3-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-1,2,4-oxadiazol-5(4H)-ones as promising xanthine oxidase inhibitors: Design, synthesis and biological evaluation. Bioorg. Chem. 2020 95 103564 10.1016/j.bioorg.2019.103564 31927335
    [Google Scholar]
  38. Wang H Z Yang Y J Yang Y Design, synthesis and evaluation of oxadiazoles as novel XO inhibitors. Acta. Pharmaceutica. Sinica 1 15 10.16438/j.0513‑4870.2024‑0820
    [Google Scholar]
  39. Figueiredo J. Serrano J.L. Cavalheiro E. Keurulainen L. Yli-Kauhaluoma J. Moreira V.M. Ferreira S. Domingues F.C. Silvestre S. Almeida P. Trisubstituted barbiturates and thiobarbiturates: Synthesis and biological evaluation as xanthine oxidase inhibitors, antioxidants, antibacterial and anti-proliferative agents. Eur. J. Med. Chem. 2018 143 829 842 10.1016/j.ejmech.2017.11.070 29223098
    [Google Scholar]
  40. Ferdiansyah M.K. Kim Y.H. Kim K.P. Kim M.K. Quercetin as the primary xanthine oxidase inhibitor compound in Maclura tricuspidata leaf. Nat. Prod. Res. 2024 1-5 1 5 10.1080/14786419.2024.2377317 39004844
    [Google Scholar]
  41. Ajala O.S. Ayeleso A.O. Owolabi M. Akinleye M.O. Ukpo G. Xanthine oxidase inhibitory potentials of flavonoid aglycones of Tribulus terrestris: In vivo, in silico and in vitro studies. Future J. Pharm. Sci. 2022 8 1 58 10.1186/s43094‑022‑00448‑y
    [Google Scholar]
  42. Peng J Q Tuckahoe reducing uric acid by inhibiting xanthine oxidase through quercetin. Smart Healthcare 2023 9 11 125 131 10.19335/j.cnki.2096‑1219.2023.11.030
    [Google Scholar]
  43. Cui Z.Z. Antioxidant, xanthine oxidase inhibition and anti-hyperuricemia effects of sulfonated derivatives of quercetin. Southwest University 2024
    [Google Scholar]
  44. Xie J. Miao J. Cui X. Synthesis of flavonoid derivatives and effect on activity of xanthine oxidase. J. Guizhou. Med. Univ. 2023 48 09 1020 1025 10.19367/j.cnki.2096‑8388.2023.09.004
    [Google Scholar]
  45. Huo L.N. Wang W. Zhang C.Y. Shi H.B. Liu Y. Liu X.H. Guo B.H. Zhao D.M. Gao H. Bioassay-guided isolation and identification of xanthine oxidase inhibitory constituents from the leaves of Perilla frutescens. Molecules 2015 20 10 17848 17859 10.3390/molecules201017848 26425999
    [Google Scholar]
  46. Tuzun B.S. Hajdu Z. Orban-Gyapai O. Zomborszki Z.P. Jedlinszki N. Forgo P. Kıvcak B. Hohmann J. Isolation of chemical constituents of centaurea virgata lam. And xanthine oxidase inhibitory activity of the plant extract and compounds. Med. Chem. 2017 13 5 498 502 10.2174/1573406413666161219161946 27991400
    [Google Scholar]
  47. Singh J.V. Mal G. Kaur G. Gupta M.K. Singh A. Nepali K. Singh H. Sharma S. S Bedi P.M. Benzoflavone derivatives as potent antihyperuricemic agents. MedChemComm 2018 10 1 128 147 10.1039/C8MD00512E 30931089
    [Google Scholar]
  48. Li Y. Zhao Z. Luo J. Jiang Y. Li L. Chen Y. Zhang L. Huang Q. Cao Y. Zhou P. Wu T. Pang J. Apigenin ameliorates hyperuricemic nephropathy by inhibiting URAT1 and GLUT9 and relieving renal fibrosis via the Wnt/β-catenin pathway. Phytomedicine 2021 87 153585 10.1016/j.phymed.2021.153585 34044255
    [Google Scholar]
  49. Xu J. Yang M.L. Zhong C.L. Effects of apigenin mannich base derivative in celery seed on anti-hyperurimia activities. Techan Yanjiu 2024 46 01 45 49 10.16720/j.cnki.tcyj.2024.013
    [Google Scholar]
  50. Lin S.Y. Study on the inhibition mechanism of charysin and genistein towards xanthine oxidase and structure-activity relationship. Nanchang University 2016
    [Google Scholar]
  51. Lin S. Zhang G. Liao Y. Pan J. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism. Int. J. Biol. Macromol. 2015 81 274 282 10.1016/j.ijbiomac.2015.08.017 26275460
    [Google Scholar]
  52. Yang M.L. Xu J. Zhong C.L. Synthesis and anti hyperuricemia activity of Mannich alkaloid derivatives of poplar extract. Zhongguo Yaowu Huaxue Zazhi 2019 29 01 26 32 10.14142/j.cnki.cn21‑1313/r.2019.01.004
    [Google Scholar]
  53. Xu J. Yang M.L. Zhong C.L. Effects of chrysin derivative in propolis on anti-hyperurimia activities. Techan Yanjiu 2021 43 06 49 53 10.16720/j.cnki.tcyj.2021.136
    [Google Scholar]
  54. Lu Z. Tian J.C. Sun S.F. Interpretation of Association Standard T/CI 004-2022, Content index and determination method of tricin and total wheat flavonoid in high wheat flavonoid variety. China. Standardization. 2024 08 153 157 10.3969/j.issn.1002‑5944.2024.08.026
    [Google Scholar]
  55. Liu X.X. Sun S.W. Yuan W.J. Gao H. Si Y.Y. Liu K. Zhang S. Liu Y. Wang W. Isolation of tricin as a xanthine oxidase inhibitor from sweet white clover (Melilotus albus) and its distribution in selected Gramineae species. Molecules 2018 23 10 2719 10.3390/molecules23102719 30360380
    [Google Scholar]
  56. Li X.Y. Liu Y. Liu F. Chen H.J. Yang W.N. Yang H.Y. Jiang X.Q. Sen M.L. Wang G.P. Wang J. Pan Y.L. Study on drug-target binding kinetics profiles of flavonoids in Chrysanthemum morifolium and xanthine oxidase. Zhongguo Zhongyao Zazhi 2021 46 7 1822 1831 10.19540/j.cnki.cjcmm.20201230.501 33982487
    [Google Scholar]
  57. Yu H.F. Huang L.S. Han J.X. Study on the effect and mechanism of luteolin on reducing uric acid in hyperuricemia mice. Lishizhen Med. Mater. Med. Res. 2021 32 05 1071 1074 10.3969/j.issn.1008‑0805.2021.05.13
    [Google Scholar]
  58. Pei Y.X. Study on the effect and mechanism of diosmetin against renal damage in hyperuricemia. Wuhan Polytechnic University 2019 10.27776/d.cnki.gwhgy.2019.000015
    [Google Scholar]
  59. Liu Y. Chen H. Xiang H. Lei H. Zhang D. Qiu Y. Xu L. Inhibition and molecular mechanism of diosmetin against xanthine oxidase by multiple spectroscopies and molecular docking. New J. Chem. 2020 44 17 6799 6809 10.1039/D0NJ00679C
    [Google Scholar]
  60. Chen H.X. Li M.R. Li Q. Inhibition of xanthine oxidase activity and its combination with diosmetin. Shandong. Chem. Ind. 2024 10.19319/j.cnki.issn.1008‑021x.2024.13.065
    [Google Scholar]
  61. Zhai Y.Z. Effects of polysaccharides from Pueraria lobata on the uric acid-lowering activity of Puerarin and the development of Pueraria lobata beverage. South China University of Technology 2023 10.27151/d.cnki.ghnlu.2023.004522
    [Google Scholar]
  62. Shi Q. Zhang R.T. Shang X.Y. Effect of puerarin on serum uric acid in hyperuricemic rats. Food Sci. Technol. 2014 39 02 216 220 10.13684/j.cnki.spkj.2014.02.049
    [Google Scholar]
  63. Yang Y Yan C X Lin C T The influence of baicalein on heart and kidney injury in a mouse model of chronic hyperuricemia. Life Sci. Res. 2022 26 02 111 116 10.16605/j.cnki.1007‑7847.2021.11.0224
    [Google Scholar]
  64. Xiang H.L. Research on the Mechanism of Baicalin and Baicalein Against Hyperuricemic Nephropathy. Wuhan Polytechnic University 2021 10.27776/d.cnki.gwhgy.2021.000234
    [Google Scholar]
  65. Chen J. Li Q. Ye Y. Ran M. Ruan Z. Jin N. Inhibition of xanthine oxidase by theaflavin: Possible mechanism for anti-hyperuricaemia effect in mice. Process Biochem. 2020 97 11 18 10.1016/j.procbio.2020.06.024
    [Google Scholar]
  66. Li Y.B. Studies on the separation of seabuckthorn flavonoids and the kinetics of key enzymes of antioxidation and uric acid metabolism in vitro. University of Science and Technology Liaoning 2023 10.26923/d.cnki.gasgc.2023.000022
    [Google Scholar]
  67. Adachi S. Kondo S. Sato Y. Yoshizawa F. Yagasaki K. Anti-hyperuricemic effect of isorhamnetin in cultured hepatocytes and model mice: structure–activity relationships of methylquercetins as inhibitors of uric acid production. Cytotechnology 2019 71 1 181 192 10.1007/s10616‑018‑0275‑8 30603920
    [Google Scholar]
  68. Malik N. Dhiman P. Khatkar A. In silico design and synthesis of targeted rutin derivatives as xanthine oxidase inhibitors. BMC Chem. 2019 13 1 71 10.1186/s13065‑019‑0585‑8 31384818
    [Google Scholar]
  69. Ye Z.J. He X.A. Wu J.P. Li J. Chang X.W. Tan J. Lv W.Y. Zhu H. Sun H.H. Wang W.X. Chen Z.H. Zhu G.Z. Xu K.P. New prenylflavonol glycosides with xanthine oxidase inhibitory activity from the leaves of Cyclocarya paliurus. Bioorg. Chem. 2020 101 104018 10.1016/j.bioorg.2020.104018 32629277
    [Google Scholar]
  70. Zhang Y. Li Y. Li C. Zhao Y. Xu L. Ma S. Lin F. Xie Y. An J. Wang S. Paeonia × suffruticosa Andrews leaf extract and its main component apigenin 7-O-glucoside ameliorate hyperuricemia by inhibiting xanthine oxidase activity and regulating renal urate transporters. Phytomedicine 2023 118 154957 10.1016/j.phymed.2023.154957 37478683
    [Google Scholar]
  71. GU W.J. Research progress on anti-inflammatory traditional Chinese medicine and its extracts for the treatment of acute gout attacks. Res. Integr. Tradit. Chin. West. Med. 2021 13 01 47 50 10.3969/j.issn.1674‑4616.2021.01.013
    [Google Scholar]
  72. Dong X.Q. Protection of rhein on kidney injury in fructose-induced hyperuricaemia rats. Strait Pharm. J. 2016 28 03 42 44 10.3969/j.issn.1006‑3765.2016.03.017
    [Google Scholar]
  73. Gao T. Xu J. Xiao Y. Li J. Hu W. Su X. Shen X. Yu W. Chen Z. Huang B. Li H. Wang X. Therapeutic effects and mechanisms of N-(9,10-anthraquinone-2-ylcarbonyl) xanthine oxidase inhibitors on hyperuricemia. Front. Pharmacol. 2022 13 950699 10.3389/fphar.2022.950699 36120294
    [Google Scholar]
  74. Parladı U. Yılmaz Ü. Noma S.A.A. Ateş B. Küçükbay H. Synthesis of new anthraquinone compounds and evaluation of their considerable xanthine oxidase inhibitory activities. ARKIVOC 2022 2022 9 158 167 10.24820/ark.5550190.p011.810
    [Google Scholar]
  75. Lin L. Yang Q. Zhao K. Zhao M. Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase. Food Chem. 2018 253 108 118 10.1016/j.foodchem.2018.01.139 29502809
    [Google Scholar]
  76. Aladdin N.A. Husain K. Jalil J. Sabandar C.W. Jamal J.A. Xanthine oxidase inhibitory activity of a new isocoumarin obtained from Marantodes pumilum var. pumila leaves. BMC Complement. Med. Ther. 2020 20 1 324 10.1186/s12906‑020‑03119‑8 33109178
    [Google Scholar]
  77. Li J.H. Jiao W.Y. Jin Q.X. Analysis of phenylpropanoid components and antioxidant and uric acid-lowering activities of ginger. Shipin Kexue 2023 44 11 26 31 10.7506/spkx1002‑6630‑20220621‑221
    [Google Scholar]
  78. Yi B.X. Study on active compounds and potential multi- target of diazine and coumarin derivatives for treating hyperuricemia. Chongqing University of Technology 2023 10.27753/d.cnki.gcqgx.2023.001098
    [Google Scholar]
  79. Zhang D. Zhao M. Li Y. Zhang D. Yang Y. Li L. Natural xanthine oxidase inhibitor 5-O-caffeoylshikimic acid ameliorates kidney injury caused by hyperuricemia in mice. Molecules 2021 26 23 7307 10.3390/molecules26237307 34885887
    [Google Scholar]
  80. Fu Y. Mo H.Y. Gao W. Hong J.Y. Lu J. Li P. Chen J. Affinity selection-based two-dimensional chromatography coupled with high-performance liquid chromatography-mass spectrometry for discovering xanthine oxidase inhibitors from Radix Salviae Miltiorrhizae. Anal. Bioanal. Chem. 2014 406 20 4987 4995 10.1007/s00216‑014‑7902‑9 24866714
    [Google Scholar]
  81. Tang H. Zhao D. Investigation of the interaction between salvianolic acid C and xanthine oxidase: Insights from experimental studies merging with molecular docking methods. Bioorg. Chem. 2019 88 102981 10.1016/j.bioorg.2019.102981 31085372
    [Google Scholar]
  82. Zhang J.Y. Liu Y.T. Tang H.J. Natural product salvianolic acid A and xanthine oxidase enzyme dynamics and molecular docking study of interactions. J. Anhui. Polytech. Univ. 2019 34 3 1 5 10.3969/j.issn.2095‑0977.2019.03.001
    [Google Scholar]
  83. Lou Y. Gao Q. Fan M. Waleed A.L.A. Wang L. Li Y. Qian H. Ferulic acid ameliorates hyperuricemia by regulating xanthine oxidase. Int. J. Biol. Macromol. 2023 253 Pt 3 126542 10.1016/j.ijbiomac.2023.126542 37634782
    [Google Scholar]
  84. Zhang N.H. Jin Y.N. Chen Y.R. Inhibitory mechanism of ferulic acid on xanthine oxidase. J. Food Sci. Technol. 2023 41 01 115 125 10.12301/spxb202200218
    [Google Scholar]
  85. Liu L. Gui L.L. Wu C.Q. Determination of the content of seven components in snake radish by UPLC-MS/MS and study on the uric acid lowering effect of the active component gallic acid. Pharmacol. Clin. Chin. Mater. Med. 2023 39 09 49 55 10.13412/j.cnki.zyyl.20230331.004
    [Google Scholar]
  86. Qiu Q. Zhang T.H. Chen H.H. Research progress on antioxidant and anti-aging properties of natural phenolic compounds. Modern Food 2024 30 02 77 82 10.16736/j.cnki.cn41‑1434/ts.2024.2.023
    [Google Scholar]
  87. Masuda T. Shingai Y. Takahashi C. Inai M. Miura Y. Honda S. Masuda A. Identification of a potent xanthine oxidase inhibitor from oxidation of caffeic acid. Free Radic. Biol. Med. 2014 69 300 307 10.1016/j.freeradbiomed.2014.01.016 24503177
    [Google Scholar]
  88. Agbadua O.G. Kúsz N. Berkecz R. Gáti T. Tóth G. Hunyadi A. Oxidized resveratrol metabolites as potent antioxidants and xanthine oxidase inhibitors. Antioxidants 2022 11 9 1832 10.3390/antiox11091832 36139906
    [Google Scholar]
  89. Nishiwaki K. Ohigashi K. Deguchi T. Murata K. Nakamura S. Matsuda H. Nakanishi I. Structure–activity relationships and docking studies of hydroxychavicol and its analogs as xanthine oxidase inhibitors. Chem. Pharm. Bull. 2018 66 7 741 747 10.1248/cpb.c18‑00197 29695658
    [Google Scholar]
  90. Nguyen H.T. Vu T.Y. Dakal T.C. Dhabhai B. Nguyen X.H.Q. Tatipamula V.B. Cleroda-4(18),13-dien-15,16-olide as novel xanthine oxidase inhibitors: An integrated in silico and in vitro study. PLoS One 2021 16 6 0253572 10.1371/journal.pone.0253572 34191831
    [Google Scholar]
  91. Abu-Gharbieh E. Shehab N.G. Almasri I.M. Bustanji Y. Antihyperuricemic and xanthine oxidase inhibitory activities of Tribulus arabicus and its isolated compound, ursolic acid: In vitro and in vivo investigation and docking simulations. PLoS One 2018 13 8 0202572 10.1371/journal.pone.0202572 30114281
    [Google Scholar]
  92. Zhou X. Studies on the triterpenoid active constituents of medicinal fungi Ganoderma lucidum karst and Ganoderma tsugae Murr. Changchun Normal University 2023 10.27709/d.cnki.gccsf.2023.000393
    [Google Scholar]
  93. Xu F. Zhao X. Yang L. Wang X. Zhao J. A new cycloartane-type triterpenoid saponin xanthine oxidase inhibitor from Homonoia riparia Lour. Molecules 2014 19 9 13422 13431 10.3390/molecules190913422 25178063
    [Google Scholar]
  94. Chichioco-Hernandez C.L. Apaya M.K.L. New steroidal saponin from Antigonon leptopus Hook. and Arn. Pharmacogn. Mag. 2014 10 Suppl 3 501 10.4103/0973‑1296.139781 25298666
    [Google Scholar]
  95. Ge X. Xia Z.J. Ma K. New use of old drug hyoscyamine: One typical case of clinical off-label application. Chin. J. Ration. Drug Use 2023 20 07 26 28 10.3969/j.issn.2096‑3327.2023.07.008
    [Google Scholar]
  96. Du L.D. Zhang W. Song J.K. Drug repurposing (1):Strategies and applications on clinical needs. Her. Med. 2023 42 02 150 154 10.3870/j.issn.1004‑0781.2023.02.002
    [Google Scholar]
  97. Bou-Salah L. Benarous K. Linani A. Rabhi F. Chaib K. Chine I. Bensaidane H. Yousfi M. Anti-inflammatory drugs as new inhibitors to xanthine oxidase: In vitro and in silico approach. Mol. Cell. Probes 2021 58 101733 10.1016/j.mcp.2021.101733 33957269
    [Google Scholar]
  98. Li L. Liao J.P. Wen X.C. Low dose colchicine combined with nonsteroidal drugs for the treatment of acute gout Clinical efficacy analysis of arthritis patients. Mod. Diagn. Treat. 2023 34 09 1332 1334
    [Google Scholar]
  99. Niu, Y.; Li, H.; Gao, L.; Lin, H.; Kung. H,; Lin, M.C.; Leung, K.-S.; Wong, M.-H.; Xiong, W.; Li, L. Old drug, new indication: olsalazine sodium reduced serum uric acid levels in mice via inhibiting xanthine oxidoreductase activity. J. Pharm. Sci. 2017 135 3 114 120 10.1016/j.jphs.2017.10.007
    [Google Scholar]
  100. Weidert E.R. Schoenborn S.O. Cantu-Medellin N. Choughule K.V. Jones J.P. Kelley E.E. Inhibition of xanthine oxidase by the aldehyde oxidase inhibitor raloxifene: Implications for identifying molybdopterin nitrite reductases. Nitric Oxide 2014 37 41 45 10.1016/j.niox.2013.12.010 24406683
    [Google Scholar]
  101. Sun L. Zhang M. Zhao J. Chen W. Wang G. The human gut microbiota and uric acid metabolism: Genes, metabolites, and diet. Crit. Rev. Food Sci. Nutr. 2025 1 21 10.1080/10408398.2025.2475238 40067099
    [Google Scholar]
  102. Liu Z.Q. Sun X. Liu Z.B. Zhang T. Zhang L.L. Wu C.J. Phytochemicals in traditional Chinese medicine can treat gout by regulating intestinal flora through inactivating NLRP3 and inhibiting XOD activity. J. Pharm. Pharmacol. 2022 74 7 919 929 10.1093/jpp/rgac024 35640306
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673384402250727014932
Loading
/content/journals/cmc/10.2174/0109298673384402250727014932
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: PubMed ; web of science ; xanthine oxidase inhibitors ; gout ; hyperuricemia ; Uric acid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test