Skip to content
2000
image of Targeted Anti-Inflammatory Effects of CHLoramphenicol via TLR4 Inhibition in Postoperative Hemorrhoid Treatment: A Clinico- Computational Cohort Study

Abstract

Introduction

Postoperative hemorrhoidectomy wounds are prone to inflammation and microbial infection due to their anatomical location, necessitating effective therapeutic strategies. CHLoramphenicol (CHL) is a broad-spectrum antibiotic with potential anti-inflammatory properties Toll-like receptor 4 (TLR4) inhibition. This clinico-computational cohort study investigates CHL’s dual therapeutic mechanism in postoperative hemorrhoid management, combining clinical outcomes with molecular modeling to elucidate its anti-inflammatory and antimicrobial effects.

Methods

A prospective, controlled cohort study was conducted with 155 patients (55 CHL, 39 reference treatment [PR], 61 control) undergoing hemorrhoidectomy. CHL ointment (≤120 mg/day) was applied topically until granulation tissue appeared. Clinical outcomes, including edema resolution, granulation tissue formation, and pain scores, were assessed using ImageJ for wound area analysis and the visual analog scale (VAS) for pain. Molecular docking and dynamics simulations were performed using AutoDock and AMBER 22 to evaluate CHL’s binding affinity to TLR4 compared to the reference inhibitor TAK-242. Statistical analyses included ANOVA, Mann-Whitney U tests, and post hoc power calculations.

Results

CHL significantly accelerated wound healing, with 53.2% of patients achieving complete edema resolution by day 3 ( 43.6% by day 4) and faster granulation tissue formation (3.58 ± 0.60 days 7.08 ± 1.20 days in control, <0.0001). Pain scores were significantly reduced in the CHL group. Molecularly, CHL exhibited superior TLR4 binding (ΔGtot = -25.97 kcal/mol -20.69 kcal/mol for TAK-242), with stable complex formation and persistent interactions at Ile-135 (buried surface area: 350 Å2). Healing times were 13.5–19.8 days faster in the CHL group (mean 41 days 54.5–60.8 days in control).

Conclusion

CHL demonstrates dual therapeutic potential in postoperative hemorrhoid management by inhibiting TLR4-mediated inflammation and microbial infection. Its superior binding affinity and clinical efficacy suggest it as a promising multifunctional agent. Further and long-term studies are needed to validate these findings and explore broader applications in surgical wound care.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673378981250710055128
2025-07-31
2025-11-04
Loading full text...

Full text loading...

References

  1. Cristea C. Lewis C.R. Hemorrhoidectomy. 2020 Available from: https://www.ncbi.nlm.nih.gov/books/NBK549864/
  2. Lubinets N.S. Yusupov A.V. Kravtsov IuV. “COVID endothelioteca” in testing the hypothesis of induction of genome instability by the SARS-CoV-2 virus in the endothelium of patients who have recovered from COVID-19. Patogenez. 2023 21 4 61 67
    [Google Scholar]
  3. Stierschneider A. Wiesner C. Shedding light on the molecular and regulatory mechanisms of TLR4 signaling in endothelial cells under physiological and inflamed conditions. Front. Immunol. 2023 14 1264889 10.3389/fimmu.2023.1264889 38077393
    [Google Scholar]
  4. Shityakov S. Foerster C. In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter. Adv. Appl. Bioinform. Chem. 2014 7 23 36 10.2147/AABC.S63749 25214795
    [Google Scholar]
  5. Case D.A. Cheatham T.E. III Darden T. Gohlke H. Luo R. Merz K.M. Jr Onufriev A. Simmerling C. Wang B. Woods R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005 26 16 1668 1688 10.1002/jcc.20290 16200636
    [Google Scholar]
  6. Marques S.M. Šupolíková L. Molčanová L. Šmejkal K. Bednar D. Slaninová I. Screening of natural compounds as p-glycoprotein inhibitors against multidrug resistance. Biomedicines 2021 9 4 357 10.3390/biomedicines9040357 33808505
    [Google Scholar]
  7. Essmann U. Perera L. Berkowitz M.L. Darden T. Lee H. Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995 103 19 8577 8593 10.1063/1.470117
    [Google Scholar]
  8. Miyamoto S. Kollman P.A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992 13 8 952 962 10.1002/jcc.540130805
    [Google Scholar]
  9. Shityakov S. Skorb E.V. Förster C.Y. Dandekar T. Scaffold searching of FDA and EMA-approved drugs identifies lead candidates for drug repurposing in Alzheimer’s disease. Front Chem. 2021 9 736509 10.3389/fchem.2021.736509 34751244
    [Google Scholar]
  10. Matsunaga N. Tsuchimori N. Matsumoto T. Ii M. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol. Pharmacol. 2011 79 1 34 41 10.1124/mol.110.068064 20881006
    [Google Scholar]
  11. Shityakov S. Förster C.Y. Skorb E. Comparative in silico analysis of CNS-active molecules targeting the blood–brain barrier choline transporter for Alzheimer’s disease therapy. In Silico Pharmacol. 2024 12 2 71 10.1007/s40203‑024‑00245‑w 39099798
    [Google Scholar]
  12. Chen X. Wang Q. Shao M. Ma L. Guo D. Wu Y. Gao P. Wang X. Li W. Li C. Wang Y. Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway. Biomed. Pharmacother. 2019 120 109487 7 10.1016/j.biopha.2019.109487 31577975
    [Google Scholar]
  13. Cui C.H. Kim D.J. Jung S.C. Kim S.C. Im W.T. Enhanced production of gypenoside LXXV using a novel ginsenoside-transforming β-glucosidase from ginseng-cultivating soil bacteria and its anti-cancer property. Molecules 2017 22 5 844 10.3390/molecules22050844 28534845
    [Google Scholar]
  14. Gruber A. Manček M. Wagner H. Kirschning C.J. Jerala R. Structural model of MD-2 and functional role of its basic amino acid clusters involved in cellular lipopolysaccharide recognition. J. Biol. Chem. 2004 279 27 28475 28482 10.1074/jbc.M400993200 15111623
    [Google Scholar]
  15. Hu N. Wang C. Dai X. Zhou M. Gong L. Yu L. Peng C. Li Y. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. J. Ethnopharmacol. 2020 248 112361 1 10.1016/j.jep.2019.112361 31683033
    [Google Scholar]
  16. Zhou M. Tang Y. Liao L. Liu M. Deng Y. Zhao X. Li Y. Phillygenin inhibited LPS-induced RAW 264.7 cell inflammation by NF-κB pathway. Eur. J. Pharmacol. 2021 899 174043 3 10.1016/j.ejphar.2021.174043 33745957
    [Google Scholar]
  17. Liu M. Xu Y. Han X. Yin L. Xu L. Qi Y. Zhao Y. Liu K. Peng J. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway. Sci. Rep. 2015 5 1 18038 10.1038/srep18038
    [Google Scholar]
  18. Ye M Tang Y He J Yang Y Cao X Kou S. Alleviation of non-alcoholic fatty liver disease by Huazhi Fugan Granules is associated with suppression of TLR4/NF-κB signaling pathway. Clin Investig Arterioscler 2021 33 5 257 266 10.1016/j.arteri.2020.12.007 33810882
    [Google Scholar]
  19. Zhang L. Lang F. Feng J. Wang J. Review of the therapeutic potential of Forsythiae Fructus on the central nervous system: Active ingredients and mechanisms of action. J. Ethnopharmacol. 2024 319 Pt 2 117275 5 10.1016/j.jep.2023.117275 37797873
    [Google Scholar]
  20. Du B. Zhang L. Sun Y. Zhang G. Yao J. Jiang M. Pan L. Sun C. Phillygenin exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes. Immunopharmacol. Immunotoxicol. 2019 41 1 76 85 10.1080/08923973.2018.1547742 30721636
    [Google Scholar]
  21. Lu Z. Li Y. Jin J. Zhang X. Lopes-Virella M.F. Huang Y. Toll-like receptor 4 activation in microvascular endothelial cells triggers a robust inflammatory response and cross talk with mononuclear cells via interleukin-6. Arterioscler. Thromb. Vasc. Biol. 2012 32 7 1696 1706 10.1161/ATVBAHA.112.251181 22596222
    [Google Scholar]
  22. Qu D. Wang L. Huo M. Song W. Lau C.W. Xu J. Xu A. Yao X. Chiu J.J. Tian X.Y. Huang Y. Focal TLR4 activation mediates disturbed flow-induced endothelial inflammation. Cardiovasc. Res. 2020 116 1 226 236 10.1093/cvr/cvz046 30785200
    [Google Scholar]
  23. Lubinets N Kravtsov V. Method for obtaining human endothelial cells. RU. Patent RU2806050C2 2023
  24. He J. Wei W. Yang Q. Wang Y. Phillygenin exerts in vitro and in vivo antitumor effects in drug-resistant human esophageal cancer cells by inducing mitochondrial-mediated apoptosis, ros generation, and inhibition of the nuclear factor kappa B NF-κB signalling pathway. Med. Sci. Monit. 2019 25 739 745 10.12659/MSM.913138 30681987
    [Google Scholar]
  25. Song W. Wu J. Yu L. Peng Z. Evaluation of the pharmacokinetics and hepatoprotective effects of phillygenin in mouse. BioMed Res. Int. 2018 2018 1 10 10.1155/2018/7964318 30211228
    [Google Scholar]
  26. Yuan R. Huang L. Du L.J. Feng J.F. Li J. Luo Y.Y. Xu Q.M. Yang S.L. Gao H. Feng Y.L. Dihydrotanshinone exhibits an anti-inflammatory effect in vitro and in vivo through blocking TLR4 dimerization. Pharmacol. Res. 2019 142 102 114 10.1016/j.phrs.2019.02.017 30794925
    [Google Scholar]
  27. Li L. Zhou Y.F. Li Y.L. Wang L.L. Arai H. Xu Y. In vitro and in vivo antioxidative and hepatoprotective activity of aqueous extract of Cortex Dictamni. World J. Gastroenterol. 2017 23 16 2912 2927 10.3748/wjg.v23.i16.2912 28522909
    [Google Scholar]
  28. Xie Y. Hao H. Kang A. Liang Y. Xie T. Sun S. Dai C. Zheng X. Xie L. Li J. Wang G. Integral pharmacokinetics of multiple lignan components in normal, CCl4-induced hepatic injury and hepatoprotective agents pretreated rats and correlations with hepatic injury biomarkers. J. Ethnopharmacol. 2010 131 2 290 299 10.1016/j.jep.2010.06.038 20600750
    [Google Scholar]
  29. Sethiya N.K. Shah P. Rajpara A. Nagar P.A. Mishra S.H. Antioxidant and hepatoprotective effects of mixed micellar lipid formulation of phyllanthin and piperine in carbon tetrachloride-induced liver injury in rodents. Food Funct. 2015 6 11 3593 3603 10.1039/C5FO00947B 26333006
    [Google Scholar]
  30. Lim D.W. Kim H. Park J.Y. Kim J.E. Moon J.Y. Park S.D. Park W.H. Amomum cardamomum L. ethyl acetate fraction protects against carbon tetrachloride-induced liver injury via an antioxidant mechanism in rats. BMC Complement. Altern. Med. 2016 16 1 155 10.1186/s12906‑016‑1121‑1 27246748
    [Google Scholar]
  31. Qi M. Zheng L. Qi Y. Han X. Xu Y. Xu L. Yin L. Wang C. Zhao Y. Sun H. Liu K. Peng J. Dioscin attenuates renal ischemia/reperfusion injury by inhibiting the TLR4/MyD88 signaling pathway via up-regulation of HSP70. Pharmacol. Res. 2015 100 341 352 10.1016/j.phrs.2015.08.025 26348276
    [Google Scholar]
  32. Bi X. Li J. Fan X. Zhou J. Jiang B. Yang Z. Luo L. Yin Z. GSTP1 inhibits lps-induced inflammatory response through regulating autophagy in thp-1 cells. Inflammation 2020 43 3 1157 1169 10.1007/s10753‑020‑01202‑3 32128658
    [Google Scholar]
  33. Park B.S. Song D.H. Kim H.M. Choi B.S. Lee H. Lee J.O. The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature 2009 458 7242 1191 1195 10.1038/nature07830 19252480
    [Google Scholar]
  34. Wang F. Zhu M. Jiang N. Zhang M. Feng L. Jia X. Paeonol ameliorates lipopolysaccharides-induced acute lung injury by regulating TLR4/MyD88/ NF-κB signaling pathway. Pharmazie 2019 74 2 101 106 30782259
    [Google Scholar]
  35. Zhao H. Wang X. Liu S. Zhang Q. Paeonol regulates NLRP3 inflammasomes and pyroptosis to alleviate spinal cord injury of rat. BMC Neurosci. 2022 23 1 16 10.1186/s12868‑022‑00698‑9 35303801
    [Google Scholar]
  36. He J. Han S. Li X.X. Wang Q.Q. Cui Y. Chen Y. Gao H. Huang L. Yang S. Diethyl blechnic exhibits anti-inflammatory and antioxidative activity via the tlr4/myd88 signaling pathway in lps-stimulated raw264.7 cells. Molecules 2019 24 24 4502 10.3390/molecules24244502 31835323
    [Google Scholar]
  37. Xia M.Z. Liang Y.L. Wang H. Chen X. Huang Y.Y. Zhang Z.H. Chen Y.H. Zhang C. Zhao M. Xu D.X. Song L.H. Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells. J. Pineal Res. 2012 53 4 325 334 10.1111/j.1600‑079X.2012.01002.x 22537289
    [Google Scholar]
  38. Yokoyama N. Ohta H. Yamazaki J. Kagawa Y. Ichii O. Khoirun N. Morita T. Osuga T. Lim S.Y. Sasaki N. Morishita K. Nakamura K. Takiguchi M. Localization of toll-like receptor (TLR) 2 and TLR4 mRNA in the colorectal mucosa of miniature dachshunds with inflammatory colorectal polyps. J. Comp. Pathol. 2017 156 2-3 183 190 10.1016/j.jcpa.2016.10.010 28089357
    [Google Scholar]
  39. Igarashi H. Ohno K. Maeda S. Kanemoto H. Fukushima K. Uchida K. Tsujimoto H. Expression profiling of pattern recognition receptors and selected cytokines in miniature dachshunds with inflammatory colorectal polyps. Vet. Immunol. Immunopathol. 2014 159 1-2 1 10 10.1016/j.vetimm.2014.03.003 24680911
    [Google Scholar]
  40. Yokoyama N. Ohta H. Kagawa Y. Leela-Arporn R. Dermlim A. Nisa K. Morita T. Osuga T. Sasaki N. Morishita K. Nakamura K. Takiguchi M. Expression of apical junction complex proteins in colorectal mucosa of miniature dachshunds with inflammatory colorectal polyps. J. Vet. Med. Sci. 2017 79 3 456 463 10.1292/jvms.16‑0479 28090006
    [Google Scholar]
  41. Strisciuglio C. Creoli M. Tortora C. Martinelli M. Miele E. Paino S. Increased expression of CB2 receptor in the intestinal biopsies of children with inflammatory bowel disease. Pediatr. Res. 2022 35717484
    [Google Scholar]
  42. Yokoyama N. Ohta H. Kagawa Y. Nagata N. Nisa K. Morita T. Osuga T. Sasaki N. Morishita K. Nakamura K. Takiguchi M. Stimulation of colorectal biopsies from miniature dachshunds with inflammatory colorectal polyps with toll-like receptor ligands: A pilot study. Vet. Immunol. Immunopathol. 2017 188 78 83 10.1016/j.vetimm.2017.05.006 28615131
    [Google Scholar]
  43. Igarashi H. Ohno K. Fujiwara-Igarashi A. Kanemoto H. Fukushima K. Goto-Koshino Y. Uchida K. Tsujimoto H. Functional analysis of pattern recognition receptors in miniature dachshunds with inflammatory colorectal polyps. J. Vet. Med. Sci. 2015 77 4 439 447 10.1292/jvms.14‑0505 25650150
    [Google Scholar]
  44. Balbi H.J. Chloramphenicol: A review. Pediatr. Rev. 2004 25 8 284 288 10.1542/pir.25‑8‑284 15286274
    [Google Scholar]
  45. Pickering L.K. Murray B.E. Current concepts of antimicrobial therapy--4. J. Trop. Pediatr. 1984 30 5 264 269 10.1093/tropej/30.5.264 6512911
    [Google Scholar]
  46. Seidel A. Liu L. Jiang Y. Steinle J.J. Loss of TLR4 in endothelial cells but not Müller cells protects the diabetic retina. Exp. Eye Res. 2021 206 108557 7 10.1016/j.exer.2021.108557 33789141
    [Google Scholar]
  47. Liu L. Jiang Y. Steinle J. Epac1 regulates TLR4 signaling in the diabetic retinal vasculature. Cytokine 2021 144 155576 6 10.1016/j.cyto.2021.155576 34020266
    [Google Scholar]
  48. Liu L. Jiang Y. Steinle J.J. Toll-like receptor 4 reduces occludin and zonula occludens 1 to increase retinal permeability both in vitro and in vivo. J. Vasc. Res. 2017 54 6 367 375 10.1159/000480455 29136627
    [Google Scholar]
  49. Aslam S. Ahmad S. Noor F. Ashfaq U.A. Shahid F. Rehman A. Tahir ul Qamar M. Alatawi E.A. Alshabrmi F.M. Allemailem K.S. Designing a multi-epitope vaccine against Chlamydia trachomatis by employing integrated core proteomics, immuno-informatics and in silico approaches. Biology 2021 10 10 997 7 10.3390/biology10100997 34681096
    [Google Scholar]
  50. M Tahir ul Qamar S Ahmad I Fatima F Ahmad Designing multi-epitope vaccine against Staphylococcus aureus by employing subtractive proteomics, reverse vaccinology and immuno-informatics approaches. Comput Biol Med. 2021 132 104389 10.1016/j.compbiomed.2021.104389 33866250
    [Google Scholar]
  51. Joshi S. Srivastava R. Effect of “magic CHLorine” in drug discovery: An in silico approach. RSC Advances 2023 13 49 34922 34934 10.1039/D3RA06638J 38035236
    [Google Scholar]
  52. Sameer A.S. Nissar S. Toll-like receptors (TLRs): Structure, functions, signaling, and role of their polymorphisms in colorectal cancer susceptibility. Biomed Res Int 2021 2021 1157023 10.1155/2021/1157023 34552981
    [Google Scholar]
  53. Lu Y.C. Yeh W.C. Ohashi P.S. LPS/TLR4 signal transduction pathway. Cytokine 2008 42 2 145 151 10.1016/j.cyto.2008.01.006 18304834
    [Google Scholar]
  54. O’Neill L.A.J. Bowie A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 2007 7 5 353 364 10.1038/nri2079 17457343
    [Google Scholar]
  55. Frolova L. Drastich P. Rossmann P. Klimesova K. Tlaskalova-Hogenova H. Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: Upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. J. Histochem. Cytochem. 2008 56 3 267 274 10.1369/jhc.7A7303.2007 18040078
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673378981250710055128
Loading
/content/journals/cmc/10.2174/0109298673378981250710055128
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test