Skip to content
2000
image of MiRNA Regulations in Cardiotoxicity Induced by Oncologic Therapies and Possible Immune Response

Abstract

Anti-cancer therapy offers significant risks for cardiovascular diseases, including hypertension, thromboembolic ischaemia, arrhythmias, dyslipidaemia, hyperglycemia, obesity, and high cholesterol. Cardiotoxicity is a leading cause of elevated mortality rates among cancer patients, and anti-cancer drugs often contribute to this issue. Emerging research highlights the role of microRNA (miRNAs) in regulating drug-induced cardiotoxicity by influencing genetic, epigenetic, transcriptional, and translational processes. MiRNAs have potential as biomarkers for early detection and treatment. Moreover, novel diagnostic and therapeutic approaches targeting miRNAs could improve the clinical management of cardiotoxicity in cancer patients. This study is based on regulatory mechanisms behind cardiotoxicity, including oxidative stress, vascular homeostasis, mitochondrial damage, apoptosis, and inflammation, and explores strategies for managing these complications in cancer therapy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673386907250730010201
2025-08-19
2025-11-04
Loading full text...

Full text loading...

References

  1. Leung A.K.L. Sharp P.A. MicroRNA functions in stress responses. Mol. Cell 2010 40 2 205 215 10.1016/j.molcel.2010.09.027 20965416
    [Google Scholar]
  2. Pellegrini L. Sileno S. D’Agostino M. Foglio E. Florio M.C. Guzzanti V. Russo M.A. Limana F. Magenta A. MicroRNAs in cancer treatment-induced cardiotoxicity. Cancers 2020 12 3 704 10.3390/cancers12030704 32192047
    [Google Scholar]
  3. Nebigil C.G. Désaubry L. Updates in anthracycline-mediated cardiotoxicity. Front. Pharmacol. 2018 9 1262 10.3389/fphar.2018.01262 30483123
    [Google Scholar]
  4. Peng X. Pentassuglia L. Sawyer D.B. Emerging anticancer therapeutic targets and the cardiovascular system: Is there cause for concern? Circ. Res. 2010 106 6 1022 1034 10.1161/CIRCRESAHA.109.211276 20360265
    [Google Scholar]
  5. Morelli M.B. Bongiovanni C. Da Pra S. Miano C. Sacchi F. Lauriola M. D’Uva G. Cardiotoxicity of anticancer drugs: Molecular mechanisms and strategies for cardioprotection. Front. Cardiovasc. Med. 2022 9 847012 10.3389/fcvm.2022.847012 35497981
    [Google Scholar]
  6. Ratti M. Lampis A. Ghidini M. Salati M. Mirchev M.B. Valeri N. Hahne J.C. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target. Oncol. 2020 15 3 261 278 10.1007/s11523‑020‑00717‑x 32451752
    [Google Scholar]
  7. Hynes C. Kakumani P.K. Regulatory role of RNA-binding proteins in microRNA biogenesis. Front. Mol. Biosci. 2024 11 1374843 10.3389/fmolb.2024.1374843 38567098
    [Google Scholar]
  8. Bennett M.R. Apoptosis in the cardiovascular system. Br. Heart J. 2002 87 5 480 487 10.1136/heart.87.5.480 11997428
    [Google Scholar]
  9. Zapata-Martínez L. Águila S. de los Reyes-García A.M. Carrillo-Tornel S. Lozano M.L. González-Conejero R. Martínez C. Inflammatory microRNAs in cardiovascular pathology: Another brick in the wall. Front. Immunol. 2023 14 1196104 10.3389/fimmu.2023.1196104 37275892
    [Google Scholar]
  10. Brown C. Mantzaris M. Nicolaou E. Karanasiou G. Papageorgiou E. Curigliano G. Cardinale D. Filippatos G. Memos N. Naka K.K. Papakostantinou A. Vogazianos P. Ioulianou E. Shammas C. Constantinidou A. Tozzi F. Fotiadis D.I. Antoniades A. A systematic review of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity in breast cancer patients reveals potentially clinically informative panels as well as key challenges in miRNA research. Cardiooncology 2022 8 1 16 10.1186/s40959‑022‑00142‑1 36071532
    [Google Scholar]
  11. Rocca C. De Francesco E.M. Pasqua T. Granieri M.C. De Bartolo A. Gallo Cantafio M.E. Muoio M.G. Gentile M. Neri A. Angelone T. Viglietto G. Amodio N. Mitochondrial determinants of anti-cancer drug-induced cardiotoxicity. Biomedicines 2022 10 3 520 10.3390/biomedicines10030520 35327322
    [Google Scholar]
  12. Agunbiade T.A. Zaghlol R.Y. Barac A. Heart failure in relation to tumor-targeted therapies and immunotherapies. Methodist DeBakey Cardiovasc. J. 2019 15 4 250 257 10.14797/mdcj‑15‑4‑250 31988685
    [Google Scholar]
  13. Kura B. Kalocayova B. Devaux Y. Bartekova M. Potential clinical implications of miR-1 and miR-21 in heart disease and cardioprotection. Int. J. Mol. Sci. 2020 21 3 700 10.3390/ijms21030700 31973111
    [Google Scholar]
  14. Ruggeri C. Gioffré S. Achilli F. Colombo G.I. D’Alessandra Y. Role of microRNAs in doxorubicin-induced cardiotoxicity: An overview of preclinical models and cancer patients. Heart Fail. Rev. 2018 23 1 109 122 10.1007/s10741‑017‑9653‑0 28944400
    [Google Scholar]
  15. Piegari E. Russo R. Cappetta D. Esposito G. Urbanek K. Dell’Aversana C. Altucci L. Berrino L. Rossi F. De Angelis A. MicroRNA-34a regulates doxorubicin-induced cardiotoxicity in rat. Oncotarget 2016 7 38 62312 62326 10.18632/oncotarget.11468 27694688
    [Google Scholar]
  16. Song R. Zhang L. MicroRNAs and therapeutic potentials in acute and chronic cardiac disease. Drug Discov. Today 2024 29 11 104179 10.1016/j.drudis.2024.104179 39276921
    [Google Scholar]
  17. Lai S.L. Marín-Juez R. Stainier D.Y.R. Immune responses in cardiac repair and regeneration: A comparative point of view. Cell. Mol. Life Sci. 2019 76 7 1365 1380 10.1007/s00018‑018‑2995‑5 30578442
    [Google Scholar]
  18. Sufianov A. Agaverdiev M. Mashkin A. Ilyasova T. The functions of immune system-derived miRNAs in cardiovascular diseases. Noncoding RNA Res. 2025 11 91 103 10.1016/j.ncrna.2024.11.004 39736852
    [Google Scholar]
  19. Artimovič P. Špaková I. Macejková E. Pribulová T. Rabajdová M. Mareková M. Zavacká M. The ability of microRNAs to regulate the immune response in ischemia/reperfusion inflammatory pathways. Genes Immun. 2024 25 4 277 296 10.1038/s41435‑024‑00283‑6 38909168
    [Google Scholar]
  20. Omland T. Heck S.L. Gulati G. The role of cardioprotection in cancer therapy cardiotoxicity. JACC Cardiooncol. 2022 4 1 19 37 10.1016/j.jaccao.2022.01.101 35492815
    [Google Scholar]
  21. Bloom M.W. Vo J.B. Rodgers J.E. Ferrari A.M. Nohria A. Deswal A. Cheng R.K. Kittleson M.M. Upshaw J.N. Palaskas N. Blaes A. Brown S-A. Ky B. Lenihan D. Maurer M.S. Fadol A. Skurka K. Cambareri C. Chauhan C. Barac A. Cardio-oncology and heart failure: A scientific statement from the heart failure society of America. J. Card. Fail. 2024 S1071916424003634
    [Google Scholar]
  22. Albini A. Pennesi G. Donatelli F. Cammarota R. De Flora S. Noonan D.M. Cardiotoxicity of anticancer drugs: The need for cardio-oncology and cardio-oncological prevention. J. Natl. Cancer Inst. 2010 102 1 14 25 10.1093/jnci/djp440 20007921
    [Google Scholar]
  23. Thorn C.F. Oshiro C. Marsh S. Hernandez-Boussard T. McLeod H. Klein T.E. Altman R.B. Doxorubicin pathways. Pharmacogenet. Genomics 2011 21 7 440 446 10.1097/FPC.0b013e32833ffb56 21048526
    [Google Scholar]
  24. Fonoudi H. Jouni M. Cejas R.B. Magdy T. Blancard M. Ge N. Shah D.A. Lyra-Leite D.M. Neupane A. Gharib M. Jiang Z. Sapkota Y. Burridge P.W. Functional validation of doxorubicin-induced cardiotoxicity-related genes. JACC Cardiooncol. 2024 6 1 38 50 10.1016/j.jaccao.2023.11.008 38510289
    [Google Scholar]
  25. Ganatra S. Nohria A. Shah S. Groarke J.D. Sharma A. Venesy D. Patten R. Gunturu K. Zarwan C. Neilan T.G. Barac A. Hayek S.S. Dani S. Solanki S. Mahmood S.S. Lipshultz S.E. Upfront dexrazoxane for the reduction of anthracycline-induced cardiotoxicity in adults with preexisting cardiomyopathy and cancer: A consecutive case series. Cardiooncology 2019 5 1 1 10.1186/s40959‑019‑0036‑7 32154008
    [Google Scholar]
  26. McGowan J.V. Chung R. Maulik A. Piotrowska I. Walker J.M. Yellon D.M. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc. Drugs Ther. 2017 31 1 63 75 10.1007/s10557‑016‑6711‑0 28185035
    [Google Scholar]
  27. Roque M.C. da Silva C.D. Lempek M.R. Cassali G.D. de Barros A.L.B. Melo M.M. Oliveira M.C. Preclinical toxicological study of long-circulating and fusogenic liposomes co-encapsulating paclitaxel and doxorubicin in synergic ratio. Biomed. Pharmacother. 2021 144 112307 10.1016/j.biopha.2021.112307 34653762
    [Google Scholar]
  28. Octavia Y. Tocchetti C.G. Gabrielson K.L. Janssens S. Crijns H.J. Moens A.L. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J. Mol. Cell. Cardiol. 2012 52 6 1213 1225 10.1016/j.yjmcc.2012.03.006 22465037
    [Google Scholar]
  29. Kumar R. Goel H. Solanki R. Rawat L. Tabasum S. Tanwar P. Pal S. Sabarwal A. Recent developments in receptor tyrosine kinase inhibitors: A promising mainstay in targeted cancer therapy. Med. Drug Discov. 2024 23 100195 10.1016/j.medidd.2024.100195 39281823
    [Google Scholar]
  30. Sayegh N. Yirerong J. Agarwal N. Addison D. Fradley M. Cortes J. Weintraub N.L. Sayed N. Raval G. Guha A. Cardiovascular toxicities associated with tyrosine kinase inhibitors. Curr. Cardiol. Rep. 2023 25 4 269 280 10.1007/s11886‑023‑01845‑2 36795308
    [Google Scholar]
  31. Wilhelm S.M. Adnane L. Newell P. Villanueva A. Llovet J.M. Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther. 2008 7 10 3129 3140 10.1158/1535‑7163.MCT‑08‑0013 18852116
    [Google Scholar]
  32. Byeon H.K. Ku M. Yang J. Beyond EGFR inhibition: Multilateral combat strategies to stop the progression of head and neck cancer. Exp. Mol. Med. 2019 51 1 1 14 10.1038/s12276‑018‑0202‑2 30700700
    [Google Scholar]
  33. Smith L.A. Cornelius V.R. Plummer C.J. Levitt G. Verrill M. Canney P. Jones A. Cardiotoxicity of anthracycline agents for the treatment of cancer: Systematic review and meta-analysis of randomised controlled trials. BMC Cancer 2010 10 1 337 10.1186/1471‑2407‑10‑337 20587042
    [Google Scholar]
  34. Foglietta J. Inno A. de Iuliis F. Sini V. Duranti S. Turazza M. Tarantini L. Gori S. Cardiotoxicity of aromatase inhibitors in breast cancer patients. Clin. Breast Cancer 2017 17 1 11 17 10.1016/j.clbc.2016.07.003 27561703
    [Google Scholar]
  35. Sievers J. Voget R. Lu F. Garchitorena K.M. Ng Y.L.D. Chau C.H. Steinebach C. Figg W.D. Krönke J. Gütschow M. Revisiting the antiangiogenic mechanisms of fluorinated thalidomide derivatives. Bioorg. Med. Chem. Lett. 2024 110 129858 10.1016/j.bmcl.2024.129858 38917956
    [Google Scholar]
  36. Dobbin S.J.H. Petrie M.C. Myles R.C. Touyz R.M. Lang N.N. Cardiotoxic effects of angiogenesis inhibitors. Clin. Sci. 2021 135 1 71 100 10.1042/CS20200305 33404052
    [Google Scholar]
  37. Ngo D.T.M. Williams T. Horder S. Kritharides L. Vardy J. Mandaliya H. Nordman I.I.C. Lynam J. Bonaventura T. Sverdlov A.L. Factors associated with adverse cardiovascular events in cancer patients treated with bevacizumab. J. Clin. Med. 2020 9 8 2664 10.3390/jcm9082664 32824667
    [Google Scholar]
  38. Viswanathan T. Lang C.C. Petty R.D. Baxter M.A. Cardiotoxicity and chemotherapy—the role of precision medicine. Diseases 2021 9 4 90 10.3390/diseases9040090 34940028
    [Google Scholar]
  39. Ito Y. Sadar M.D. Enzalutamide and blocking androgen receptor in advanced prostate cancer: Lessons learnt from the history of drug development of antiandrogens. Res. Rep. Urol. 2018 10 23 32 10.2147/RRU.S157116 29497605
    [Google Scholar]
  40. Guo X. Wang H. Zhou J. Li Y. Duan L. Si X. Zhang L. Fang L. Zhang L. Clinical manifestation and management of immune checkpoint inhibitor‐associated cardiotoxicity. Thorac. Cancer 2020 11 2 475 480 10.1111/1759‑7714.13250 31849171
    [Google Scholar]
  41. Zhang X. Patel D. Xu Q. Veenstra R. Differences in functional expression of Connexin43 and NaV1.5 by Pan- and class-selective histone deacetylase inhibition in heart. Int. J. Mol. Sci. 2018 19 8 2288 10.3390/ijms19082288 30081552
    [Google Scholar]
  42. Jayaweera S.P.E. Wanigasinghe Kanakanamge S.P. Rajalingam D. Silva G.N. Carfilzomib: A promising proteasome inhibitor for the treatment of relapsed and refractory multiple myeloma. Front. Oncol. 2021 11 740796 10.3389/fonc.2021.740796 34858819
    [Google Scholar]
  43. Shyam Sunder S. Sharma U.C. Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct. Target. Ther. 2023 8 1 262 10.1038/s41392‑023‑01469‑6 37414756
    [Google Scholar]
  44. Rihackova E. Rihacek M. Vyskocilova M. Valik D. Elbl L. Revisiting treatment-related cardiotoxicity in patients with malignant lymphoma—a review and prospects for the future. Front. Cardiovasc. Med. 2023 10 1243531 10.3389/fcvm.2023.1243531 37711551
    [Google Scholar]
  45. Harbeck N. Beckmann M.W. Rody A. Schneeweiss A. Müller V. Fehm T. Marschner N. Gluz O. Schrader I. Heinrich G. Untch M. Jackisch C. HER2 dimerization inhibitor pertuzumab - mode of action and clinical data in breast cancer. Breast Care 2013 8 1 49 55 10.1159/000346837 24715843
    [Google Scholar]
  46. Dhesi S. Chu M.P. Blevins G. Paterson I. Larratt L. Oudit G.Y. Kim D.H. Cyclophosphamide-induced cardiomyopathy. J. Investig. Med. High Impact Case Rep. 2013 1 1 2324709613480346 10.1177/2324709613480346 26425570
    [Google Scholar]
  47. Bracci L. Schiavoni G. Sistigu A. Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: Implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 2014 21 1 15 25 10.1038/cdd.2013.67 23787994
    [Google Scholar]
  48. Iqubal A. Iqubal M.K. Sharma S. Ansari M.A. Najmi A.K. Ali S.M. Ali J. Haque S.E. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci. 2019 218 112 131 10.1016/j.lfs.2018.12.018 30552952
    [Google Scholar]
  49. Ayala A. Muñoz M.F. Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014 2014 1 31 10.1155/2014/360438 24999379
    [Google Scholar]
  50. Jeelani R. Khan S.N. Shaeib F. Kohan-Ghadr H.R. Aldhaheri S.R. Najafi T. Thakur M. Morris R. Abu-Soud H.M. Cyclophosphamide and acrolein induced oxidative stress leading to deterioration of metaphase II mouse oocyte quality. Free Radic. Biol. Med. 2017 110 11 18 10.1016/j.freeradbiomed.2017.05.006 28499912
    [Google Scholar]
  51. Zorov D.B. Juhaszova M. Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014 94 3 909 950 10.1152/physrev.00026.2013 24987008
    [Google Scholar]
  52. Chen Q.M. Maltagliati A.J. Nrf2 at the heart of oxidative stress and cardiac protection. Physiol. Genomics 2018 50 2 77 97 10.1152/physiolgenomics.00041.2017 29187515
    [Google Scholar]
  53. Tripathi S. Kharkwal G. Mishra R. Singh G. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in heavy metals-induced oxidative stress. Heliyon 2024 10 18 37545 10.1016/j.heliyon.2024.e37545 39309893
    [Google Scholar]
  54. Skonieczna M. Hejmo T. Poterala-Hejmo A. Cieslar-Pobuda A. Buldak R.J. NADPH oxidases: Insights into selected functions and mechanisms of action in cancer and stem cells. Oxid. Med. Cell. Longev. 2017 2017 1 9420539 10.1155/2017/9420539 28626501
    [Google Scholar]
  55. Zong Y. Li H. Liao P. Chen L. Pan Y. Zheng Y. Zhang C. Liu D. Zheng M. Gao J. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024 9 1 124 10.1038/s41392‑024‑01839‑8 38744846
    [Google Scholar]
  56. Juan C.A. Pérez de la Lastra J.M. Plou F.J. Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021 22 9 4642 10.3390/ijms22094642 33924958
    [Google Scholar]
  57. Bernardi P. Gerle C. Halestrap A.P. Jonas E.A. Karch J. Mnatsakanyan N. Pavlov E. Sheu S.S. Soukas A.A. Identity, structure, and function of the mitochondrial permeability transition pore: Controversies, consensus, recent advances, and future directions. Cell Death Differ. 2023 30 8 1869 1885 10.1038/s41418‑023‑01187‑0 37460667
    [Google Scholar]
  58. Peoples J.N. Saraf A. Ghazal N. Pham T.T. Kwong J.Q. Mitochondrial dysfunction and oxidative stress in heart disease. Exp. Mol. Med. 2019 51 12 1 13 10.1038/s12276‑019‑0355‑7 31857574
    [Google Scholar]
  59. Cao S.S. Kaufman R.J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal. 2014 21 3 396 413 10.1089/ars.2014.5851 24702237
    [Google Scholar]
  60. Dulf P.L. Mocan M. Coadă C.A. Dulf D.V. Moldovan R. Baldea I. Farcas A.D. Blendea D. Filip A.G. Doxorubicin-induced acute cardiotoxicity is associated with increased oxidative stress, autophagy, and inflammation in a murine model. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 6 1105 1115 10.1007/s00210‑023‑02382‑z 36645429
    [Google Scholar]
  61. Zhang S. Wei X. Zhang H. Wu Y. Jing J. Huang R. Zhou T. Hu J. Wu Y. Li Y. You Z. Doxorubicin downregulates autophagy to promote apoptosis-induced dilated cardiomyopathy via regulating the AMPK/mTOR pathway. Biomed. Pharmacother. 2023 162 114691 10.1016/j.biopha.2023.114691 37060659
    [Google Scholar]
  62. Linders A.N. Dias I.B. López Fernández T. Tocchetti C.G. Bomer N. Van der Meer P. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. NPJ Aging 2024 10 1 9 10.1038/s41514‑024‑00135‑7 38263284
    [Google Scholar]
  63. Palm C.L. Shalaurova I. Connelly M.A. Bakker S.J.L. Westenbrink B.D. Dullaart R.P.F. Fasting plasma ketone bodies are associated with NT-proBNP: A potential mechanism to provide fuel for the failing heart. J. Clin. Med. 2024 13 6 1541 10.3390/jcm13061541 38541768
    [Google Scholar]
  64. Belger C. Abrahams C. Imamdin A. Lecour S. Doxorubicin-induced cardiotoxicity and risk factors. Int. J. Cardiol. Heart Vasc. 2024 50 101332 10.1016/j.ijcha.2023.101332 38222069
    [Google Scholar]
  65. Mitry M.A. Edwards J.G. Doxorubicin induced heart failure: Phenotype and molecular mechanisms. Int. J. Cardiol. Heart Vasc. 2016 10 17 24 10.1016/j.ijcha.2015.11.004 27213178
    [Google Scholar]
  66. Boen H.M. Cherubin M. Franssen C. Gevaert A.B. Witvrouwen I. Bosman M. Guns P.J. Heidbuchel H. Loeys B. Alaerts M. Van Craenenbroeck E.M. Circulating MicroRNA as biomarkers of anthracycline-induced cardiotoxicity. JACC Cardiooncol. 2024 6 2 183 199 10.1016/j.jaccao.2023.12.009 38774014
    [Google Scholar]
  67. Cao Z. Jia Y. Zhu B. BNP and NT-proBNP as diagnostic biomarkers for cardiac dysfunction in both clinical and forensic medicine. Int. J. Mol. Sci. 2019 20 8 1820 10.3390/ijms20081820 31013779
    [Google Scholar]
  68. Kazlauskaitė P. Vaicekauskaitė I. Venius J. Sabaliauskaitė R. Steponavičienė R. Plasma microRNAs as biomarkers for predicting radiotherapy treatment-induced cardiotoxicity in lung cancer. Life 2024 14 12 1619 10.3390/life14121619 39768327
    [Google Scholar]
  69. Condrat C.E. Thompson D.C. Barbu M.G. Bugnar O.L. Boboc A. Cretoiu D. Suciu N. Cretoiu S.M. Voinea S.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020 9 2 276 10.3390/cells9020276 31979244
    [Google Scholar]
  70. Felekkis K. Papaneophytou C. The circulating biomarkers league: Combining miRNAs with cell-free DNAs and proteins. Int. J. Mol. Sci. 2024 25 6 3403 10.3390/ijms25063403 38542382
    [Google Scholar]
  71. Mir R. Elfaki I. Khullar N. Waza A.A. Jha C. Mir M.M. Nisa S. Mohammad B. Mir T.A. Maqbool M. Barnawi J. Albalawi S.O. Abu-Duhier F.M. Role of selected miRNAs as diagnostic and prognostic biomarkers in cardiovascular diseases, including coronary artery disease, myocardial infarction and atherosclerosis. J. Cardiovasc. Dev. Dis. 2021 8 2 22 10.3390/jcdd8020022 33669699
    [Google Scholar]
  72. Schofield A.L. Brown J.P. Brown J. Wilczynska A. Bell C. Glaab W.E. Hackl M. Howell L. Lee S. Dear J.W. Remes M. Reeves P. Zhang E. Allmer J. Norris A. Falciani F. Takeshita L.Y. Seyed Forootan S. Sutton R. Park B.K. Goldring C. Systems analysis of miRNA biomarkers to inform drug safety. Arch. Toxicol. 2021 95 11 3475 3495 10.1007/s00204‑021‑03150‑9 34510227
    [Google Scholar]
  73. Pizzamiglio S. Ciniselli C.M. de Azambuja E. Agbor-tarh D. Moreno-Aspitia A. Suter T.M. Trama A. De Santis M.C. De Cecco L. Iorio M.V. Silvestri M. Pruneri G. Verderio P. Di Cosimo S. Circulating microRNAs and therapy-associated cardiac events in HER2-positive breast cancer patients: An exploratory analysis from NeoALTTO. Breast Cancer Res. Treat. 2024 206 2 285 294 10.1007/s10549‑024‑07299‑6 38689174
    [Google Scholar]
  74. Wang Y. Zhang X. Li H. Yu J. Ren X. The role of miRNA-29 family in cancer. Eur. J. Cell Biol. 2013 92 3 123 128 10.1016/j.ejcb.2012.11.004 23357522
    [Google Scholar]
  75. León-Mateos L. Mosquera J. Antón Aparicio L. Treatment of sunitinib-induced hypertension in solid tumor by nitric oxide donors. Redox Biol. 2015 6 421 425 10.1016/j.redox.2015.09.007 26386874
    [Google Scholar]
  76. Hawkins P.G. Sun Y. Dess R.T. Jackson W.C. Sun G. Bi N. Tewari M. Hayman J.A. Kalemkerian G.P. Gadgeel S.M. Lawrence T.S. Haken R.K.T. Matuszak M.M. Kong F.M. Schipper M.J. Jolly S. Circulating microRNAs as biomarkers of radiation-induced cardiac toxicity in non-small-cell lung cancer. J. Cancer Res. Clin. Oncol. 2019 145 6 1635 1643 10.1007/s00432‑019‑02903‑5 30923943
    [Google Scholar]
  77. Di Lisi D. Cadeddu Dessalvi C. Zito C. Madaudo C. Manganaro R. Mercurio V. Deidda M. Santoro C. Penna C. Monte I.P. Spallarossa P. Tocchetti C.G. Novo G. Management of cancer patients at high and very-high risk of cardiotoxicity: Main questions and answers. Curr. Probl. Cardiol. 2024 49 3 102229 10.1016/j.cpcardiol.2023.102229 38154703
    [Google Scholar]
  78. Herrmann J. Lenihan D. Armenian S. Barac A. Blaes A. Cardinale D. Carver J. Dent S. Ky B. Lyon A.R. López-Fernández T. Fradley M.G. Ganatra S. Curigliano G. Mitchell J.D. Minotti G. Lang N.N. Liu J.E. Neilan T.G. Nohria A. O’Quinn R. Pusic I. Porter C. Reynolds K.L. Ruddy K.J. Thavendiranathan P. Valent P. Defining cardiovascular toxicities of cancer therapies: An international cardio-oncology society (IC-OS) consensus statement. Eur. Heart J. 2022 43 4 280 299 10.1093/eurheartj/ehab674 34904661
    [Google Scholar]
  79. Tehrani B.N. Truesdell A.G. Psotka M.A. Rosner C. Singh R. Sinha S.S. Damluji A.A. Batchelor W.B. A standardized and comprehensive approach to the management of cardiogenic shock. JACC Heart Fail. 2020 8 11 879 891 10.1016/j.jchf.2020.09.005 33121700
    [Google Scholar]
  80. Vuong J.T. Stein-Merlob A.F. Cheng R.K. Yang E.H. Novel therapeutics for anthracycline induced cardiotoxicity. Front. Cardiovasc. Med. 2022 9 863314 10.3389/fcvm.2022.863314 35528842
    [Google Scholar]
  81. Zullig L.L. Sung A.D. Khouri M.G. Jazowski S. Shah N.P. Sitlinger A. Blalock D.V. Whitney C. Kikuchi R. Bosworth H.B. Crowley M.J. Goldstein K.M. Klem I. Oeffinger K.C. Dent S. Cardiometabolic comorbidities in cancer survivors. JACC Cardiooncol. 2022 4 2 149 165 10.1016/j.jaccao.2022.03.005 35818559
    [Google Scholar]
  82. Mallardo M. Poltronieri P. D’Urso O.F. Non-protein coding RNA biomarkers and differential expression in cancers: A review. J. Exp. Clin. Cancer Res. 2008 27 1 19 10.1186/1756‑9966‑27‑19 18631387
    [Google Scholar]
  83. Slack F.J. Chinnaiyan A.M. The role of non-coding RNAs in oncology. Cell 2019 179 5 1033 1055 10.1016/j.cell.2019.10.017 31730848
    [Google Scholar]
  84. Srinivas T. Siqueira E. Guil S. Techniques for investigating lncRNA transcript functions in neurodevelopment. Mol. Psychiatry 2024 29 4 874 890 10.1038/s41380‑023‑02377‑5 38145986
    [Google Scholar]
  85. Di Mauro V. Catalucci D. The role of small and long non-coding RNAs in cardiac pathologies. Non-coding RNA Investig. 2019 3 21 21 10.21037/ncri.2019.05.03
    [Google Scholar]
  86. Han J.J. Wang X.Q. Zhang X.A. Functional interactions between lncRNAs/circRNAs and miRNAs: Insights into rheumatoid arthritis. Front. Immunol. 2022 13 810317 10.3389/fimmu.2022.810317 35197980
    [Google Scholar]
  87. Feng P. Yang F. Zang D. Bai D. Xu L. Fu Y. You R. Liu T. Yang X. Deciphering the roles of cellular and extracellular non-coding RNAs in chemotherapy-induced cardiotoxicity. Mol. Cell. Biochem. 2024 39485641
    [Google Scholar]
  88. Lin S. Yang Y. Zhou Z. Li W. Wang X. Liu Y. Bi Y. Mao J. Regulation mechanism of microRNAs in cardiac cells-derived exosomes in cell crosstalk. Front. Pharmacol. 2024 15 1399850 10.3389/fphar.2024.1399850 39228519
    [Google Scholar]
  89. Shen N.N. Wang J.L. Fu Y. The microRNA expression profiling in heart failure: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022 9 856358 10.3389/fcvm.2022.856358 35783849
    [Google Scholar]
  90. Kramna D. Riedlova P. Jirik V. MicroRNAs as a potential biomarker in the diagnosis of cardiovascular diseases. Medicina 2023 59 7 1329 10.3390/medicina59071329 37512140
    [Google Scholar]
  91. Fa H. Chang W. Zhang X. Xiao D. Wang J. Noncoding RNAs in doxorubicin-induced cardiotoxicity and their potential as biomarkers and therapeutic targets. Acta Pharmacol. Sin. 2021 42 4 499 507 10.1038/s41401‑020‑0471‑x 32694762
    [Google Scholar]
  92. Feng W. Wang Q. Tan Y. Qiao J. Liu Q. Yang B. Yang S. Cui L. Early detection of anthracycline-induced cardiotoxicity. Clin. Chim. Acta 2025 565 120000 10.1016/j.cca.2024.120000 39401650
    [Google Scholar]
  93. Zhu J.N. Fu Y.H. Hu Z. Li W.Y. Tang C.M. Fei H.W. Yang H. Lin Q. Gou D.M. Wu S.L. Shan Z.X. Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity. Sci. Rep. 2017 7 1 11879 10.1038/s41598‑017‑12192‑y 28928469
    [Google Scholar]
  94. Wen S.Y. Ng S.C. Ho W.K. Huang H.Z. Huang C.Y. Kuo W.W. Activation of PI3K/Akt mediates the protective effect of diallyl trisulfide on doxorubicin induced cardiac apoptosis. Curr. Res. Toxicol. 2023 5 100136 10.1016/j.crtox.2023.100136 38033660
    [Google Scholar]
  95. Li X.Q. Liu Y.K. Yi J. Dong J.S. Zhang P.P. Wan L. Li K. MicroRNA-143 increases oxidative stress and myocardial cell apoptosis in a mouse model of doxorubicin-induced cardiac toxicity. Med. Sci. Monit. 2020 26 920394 10.12659/MSM.920394 32170053
    [Google Scholar]
  96. Adam L. Zhong M. Choi W. Qi W. Nicoloso M. Arora A. Calin G. Wang H. Siefker-Radtke A. McConkey D. Bar-Eli M. Dinney C. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin. Cancer Res. 2009 15 16 5060 5072 10.1158/1078‑0432.CCR‑08‑2245 19671845
    [Google Scholar]
  97. Beji S. Milano G. Scopece A. Cicchillitti L. Cencioni C. Picozza M. D’Alessandra Y. Pizzolato S. Bertolotti M. Spaltro G. Raucci A. Piaggio G. Pompilio G. Capogrossi M.C. Avitabile D. Magenta A. Gambini E. Doxorubicin upregulates CXCR4 via miR-200c/ZEB1-dependent mechanism in human cardiac mesenchymal progenitor cells. Cell Death Dis. 2017 8 8 e3020 e3020 10.1038/cddis.2017.409 28837147
    [Google Scholar]
  98. Sundararajan V. Burk U.C. Bajdak-Rusinek K. Revisiting the miR-200 family: A clan of five siblings with essential roles in development and disease. Biomolecules 2022 12 6 781 10.3390/biom12060781 35740906
    [Google Scholar]
  99. Horak M. Novak J. Bienertova-Vasku J. Muscle-specific microRNAs in skeletal muscle development. Dev. Biol. 2016 410 1 1 13 10.1016/j.ydbio.2015.12.013 26708096
    [Google Scholar]
  100. Abkhooie L. Sarabi M.M. Kahroba H. Eyvazi S. Montazersaheb S. Tarhriz V. Hejazi M.S. Potential roles of myomirs in cardiac development and related diseases. Curr. Cardiol. Rev. 2021 17 4 010621188335 10.2174/1573403X16999201124201021 33238844
    [Google Scholar]
  101. Kuang Z. Wu J. Tan Y. Zhu G. Li J. Wu M. MicroRNA in the diagnosis and treatment of doxorubicin-induced cardiotoxicity. Biomolecules 2023 13 3 568 10.3390/biom13030568 36979503
    [Google Scholar]
  102. Zhang Y. Yuan B. Xu Y. Zhou N. Zhang R. Lu L. Feng Z. MiR-208b/miR-21 promotes the progression of cardiac fibrosis through the activation of the TGF-β1/Smad-3 signaling pathway: An in vitro and in vivo study. Front. Cardiovasc. Med. 2022 9 924629 10.3389/fcvm.2022.924629 35865391
    [Google Scholar]
  103. Satoh M. Minami Y. Takahashi Y. Tabuchi T. Nakamura M. Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy. J. Card. Fail. 2010 16 5 404 410 10.1016/j.cardfail.2010.01.002 20447577
    [Google Scholar]
  104. Zhao X. Wang Y. Sun X. The functions of microRNA-208 in the heart. Diabetes Res. Clin. Pract. 2020 160 108004 10.1016/j.diabres.2020.108004 31911250
    [Google Scholar]
  105. Roca-Alonso L. Castellano L. Mills A. Dabrowska A.F. Sikkel M.B. Pellegrino L. Jacob J. Frampton A.E. Krell J. Coombes R.C. Harding S.E. Lyon A.R. Stebbing J. Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in β-adrenergic signaling and enhances apoptosis. Cell Death Dis. 2015 6 5 e1754 e1754 10.1038/cddis.2015.89 25950484
    [Google Scholar]
  106. Han W. Cui H. Liang J. Su X. Role of MicroRNA-30c in cancer progression. J. Cancer 2020 11 9 2593 2601 10.7150/jca.38449 32201529
    [Google Scholar]
  107. Yeung F. Chung E. Guess M.G. Bell M.L. Leinwand L.A. Myh7b/miR-499 gene expression is transcriptionally regulated by MRFs and Eos. Nucleic Acids Res. 2012 40 15 7303 7318 10.1093/nar/gks466 22638570
    [Google Scholar]
  108. Wan Q. Xu T. Ding W. Zhang X. Ji X. Yu T. Yu W. Lin Z. Wang J. miR-499-5p attenuates mitochondrial fission and cell apoptosis via p21 in doxorubicin cardiotoxicity. Front. Genet. 2019 9 734 10.3389/fgene.2018.00734 30719033
    [Google Scholar]
  109. Ruiz-Manriquez L.M. Villarreal-Garza C. Benavides-Aguilar J.A. Torres-Copado A. Isidoro-Sánchez J. Estrada-Meza C. Arvizu-Espinosa M.G. Paul S. Cuevas-Diaz Duran R. Exploring the potential role of circulating micrornas as biomarkers for predicting clinical response to neoadjuvant therapy in breast cancer. Int. J. Mol. Sci. 2023 24 12 9984 10.3390/ijms24129984 37373139
    [Google Scholar]
  110. Shi J. Abdelwahid E. Wei L. Apoptosis in anthracycline cardiomyopathy. Curr. Pediatr. Rev. 2011 7 4 329 336 10.2174/157339611796892265 22212952
    [Google Scholar]
  111. Fu J. Imani S. Wu M.Y. Wu R.C. MicroRNA-34 family in cancers: Role, mechanism, and therapeutic potential. Cancers 2023 15 19 4723 10.3390/cancers15194723 37835417
    [Google Scholar]
  112. Si Z. Zhong Y. Lao S. Wu Y. Zhong G. Zeng W. The role of miRNAs in the resistance of anthracyclines in breast cancer: A systematic review. Front. Oncol. 2022 12 899145 10.3389/fonc.2022.899145 35664800
    [Google Scholar]
  113. Chen Z.R. Hong Y. Wen S.H. Zhan Y.Q. Huang W.Q. Dexmedetomidine pretreatment protects against myocardial ischemia/reperfusion injury by activating STAT3 signaling. Anesth. Analg. 2023 137 2 426 439 10.1213/ANE.0000000000006487 37145970
    [Google Scholar]
  114. Piegari E. Cozzolino A. Ciuffreda L.P. Cappetta D. De Angelis A. Urbanek K. Rossi F. Berrino L. Cardioprotective effects of miR-34a silencing in a rat model of doxorubicin toxicity. Sci. Rep. 2020 10 1 12250 10.1038/s41598‑020‑69038‑3 32704131
    [Google Scholar]
  115. Zhang W.C. Yang J.H. Liu G.H. Yang F. Gong J.L. Jia M.G. Zhang M.J. Zhao L.S. miR-34b/c regulates doxorubicin-induced myocardial cell injury through ITCH. Cell Cycle 2019 18 23 3263 3274 10.1080/15384101.2019.1673618 31627713
    [Google Scholar]
  116. Lu C. Zhou D. Wang Q. Liu W. Yu F. Wu F. Chen C. Crosstalk of MicroRNAs and oxidative stress in the pathogenesis of cancer. Oxid. Med. Cell. Longev. 2020 2020 1 13 10.1155/2020/2415324 32411322
    [Google Scholar]
  117. Hu J. Tian R. Ma Y. Zhen H. Ma X. Su Q. Cao B. Risk of cardiac adverse events in patients treated with immune checkpoint inhibitor regimens: A systematic review and meta-analysis. Front. Oncol. 2021 11 645245 10.3389/fonc.2021.645245 34123795
    [Google Scholar]
  118. Xie S. Yang Y. Luo Z. Li X. Liu J. Zhang B. Li W. Role of non-cardiomyocytes in anticancer drug-induced cardiotoxicity: A systematic review. iScience 2022 25 11 105283 10.1016/j.isci.2022.105283 36300001
    [Google Scholar]
  119. Yamakuchi M. Ferlito M. Lowenstein C.J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. USA 2008 105 36 13421 13426 10.1073/pnas.0801613105 18755897
    [Google Scholar]
  120. Cimmino A. Calin G.A. Fabbri M. Iorio M.V. Ferracin M. Shimizu M. Wojcik S.E. Aqeilan R.I. Zupo S. Dono M. Rassenti L. Alder H. Volinia S. Liu C. Kipps T.J. Negrini M. Croce C.M. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 2005 102 39 13944 13949 10.1073/pnas.0506654102 16166262
    [Google Scholar]
  121. Gan J. Tang F.M.K. Su X. Lu G. Xu J. Lee H.S.S. Lee K.K.H. microRNA-1 inhibits cardiomyocyte proliferation in mouse neonatal hearts by repressing CCND1 expression. Ann. Transl. Med. 2019 7 18 455 455 10.21037/atm.2019.08.68 31700891
    [Google Scholar]
  122. Pang J.K.S. Phua Q.H. Soh B.S. Applications of miRNAs in cardiac development, disease progression and regeneration. Stem Cell Res. Ther. 2019 10 1 336 10.1186/s13287‑019‑1451‑2 31752983
    [Google Scholar]
  123. Viczenczova C. Kura B. Egan Benova T. Yin C. Kukreja R. Slezak J. Tribulova N. Szeiffova Bacova B. Irradiation-induced cardiac connexin-43 and miR-21 responses are hampered by treatment with atorvastatin and aspirin. Int. J. Mol. Sci. 2018 19 4 1128 10.3390/ijms19041128 29642568
    [Google Scholar]
  124. Sobczuk P. Czerwińska M. Kleibert M. Cudnoch-Jędrzejewska A. Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system—from molecular mechanisms to therapeutic applications. Heart Fail. Rev. 2022 27 1 295 319 10.1007/s10741‑020‑09977‑1 32472524
    [Google Scholar]
  125. Zhu W.S. Guo W. Zhu J.N. Tang C.M. Fu Y.H. Lin Q.X. Tan N. Shan Z.X. Hsp90aa1: A novel target gene of miR-1 in cardiac ischemia/reperfusion injury. Sci. Rep. 2016 6 1 24498 10.1038/srep24498 27076094
    [Google Scholar]
  126. Dai B. Wang F. Nie X. Du H. Zhao Y. Yin Z. Li H. Fan J. Wen Z. Wang D.W. Chen C. The cell type–specific functions of miR-21 in cardiovascular diseases. Front. Genet. 2020 11 563166 10.3389/fgene.2020.563166 33329700
    [Google Scholar]
  127. Viczenczova C. Bacova B.S. Benova T.E. Kura B. Yin C. Weismann P. Kukreja R. Slezak J. Tribulova N. Myocardial Connexin-43 and PKC signalling are involved in adaptation of the heart to irradiation-induced injury: Implication of miR-1 and miR-21. Gen Physiol Biophys 2016 35 215 222
    [Google Scholar]
  128. Wang Q. Jiang F. Zhao C. Song J. Hu M. Lv Y. Duan Y. Fang W. Ding R. Qiu Y. miR-21-5p prevents doxorubicin-induced cardiomyopathy by downregulating BTG2. Heliyon 2023 9 5 15451 10.1016/j.heliyon.2023.e15451 37131441
    [Google Scholar]
  129. Xu X. Kriegel A.J. Jiao X. Liu H. Bai X. Olson J. Liang M. Ding X. miR-21 in ischemia/reperfusion injury: A double-edged sword? Physiol. Genomics 2014 46 21 789 797 10.1152/physiolgenomics.00020.2014 25159851
    [Google Scholar]
  130. Yan X. Liu Y. Kong X. Ji J. Zhu H. Zhang Z. Fu T. Yang J. Zhang Z. Liu F. Gu Z. MicroRNA-21-5p are involved in apoptosis and invasion of fibroblast-like synoviocytes through PTEN/PI3K/AKT signal. Cytotechnology 2019 71 1 317 328 10.1007/s10616‑018‑0288‑3 30599075
    [Google Scholar]
  131. van Rooij E. Sutherland L.B. Thatcher J.E. DiMaio J.M. Naseem R.H. Marshall W.S. Hill J.A. Olson E.N. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA 2008 105 35 13027 13032 10.1073/pnas.0805038105 18723672
    [Google Scholar]
  132. Kriegel A.J. Liu Y. Fang Y. Ding X. Liang M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol. Genomics 2012 44 4 237 244 10.1152/physiolgenomics.00141.2011 22214600
    [Google Scholar]
  133. Jing X. Yang J. Jiang L. Chen J. Wang H. MicroRNA-29b regulates the mitochondria-dependent apoptotic pathway by targeting bax in doxorubicin cardiotoxicity. Cell. Physiol. Biochem. 2018 48 2 692 704 10.1159/000491896 30025410
    [Google Scholar]
  134. Chen C. Ponnusamy M. Liu C. Gao J. Wang K. Li P. MicroRNA as a therapeutic target in cardiac remodeling. BioMed Res. Int. 2017 2017 1 25 10.1155/2017/1278436 29094041
    [Google Scholar]
  135. Wang X. Liu Y. Hou H. Shao W. Huang D. Hao Z. Xue H. Ye Y. miRNA-29 aggravates myocardial infarction via inhibiting the PI3K/mTOR/HIF1α/VEGF pathway. Aging 2022 14 7 3129 3142 10.18632/aging.203997 35378513
    [Google Scholar]
  136. Yang J-R. Yan B. Guo Q. Fu F. Wang Z. Yin Z. Wei Y. The Role of miR-29b in Cancer: Regulation, Function, and Signaling. OTT 2015 539
    [Google Scholar]
  137. Monaghan M. Browne S. Schenke-Layland K. Pandit A. A collagen-based scaffold delivering exogenous microrna-29B to modulate extracellular matrix remodeling. Mol. Ther. 2014 22 4 786 796 10.1038/mt.2013.288 24402185
    [Google Scholar]
  138. Da Costa Martins P.A. De Windt L.J. MicroRNAs in control of cardiac hypertrophy. Cardiovasc. Res. 2012 93 4 563 572 10.1093/cvr/cvs013 22266752
    [Google Scholar]
  139. Abdellatif M. The role of microRNA-133 in cardiac hypertrophy uncovered. Circ. Res. 2010 106 1 16 18 10.1161/CIRCRESAHA.109.212183 20056941
    [Google Scholar]
  140. Chan S.Y. Zhang Y.Y. Hemann C. Mahoney C.E. Zweier J.L. Loscalzo J. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009 10 4 273 284 10.1016/j.cmet.2009.08.015 19808020
    [Google Scholar]
  141. Holmgren G. Synnergren J. Andersson C.X. Lindahl A. Sartipy P. MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity. Toxicol. In Vitro 2016 34 26 34 10.1016/j.tiv.2016.03.009 27033315
    [Google Scholar]
  142. Zhao W. Spiers J.G. Vassileff N. Khadka A. Jaehne E.J. van den Buuse M. Hill A.F. microRNA-146a modulates behavioural activity, neuroinflammation, and oxidative stress in adult mice. Mol. Cell. Neurosci. 2023 124 103820 10.1016/j.mcn.2023.103820 36736750
    [Google Scholar]
  143. van de Vrie M. Heymans S. Schroen B. MicroRNA involvement in immune activation during heart failure. Cardiovasc. Drugs Ther. 2011 25 2 161 170 10.1007/s10557‑011‑6291‑y 21503626
    [Google Scholar]
  144. Pasca S. Jurj A. Petrushev B. Tomuleasa C. Matei D. MicroRNA-155 implication in M1 polarization and the impact in inflammatory diseases. Front. Immunol. 2020 11 625 10.3389/fimmu.2020.00625 32351507
    [Google Scholar]
  145. Han R. Gao J. Wang L. Hao P. Chen X. Wang Y. Jiang Z. Jiang L. Wang T. Zhu L. Li X. MicroRNA-146a negatively regulates inflammation via the IRAK1/TRAF6/NF-κB signaling pathway in dry eye. Sci. Rep. 2023 13 1 11192 10.1038/s41598‑023‑38367‑4 37433841
    [Google Scholar]
  146. Jiao P. Wang X.P. Luoreng Z.M. Yang J. Jia L. Ma Y. Wei D.W. miR-223: An effective regulator of immune cell differentiation and inflammation. Int. J. Biol. Sci. 2021 17 9 2308 2322 10.7150/ijbs.59876 34239357
    [Google Scholar]
  147. Wijerathne H. Langston J.C. Yang Q. Sun S. Miyamoto C. Kilpatrick L.E. Kiani M.F. Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiother. Oncol. 2021 158 21 32 10.1016/j.radonc.2021.02.007 33581220
    [Google Scholar]
  148. Guo B. Gu J. Zhuang T. Zhang J. Fan C. Li Y. Zhao M. Chen R. Wang R. Kong Y. Xu S. Gao W. Liang L. Yu H. Han T. MicroRNA-126: From biology to therapeutics. Biomed. Pharmacother. 2025 185 117953 10.1016/j.biopha.2025.117953 40036996
    [Google Scholar]
  149. Yin Z. Zhao Y. Li H. Yan M. Zhou L. Chen C. Wang D.W. miR-320a mediates doxorubicin-induced cardiotoxicity by targeting VEGF signal pathway. Aging 2016 8 1 192 207 10.18632/aging.100876 26837315
    [Google Scholar]
  150. Volkova M. Russell R. III. Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Curr. Cardiol. Rev. 2012 7 4 214 220 10.2174/157340311799960645 22758622
    [Google Scholar]
  151. Yi J. Gao Z.F. MicroRNA-9-5p promotes angiogenesis but inhibits apoptosis and inflammation of high glucose-induced injury in human umbilical vascular endothelial cells by targeting CXCR4. Int. J. Biol. Macromol. 2019 130 1 9 10.1016/j.ijbiomac.2019.02.003 30716366
    [Google Scholar]
  152. Jamaluddin M.S. Weakley S.M. Zhang L. Kougias P. Lin P.H. Yao Q. Chen C. miRNAs: Roles and clinical applications in vascular disease. Expert Rev. Mol. Diagn. 2011 11 1 79 89 10.1586/erm.10.103 21171923
    [Google Scholar]
  153. Boštjančič E. Glavač D. miRNome in myocardial infarction: Future directions and perspective. World J. Cardiol. 2014 6 9 939 958 10.4330/wjc.v6.i9.939 25276296
    [Google Scholar]
  154. Lima J.F. Cerqueira L. Figueiredo C. Oliveira C. Azevedo N.F. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol. 2018 15 3 338 352 10.1080/15476286.2018.1445959 29570036
    [Google Scholar]
  155. Hu X. Liu H. Wang Z. Hu Z. Li L. miR-200a attenuated doxorubicin-induced cardiotoxicity through upregulation of Nrf2 in mice. Oxid. Med. Cell. Longev. 2019 2019 1 13 10.1155/2019/1512326 31781322
    [Google Scholar]
  156. Roncarati R. Viviani Anselmi C. Losi M.A. Papa L. Cavarretta E. Da Costa Martins P. Contaldi C. Saccani Jotti G. Franzone A. Galastri L. Latronico M.V.G. Imbriaco M. Esposito G. De Windt L. Betocchi S. Condorelli G. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2014 63 9 920 927 10.1016/j.jacc.2013.09.041 24161319
    [Google Scholar]
  157. Mao L. Liu S. Hu L. Jia L. Wang H. Guo M. Chen C. Liu Y. Xu L. miR-30 family: A promising regulator in development and disease. BioMed Res. Int. 2018 2018 1 8 10.1155/2018/9623412 30003109
    [Google Scholar]
  158. Nie J. Zhou W. Yu S. Cao S. Wang H. Yu T. miR‑30c reduces myocardial ischemia/reperfusion injury by targeting SOX9 and suppressing pyroptosis. Exp. Ther. Med. 2023 25 4 180 10.3892/etm.2023.11879 37006883
    [Google Scholar]
  159. Tong Z. Jiang B. Wu Y. Liu Y. Li Y. Gao M. Jiang Y. Lv Q. Xiao X. MiR-21 protected cardiomyocytes against doxorubicin-induced apoptosis by targeting BTG2. Int. J. Mol. Sci. 2015 16 7 14511 14525 10.3390/ijms160714511 26132560
    [Google Scholar]
  160. Alves M.T. da Conceição I.M.C.A. de Oliveira A.N. Oliveira H.H.M. Soares C.E. de Paula Sabino A. Silva L.M. Simões R. Luizon M.R. Gomes K.B. MicroRNA miR-133a as a biomarker for doxorubicin-induced cardiotoxicity in women with breast cancer: A signaling pathway investigation. Cardiovasc. Toxicol. 2022 22 7 655 662 10.1007/s12012‑022‑09748‑4 35524907
    [Google Scholar]
  161. Dai H. Xu L. Qian Q. Zhu Q. Chen W. MicroRNA-222 promotes drug resistance to doxorubicin in breast cancer via regulation of miR-222/bim pathway. Biosci. Rep. 2019 39 7 BSR20190650 10.1042/BSR20190650 31273056
    [Google Scholar]
  162. Roberts L.B. Kapoor P. Howard J.K. Shah A.M. Lord G.M. An update on the roles of immune system-derived microRNAs in cardiovascular diseases. Cardiovasc. Res. 2021 117 12 2434 2449 10.1093/cvr/cvab007 33483751
    [Google Scholar]
  163. Cortez M.A. Anfossi S. Ramapriyan R. Menon H. Atalar S.C. Aliru M. Welsh J. Calin G.A. Role of miRNAs in immune responses and immunotherapy in cancer. Genes Chromosomes Cancer 2019 58 4 244 253 10.1002/gcc.22725 30578699
    [Google Scholar]
  164. Lasrado N. Yalaka B. Reddy J. Triggers of inflammatory heart disease. Front. Cell Dev. Biol. 2020 8 192 10.3389/fcell.2020.00192 32266270
    [Google Scholar]
  165. Chen C.Z. Schaffert S. Fragoso R. Loh C. Regulation of immune responses and tolerance: The micro RNA perspective. Immunol. Rev. 2013 253 1 112 128 10.1111/imr.12060 23550642
    [Google Scholar]
  166. Díaz C.R. Hernández-Huerta M.T. Mayoral L.P.C. Villegas M.E.A. Zenteno E. Cruz M.M. Mayoral E.P.C. del Socorro Pina Canseco M. Andrade G.M. Castellanos M.Á. Matías Salvador J.M. Cruz Parada E. Martínez Barras A. Cruz Fernández J.N. Scott-Algara D. Pérez-Campos E. Non-coding RNAs and innate immune responses in cancer. Biomedicines 2024 12 9 2072 10.3390/biomedicines12092072 39335585
    [Google Scholar]
  167. Rurik J.G. Aghajanian H. Epstein J.A. Immune cells and immunotherapy for cardiac injury and repair. Circ. Res. 2021 128 11 1766 1779 10.1161/CIRCRESAHA.121.318005 34043424
    [Google Scholar]
  168. Won T. Kalinoski H.M. Wood M.K. Hughes D.M. Jaime C.M. Delgado P. Talor M.V. Lasrado N. Reddy J. Čiháková D. Cardiac myosin-specific autoimmune T cells contribute to immune-checkpoint-inhibitor-associated myocarditis. Cell Rep. 2022 41 6 111611 10.1016/j.celrep.2022.111611 36351411
    [Google Scholar]
  169. Francis Stuart S.D. De Jesus N.M. Lindsey M.L. Ripplinger C.M. The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. J. Mol. Cell. Cardiol. 2016 91 114 122 10.1016/j.yjmcc.2015.12.024 26739214
    [Google Scholar]
  170. Baik A.H. Oluwole O.O. Johnson D.B. Shah N. Salem J.E. Tsai K.K. Moslehi J.J. Mechanisms of cardiovascular toxicities associated with immunotherapies. Circ. Res. 2021 128 11 1780 1801 10.1161/CIRCRESAHA.120.315894 33934609
    [Google Scholar]
  171. Raisch J. Darfeuille-Michaud A. Nguyen H.T. Role of microRNAs in the immune system, inflammation and cancer. World J. Gastroenterol. 2013 19 20 2985 2996 10.3748/wjg.v19.i20.2985 23716978
    [Google Scholar]
  172. Shalata W. Abu-salman A. Steckbeck R. Mathew Jacob B. Massalha I. Yakobson A. Cardiac toxicity associated with immune checkpoint inhibitors: A systematic review. Cancers 2021 13 20 5218 10.3390/cancers13205218 34680365
    [Google Scholar]
  173. Ye J. Guo R. Shi Y. Qi F. Guo C. Yang L. miR-155 regulated inflammation response by the SOCS1-STAT3-PDCD4 axis in atherogenesis. Mediators Inflamm. 2016 2016 1 14 10.1155/2016/8060182 27843203
    [Google Scholar]
  174. Carbonell T. Gomes A.V. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol. 2020 36 101607 10.1016/j.redox.2020.101607 32593128
    [Google Scholar]
  175. Wu Y. Xu Y. Xu L. Drug therapy for myocarditis induced by immune checkpoint inhibitors. Front. Pharmacol. 2023 14 1161243 10.3389/fphar.2023.1161243 37305530
    [Google Scholar]
  176. Nelson M.C. O’Connell R.M. MicroRNAs: At the interface of metabolic pathways and inflammatory responses by macrophages. Front. Immunol. 2020 11 1797 10.3389/fimmu.2020.01797 32922393
    [Google Scholar]
  177. Chakrabortty A. Patton D.J. Smith B.F. Agarwal P. miRNAs: Potential as biomarkers and therapeutic targets for cancer. Genes 2023 14 7 1375 10.3390/genes14071375 37510280
    [Google Scholar]
  178. Baumann V. Winkler J. miRNA-based therapies: Strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med. Chem. 2014 6 17 1967 1984 10.4155/fmc.14.116 25495987
    [Google Scholar]
  179. Shen H. Liu J. Hu J. Shen X. Zhang C. Wu D. Feng M. Yang M. Li Y. Yang Y. Wang W. Zhang Q. Yang J. Chen K. Li X. Generative pretraining from large-scale transcriptomes for single-cell deciphering. iScience 2023 26 5 106536 10.1016/j.isci.2023.106536 37187700
    [Google Scholar]
  180. Isenmann M. Stoddart M.J. Schmelzeisen R. Gross C. Della Bella E. Rothweiler R.M. Basic principles of RNA interference: Nucleic acid types and in vitro intracellular delivery methods. Micromachines 2023 14 7 1321 10.3390/mi14071321 37512632
    [Google Scholar]
  181. Gao F. Xu T. Zang F. Luo Y. Pan D. Cardiotoxicity of anticancer drugs: Molecular mechanisms, clinical management and innovative treatment. Drug Des. Devel. Ther. 2024 18 4089 4116 10.2147/DDDT.S469331 39286288
    [Google Scholar]
  182. Chakraborty C. Sharma A.R. Sharma G. Lee S.S. Therapeutic advances of miRNAs: A preclinical and clinical update. J. Adv. Res. 2021 28 127 138 10.1016/j.jare.2020.08.012 33364050
    [Google Scholar]
  183. Small E.M. Frost R.J.A. Olson E.N. MicroRNAs add a new dimension to cardiovascular disease. Circulation 2010 121 8 1022 1032 10.1161/CIRCULATIONAHA.109.889048 20194875
    [Google Scholar]
  184. Sadeghi M.S. lotfi M. Soltani N. Farmani E. Fernandez J.H.O. Akhlaghitehrani S. Mohammed S.H. Yasamineh S. Kalajahi H.G. Gholizadeh O. Recent advances on high-efficiency of microRNAs in different types of lung cancer: A comprehensive review. Cancer Cell Int. 2023 23 1 284 10.1186/s12935‑023‑03133‑z 37986065
    [Google Scholar]
  185. Loyer X. Potteaux S. Vion A.C. Guérin C.L. Boulkroun S. Rautou P.E. Ramkhelawon B. Esposito B. Dalloz M. Paul J.L. Julia P. Maccario J. Boulanger C.M. Mallat Z. Tedgui A. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ. Res. 2014 114 3 434 443 10.1161/CIRCRESAHA.114.302213 24255059
    [Google Scholar]
  186. Balaraman A.K. Arockia Babu M. Afzal M. Sanghvi G. M M R. Gupta S. Rana M. Ali H. Goyal K. Subramaniyan V. Wong L.S. Kumarasamy V. Exosome-based miRNA delivery: Transforming cancer treatment with mesenchymal stem cells. Regen. Ther. 2025 28 558 572 10.1016/j.reth.2025.01.019 40034540
    [Google Scholar]
  187. Segal M. Slack F.J. Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin. Drug Discov. 2020 15 9 987 991 10.1080/17460441.2020.1765770 32421364
    [Google Scholar]
  188. Waheed I. Ali A. Tabassum H. Khatoon N. Lai W.F. Zhou X. Lipid-based nanoparticles as drug delivery carriers for cancer therapy. Front. Oncol. 2024 14 1296091 10.3389/fonc.2024.1296091 38660132
    [Google Scholar]
  189. Valatabar N. Oroojalian F. Kazemzadeh M. Mokhtarzadeh A.A. Safaralizadeh R. Sahebkar A. Recent advances in gene delivery nanoplatforms based on spherical nucleic acids. J. Nanobiotechnology 2024 22 1 386 10.1186/s12951‑024‑02648‑5 38951806
    [Google Scholar]
  190. Pagoni M. Cava C. Sideris D.C. Avgeris M. Zoumpourlis V. Michalopoulos I. Drakoulis N. miRNA-based technologies in cancer therapy. J. Pers. Med. 2023 13 11 1586 10.3390/jpm13111586 38003902
    [Google Scholar]
  191. Reda El Sayed S. Cristante J. Guyon L. Denis J. Chabre O. Cherradi N. MicroRNA therapeutics in cancer: Current advances and challenges. Cancers 2021 13 11 2680 10.3390/cancers13112680 34072348
    [Google Scholar]
  192. Cervena K. Novosadova V. Pardini B. Naccarati A. Opattova A. Horak J. Vodenkova S. Buchler T. Skrobanek P. Levy M. Vodicka P. Vymetalkova V. Analysis of MicroRNA expression changes during the course of therapy in rectal cancer patients. Front. Oncol. 2021 11 702258 10.3389/fonc.2021.702258 34540669
    [Google Scholar]
  193. Leger K.J. Leonard D. Nielson D. de Lemos J.A. Mammen P.P.A. Winick N.J. Circulating microRNAs: Potential markers of cardiotoxicity in children and young adults treated with anthracycline chemotherapy. J. Am. Heart Assoc. 2017 6 4 004653 10.1161/JAHA.116.004653 28377429
    [Google Scholar]
  194. Lan H. Lu H. Wang X. Jin H. MicroRNAs as potential biomarkers in cancer: Opportunities and challenges. BioMed Res. Int. 2015 2015 1 17 10.1155/2015/125094 25874201
    [Google Scholar]
  195. Jayawardena T.M. Egemnazarov B. Finch E.A. Zhang L. Payne J.A. Pandya K. Zhang Z. Rosenberg P. Mirotsou M. Dzau V.J. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. 2012 110 11 1465 1473 10.1161/CIRCRESAHA.112.269035 22539765
    [Google Scholar]
  196. Nalbant E. Akkaya-Ulum Y.Z. Exploring regulatory mechanisms on miRNAs and their implications in inflammation-related diseases. Clin. Exp. Med. 2024 24 1 142 10.1007/s10238‑024‑01334‑y 38958690
    [Google Scholar]
  197. Zhao L. Lu X. Cao Y. MicroRNA and signal transduction pathways in tumor radiation response. Cell. Signal. 2013 25 7 1625 1634 10.1016/j.cellsig.2013.04.004 23602933
    [Google Scholar]
  198. Samanta S. Balasubramanian S. Rajasingh S. Patel U. Dhanasekaran A. Dawn B. Rajasingh J. MicroRNA: A new therapeutic strategy for cardiovascular diseases. Trends Cardiovasc. Med. 2016 26 5 407 419 10.1016/j.tcm.2016.02.004 27013138
    [Google Scholar]
  199. Jusoh A.R. Mohan S. Lu Ping T. Tengku Din T.A.D.A.A. Haron J. Romli R. Jaafar H. Nafi S.N. Tuan Salwani T.I. Yahya M.M. Plasma circulating mirnas profiling for identification of potential breast cancer early detection biomarkers. Asian Pac. J. Cancer Prev. 2021 22 5 1375 1381 10.31557/APJCP.2021.22.5.1375 34048164
    [Google Scholar]
  200. Adamcova M. Parova H. Lencova-Popelova O. Kollarova-Brazdova P. Baranova I. Slavickova M. Stverakova T. Mikyskova P.S. Mazurova Y. Sterba M. Cardiac miRNA expression during the development of chronic anthracycline-induced cardiomyopathy using an experimental rabbit model. Front. Pharmacol. 2024 14 1298172 10.3389/fphar.2023.1298172 38235109
    [Google Scholar]
  201. Sharma R. Kashyap J. Olanrewaju O.A. Jabbar A. Someshwar F.N.U. Saeed H. Varrassi G. Qadeer H.A. Kumar S. Cheema A.Y. Khatri M. Wazir M. Ullah F. Cardio-oncology: Managing cardiovascular complications of cancer therapies. Cureus 2023 15 12 51038 10.7759/cureus.51038 38269231
    [Google Scholar]
  202. Cuzick J. The importance of long-term follow up of participants in clinical trials. Br. J. Cancer 2023 128 3 432 438 10.1038/s41416‑022‑02038‑4 36456713
    [Google Scholar]
  203. Ewer M.S. Herson J. Cardiovascular adverse events in oncology trials: Understanding and appreciating the differences between clinical trial data and real-world reports. Cardiooncology 2022 8 1 13 10.1186/s40959‑022‑00139‑w 35854393
    [Google Scholar]
  204. Bai T. Wu C. Association of cardiovascular disease on cancer: Observational and mendelian randomization analyses. Sci. Rep. 2024 14 1 28465 10.1038/s41598‑024‑78787‑4 39719456
    [Google Scholar]
  205. Park C.J. Branch M.E. Vasu S. Meléndez G.C. The role of cardiac MRI in animal models of cardiotoxicity: Hopes and challenges. J. Cardiovasc. Transl. Res. 2020 13 3 367 376 10.1007/s12265‑020‑09981‑8 32248349
    [Google Scholar]
  206. Zamani P. Oskuee R.K. Atkin S.L. Navashenaq J.G. Sahebkar A. MicroRNAs as important regulators of the NLRP3 inflammasome. Prog. Biophys. Mol. Biol. 2020 150 50 61 10.1016/j.pbiomolbio.2019.05.004 31100298
    [Google Scholar]
  207. Hueso M. Mallén A. Suñé-Pou M. Aran J.M. Suñé-Negre J.M. Navarro E. ncRNAs in therapeutics: Challenges and limitations in nucleic acid-based drug delivery. Int. J. Mol. Sci. 2021 22 21 11596 10.3390/ijms222111596 34769025
    [Google Scholar]
  208. Saw P.E. Song E. Advancements in clinical RNA therapeutics: Present developments and prospective outlooks. Cell Rep. Med. 2024 5 5 101555 10.1016/j.xcrm.2024.101555 38744276
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673386907250730010201
Loading
/content/journals/cmc/10.2174/0109298673386907250730010201
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: anti-cancer therapy ; biomarkers ; MiRNAs ; treatment ; diagnosis ; cardiotoxicity ; cardiovascular diseases
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test