Skip to content
2000
image of Synthesis, Antiproliferative Activity, ADME Profiling, and Docking Studies of Novel 1, 2, 3-Triazole Derivatives of 2-Amino and 2-Mercaptobenzoxazole

Abstract

Introduction

Benzoxazole is a privileged scaffold with diverse biological activities, and its hybridization with a 1,2,3-triazole ring can improve affinity and efficacy. This study aimed to synthesize novel 1,2,3-triazole derivatives of 2-aminobenzoxazole and 2-mercaptobenzoxazole, and to evaluate their antiproliferative activity, predicted pharmacokinetic properties, and molecular interactions with kinase targets.

Methods

1,2,3-triazole derivatives of 2-aminobenzoxazole and 2-mercaptobenzoxazole were synthesized cyclization, propargylation, and copper-catalyzed click reaction. Antiproliferative activity was evaluated against human cancer cell lines: LN-229, Capan-1, HCT-116, NCI-H460, DND-41, HL-60, K-562, and Z-138. The ADME properties of 1,2,3-triazole-benzoxazole hybrids were evaluated using the SwissADME tool. The most active compounds were assessed for Human Gastrointestinal Absorption (HGA) and Blood-Brain Barrier (BBB) permeability using the Egan model. Molecular docking was performed on serine/threonine kinase TAO2 and tyrosine kinase c-Src.

Results

A series of novel 1,2,3-triazole derivatives of 2-amino and 2-mercaptobenzoxazole were synthesized click chemistry. Coumarin-containing compounds and showed the most pronounced antiproliferative activity across all tested cell lines. Both demonstrated high predicted HGA and low likelihood of crossing the BBB. Compound exhibited the highest binding affinity for TAO2, while compound showed strong interaction with c-Src.

Discussion

The results highlight the favorable influence of coumarin substitution on antiproliferative activity, with computational ADME and docking data supporting the observed efficacy.

Conclusion

This study outlines a viable method for the synthesis of novel 1,2,3-triazole derivatives of 2-aminobenzoxazole and 2-mercaptobenzoxazole. Compounds and demonstrate promising antiproliferative activity and pharmacokinetic potential, supporting their further development as anticancer candidates.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673393777250714045359
2025-07-31
2025-11-04
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673393777250714045359/BMS-CMC-2025-186.html?itemId=/content/journals/cmc/10.2174/0109298673393777250714045359&mimeType=html&fmt=ahah

References

  1. Ferlay J. Colombet M. Soerjomataram I. Parkin D.M. Piñeros M. Znaor A. Bray F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021 149 4 778 789 10.1002/ijc.33588 33818764
    [Google Scholar]
  2. Kamal U. Javed N.M. Arun K. Biological potential of benzoxazole derivatives: An updated review. Asian J. Pharm. Clin. Res. 2020 13 28 41 10.22159/ajpcr.2020.v13i8.37958
    [Google Scholar]
  3. McKee M.L. Kerwin S.M. Synthesis, metal ion binding, and biological evaluation of new anticancer 2-(2′-hydroxyphenyl)benzoxazole analogs of UK-1. Bioorg Med. Chem. 2008 16 4 1775 1783 10.1016/j.bmc.2007.11.019 18037301
    [Google Scholar]
  4. El-Hady H.A. Abubshait S.A. Synthesis and anticancer evaluation of imidazolinone and benzoxazole derivatives. Arab. J. Chem 2017 10 S3725 S3731 10.1016/j.arabjc.2014.05.006
    [Google Scholar]
  5. Lee J. Han S.Y. Jung H. Yang J. Choi J.W. Chae C.H. Park C.H. Choi S.U. Lee K. Ha J.D. Lee C.O. Ryu J.W. Kim H.R. Koh J.S. Cho S.Y. Synthesis and structure–activity relationship of aminopyridines with substituted benzoxazoles as c-Met kinase inhibitors. Bioorg. Med. Chem. Lett 2012 22 12 4044 4048 10.1016/j.bmcl.2012.04.083 22579487
    [Google Scholar]
  6. Rida S. Ashour F. Elhawash S. Elsemary M. Badr M. Shalaby M. Synthesis of some novel benzoxazole derivatives as anticancer, anti-HIV-1 and antimicrobial agents. Eur. J. Med. Chem 2005 40 9 949 959 10.1016/j.ejmech.2005.03.023 16040162
    [Google Scholar]
  7. Bramhananda Reddy N. Burra V.R. Ravindranath L.K. Sreenivasulu R. Naresh Kumar V. Synthesis and biological evaluation of benzoxazole fused combretastatin derivatives as anticancer agents. Monatsh Chem 2016 147 3 593 598 10.1007/s00706‑016‑1685‑y
    [Google Scholar]
  8. Altintop M.D. Ciftci G.A. Temel H.E. Synthesis and evaluation of new benzoxazole derivatives as potential antiglioma agents. Marmara. Pharm. J 2018 22 547 558
    [Google Scholar]
  9. Srivastava A. Aggarwal L. Jain N. One-pot sequential alkynylation and cycloaddition: Regioselective construction and biological evaluation of novel benzoxazole-triazole derivatives. ACS Comb. Sci 2015 17 1 39 48 10.1021/co500135z 25396730
    [Google Scholar]
  10. Osmaniye D. Korkut Çelikateş B. Sağlık B.N. Levent S. Acar Çevik U. Kaya Çavuşoğlu B. Ilgın S. Özkay Y. Kaplancıklı Z.A. Synthesis of some new benzoxazole derivatives and investigation of their anticancer activities. Eur. J. Med. Chem 2021 210 112979 10.1016/j.ejmech.2020.112979 33183865
    [Google Scholar]
  11. Philoppes J.N. Lamie P.F. Design and synthesis of new benzoxazole/benzothiazole-phthalimide hybrids as antitumor-apoptotic agents. Bioorg. Chem 2019 89 102978 10.1016/j.bioorg.2019.102978 31136900
    [Google Scholar]
  12. Padalkar V.S. Borse B.N. Gupta V.D. Phatangare K.R. Patil V.S. Umape P.G. Sekar N. Synthesis and antimicrobial activity of novel 2-substituted benzimidazole, benzoxazole and benzothiazole derivatives. Arab. J. Chem 2016 9 S1125 S1130 10.1016/j.arabjc.2011.12.006
    [Google Scholar]
  13. Faydali N. Erol M. Temiz Arpaci O. Kuyucuklu G. Semih Salan A. Novel sulfonylamido benzoxazole derivatives: Synthesis, characterisation, molecular docking, DFT, and antimicrobial activity investigations. Chem Biodivers 2025 22 2 e202402127 10.1002/cbdv.202402127 39327807
    [Google Scholar]
  14. Shanbhan G.S. Bhargava A. Singh G.P. Joshi S.D. Chundawat N. Synthesis, molecular simulation studies, in vitro biological assessment of 2-substituted benzoxazole derivatives as promising antimicrobial agents. Turk. J. Chem 2023 47 1 263 279 10.55730/1300‑0527.3535 37720857
    [Google Scholar]
  15. Chauhan B. Kumar G. Singh S. Negi M. Synthesis, characterization of benzoxazole derivatives for in vitro anti-tubercular and anti-bacterial activity. IJSPR 2023 14 1789 1794
    [Google Scholar]
  16. Kaushik C.P. Chahal M. Synthesis and antibacterial activity of benzothiazole and benzoxazole-appended substituted 1,2,3-triazoles. J. Chem. Sci 2020 132 1 142 10.1007/s12039‑020‑01844‑8
    [Google Scholar]
  17. Rakas A. Persoons L. Daelemans D. Grgić D.K. Kraljević T.G. A Sustainable synthesis of novel 2-(3,4-disubstituted phenyl)benzoxazole derivatives and their antiproliferative and antibacterial evaluation. Molecules 2025 30 8 1767 10.3390/molecules30081767 40333762
    [Google Scholar]
  18. Balaswamy G. Pradep P. Srinivas K. Rajakomuraiah T. Design, synthesis and antimicrobial activity of novel 2-substituted benzoxazole derivatives. Int. J. Chem. Sci 2012 10 2287 2296
    [Google Scholar]
  19. Zhou Y. Sun Z. Zhou Q. Zeng W. Zhang M. Feng S. Xue W. Novel flavonol derivatives containing benzoxazole as potential antiviral agents: design, synthesis, and biological evaluation. Mol Divers 2024 28 6 3919 3935 10.1007/s11030‑023‑10786‑5 38229000
    [Google Scholar]
  20. Zhang N. Zeng W. Zhou Q. Sun Z. Meng K. Qin Y. Hu Y. Xue W. Design, synthesis, antibacterial and antiviral evaluation of chalcone derivatives containing benzoxazole. Arab. J. Chem 2024 17 1 105368 10.1016/j.arabjc.2023.105368
    [Google Scholar]
  21. Seth K. Garg S.K. Kumar R. Purohit P. Meena V.S. Goyal R. Banerjee U.C. Chakraborti A.K. 2-(2-arylphenyl)benzoxazole as a novel anti-inflammatory scaffold: synthesis and biological evaluation. ACS Med. Chem. Lett 2014 5 5 512 516 10.1021/ml400500e 24900871
    [Google Scholar]
  22. Angajala G. Subashini R. Synthesis, molecular modeling, and pharmacological evaluation of new 2-substituted benzoxazole derivatives as potent anti-inflammatory agents. Struct Chem 2020 31 1 263 273 10.1007/s11224‑019‑01374‑1
    [Google Scholar]
  23. Hamid I. Nadeem H. Ansari S.F. Khiljee S. Abbasi I. Bukhari A. Arif M. Imran M. 2-Substituted benzoxazoles as potent anti-inflammatory agents: Synthesis, molecular docking and in vivo anti-ulcerogenic studies. Med. Chem 2022 18 7 791 809 10.2174/1573406418666211220125344 34931968
    [Google Scholar]
  24. Bai H. Cao Z. Meng S. Ge R. Ban S. Zhang Y. Tang L. Li Q.S. Synthesis and anti-inflammatory activity evaluation of benzoxazole derivatives as new myeloid differentiation protein 2 inhibitors. Chem. Biodivers 2023 20 6 e202201145 10.1002/cbdv.202201145 37080925
    [Google Scholar]
  25. Tariq S. Kamboj P. Alam O. Amir M. 1,2,4-Triazole-based benzothiazole/benzoxazole derivatives: Design, synthesis, p38α MAP kinase inhibition, anti-inflammatory activity and molecular docking studies. Bioorg Chem 2018 81 630 641 10.1016/j.bioorg.2018.09.015 30253336
    [Google Scholar]
  26. Song Y. Zhou L. Wang J. Wang F. Yang Q. Synthesis and application of benzoxazole derivative-based fluorescent probes for naked eye recognition. Luminescence 2020 35 7 1010 1016 10.1002/bio.3806 32406126
    [Google Scholar]
  27. Meisner Q.J. Younes A.H. Yuan Z. Sreenath K. Hurley J.J.M. Zhu L. Excitation-dependent multiple fluorescence of a substituted 2-(2′-Hydroxyphenyl)benzoxazole. J Phys Chem A 2018 122 47 9209 9223 10.1021/acs.jpca.8b07988 30411891
    [Google Scholar]
  28. Fataj X. Achazi A.J. Stolze C. Muench S. Burges R. Anufriev I. Mignon M. Mollenhauer D. Nischang I. Hager M.D. Schubert U.S. Pyridinium-benzoxazole-based anode material for sustainable all-organic polymer-based batteries. ACS Appl Energy Mater 2025 8 7 4220 4230 10.1021/acsaem.4c03127
    [Google Scholar]
  29. Xin Y. Chen J. Yang Z. Zhang J. Synthesis of a stable benzoxazole gel from an imine gel for adsorption and catalysis. Langmuir 2021 37 18 5531 5539 10.1021/acs.langmuir.1c00272 33913320
    [Google Scholar]
  30. Liu J. Nakamura Y. Ogura T. Shibasaki Y. Ando S. Ueda M. Optically transparent sulfur-containing polyimide−TiO2 nanocomposite films with high refractive index and negative pattern formation from poly(amic acid)−TiO2 nanocomposite film. Chem Mater 2008 20 1 273 281 10.1021/cm071430s
    [Google Scholar]
  31. Soni S. Sahiba N. Teli S. Teli P. Agarwal L.K. Agarwal S. Advances in the synthetic strategies of benzoxazoles using 2-aminophenol as a precursor: An up-to-date review. RSC Advances 2023 13 34 24093 24111 10.1039/D3RA03871H 37577091
    [Google Scholar]
  32. Claudio Viegas-Junior Danuello A. da Silva Bolzani V. Barreiro E.J. Fraga C.A.M. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr Med Chem 2007 14 17 1829 1852 10.2174/092986707781058805 17627520
    [Google Scholar]
  33. Al-blewi F.F. Almehmadi M.A. Aouad M.R. Bardaweel S.K. Sahu P.K. Messali M. Rezki N. El Ashry E.S.H. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1,2,3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents. Chem Cent J 2018 12 1 110 10.1186/s13065‑018‑0479‑1 30387018
    [Google Scholar]
  34. Bozorov K. Zhao J. Aisa H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg Med Chem 2019 27 16 3511 3531 10.1016/j.bmc.2019.07.005 31300317
    [Google Scholar]
  35. Ertl P. Altmann E. McKenna J.M. The most common functional groups in bioactive molecules and how their popularity has evolved over time. J Med Chem 2020 63 15 8408 8418 10.1021/acs.jmedchem.0c00754 32663408
    [Google Scholar]
  36. Raic-Malic S. Mescic A. Recent trends in 1,2,3-Triazolo-nucleosides as promising anti-infective and anticancer agents. Curr Med Chem 2015 22 12 1462 1499 10.2174/0929867322666150227150127 25723510
    [Google Scholar]
  37. Aprile S. Galli U. Tron G.C. Del Grosso E. Travelli C. Grosa G. Data on metabolic stability, aqueous solubility and CYP inhibition of novel triazole-based nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. Data Brief 2020 28 105034 105046 10.1016/j.dib.2019.105034 32226807
    [Google Scholar]
  38. Massarotti A. Aprile S. Mercalli V. Del Grosso E. Grosa G. Sorba G. Tron G.C. Are 1,4- and 1,5-disubstituted 1,2,3-triazoles good pharmacophoric groups? ChemMedChem 2014 9 11 2497 2508 10.1002/cmdc.201402233 25079879
    [Google Scholar]
  39. Johansson J.R. Beke-Somfai T. Said Stålsmeden A. Kann N. Ruthenium-catalyzed azide alkyne cycloaddition reaction: Scope, mechanism and application. Chem Rev 2016 116 23 14726 14768 10.1021/acs.chemrev.6b00466 27960271
    [Google Scholar]
  40. Coulidiati T.H. Dantas B.B. Faheina-Martins G.V. Gonçalves J.C.R. do Nascimento W.S. de Oliveira R.N. Camara C.A. Oliveira E.J. Lara A. Gomes E.R. Araújo D.A.M. Distinct effects of novel naphtoquinone-based triazoles in human leukaemic cell lines. J Pharm Pharmacol 2015 67 12 1682 1695 10.1111/jphp.12474 26256440
    [Google Scholar]
  41. Kumbhare R.M. Dadmal T.L. Ramaiah M.J. Kishore K.S.V. Pushpa Valli S.N.C.V.L. Tiwari S.K. Appalanaidu K. Rao Y.K. Bhadra M. Synthesis and anticancer evaluation of novel triazole linked N-(pyrimidin-2-yl)benzo[d]thiazol-2-amine derivatives as inhibitors of cell survival proteins and inducers of apoptosis in MCF-7 breast cancer cells. Bioorg Med Chem Lett 2015 25 3 654 658 10.1016/j.bmcl.2014.11.083 25563891
    [Google Scholar]
  42. El Bourakadi K. Mekhzoum M.E.M. Saby C. Morjani H. Chakchak H. Merghoub N. Qaiss A. Bouhfid R. Synthesis, characterization and in vitro anticancer activity of thiabendazole-derived 1,2,3-triazole derivatives. New J Chem 2020 44 28 12099 12106 10.1039/C9NJ05685H
    [Google Scholar]
  43. Luo H. Lv Y.F. Zhang H. Hu J.M. Li H.M. Liu S.J. Synthesis and antitumor activity of 1-substituted 1,2,3-triazole-mollugin derivatives. Molecules 2021 26 11 3249 3263 10.3390/molecules26113249 34071319
    [Google Scholar]
  44. Mendapara J.V. Vaghasiya M.D. Agrawal M. AlAjmi M.F. Rajani D.P. Kumari P. Development of novel 1,2,3-triazole-benzoxazole hybrids as an E. coli DNA gyrase B inhibitor: design, synthesis, in silico, and in vitro antimicrobial evaluation. ChemistrySelect 2025 10 1 e202404966 10.1002/slct.202404966
    [Google Scholar]
  45. Pervaram S. Ashok D. Rao B.A. Sarasija M. Reddy C.V.R. Design and synthesis of new 1,2,3-triazole-pyrazole hybrids as antimicrobial agents. Russ J Gen Chem 2017 87 10 2454 2461 10.1134/S1070363217100280
    [Google Scholar]
  46. López-Rojas P. Janeczko M. Kubiński K. Amesty Á. Masłyk M. Estévez-Braun A. Synthesis and antimicrobial activity of 4-substituted 1,2,3-triazole-coumarin derivatives. Molecules 2018 23 1 199 216 10.3390/molecules23010199 29346325
    [Google Scholar]
  47. Bistrović A. Krstulović L. Stolić I. Drenjančević D. Talapko J. Taylor M.C. Kelly J.M. Bajić M. Raić-Malić S. Synthesis, anti-bacterial and anti-protozoal activities of amidinobenzimidazole derivatives and their interactions with DNA and RNA. J. Enzyme. Inhib. Med. Chem 2018 33 1 1323 1334 10.1080/14756366.2018.1484733 30165753
    [Google Scholar]
  48. Ayati A. Emami S. Foroumadi A. The importance of triazole scaffold in the development of anticonvulsant agents. Eur. J. Med. Chem 2016 109 380 392 10.1016/j.ejmech.2016.01.009 26826582
    [Google Scholar]
  49. Nassar E.M. Abdelrazek F.M. Ayyad R.R. El-Farargy A.F. Synthesis and some reactions of 1-aryl-4-acetyl-5-methyl-1,2,3-triazole derivatives with anticonvulsant activity. Mini. Rev. Med. Chem 2016 16 11 926 936 10.2174/1389557516666160118105505 26776225
    [Google Scholar]
  50. Song M.X. Deng X.Q. Recent developments on triazole nucleus in anticonvulsant compounds: A review. J. Enzyme. Inhib. Med. Chem 2018 33 1 453 478 10.1080/14756366.2017.1423068 29383949
    [Google Scholar]
  51. Serafini M. Pirali T. Tron G.C. Click 1,2,3-triazoles in drug discovery and development: From the flask to the clinic? Adv. Heterocycl Chem 2021 134 101 148 10.1016/bs.aihch.2020.10.001
    [Google Scholar]
  52. Singh M. Batt S.M. Canales C.S.C. Pavan F.R. Kumar S.A. Akshatha H.S. Bhagyalalitha M. Pujar K.G. Bidye D. Pujar G.V. Besra G.S. Novel hybrids of 1,2,3- triazole-benzoxazole: design, synthesis, and assessment of DprE1 enzyme inhibitors using fluorometric assay and computational analysis. J. Enzyme. Inhib. Med. Chem 2024 39 1 2403744 2403763 10.1080/14756366.2024.2403744 39329328
    [Google Scholar]
  53. Huisgen R. 1,3-dipolar cycloadditions, past and future. Angew. Chem. Int. Ed. Engl 1963 2 10 565 598 10.1002/anie.196305651
    [Google Scholar]
  54. Rostovtsev V.V. Green L.G. Fokin V.V. Sharpless K.B. A stepwise huisgen cycloaddition process: copper(I)- catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 2002 41 14 2596 2599 10.1002/1521‑3773(20020715)41:14<2596::AID‑ANIE2596>3.0.CO;2‑4 12203546
    [Google Scholar]
  55. Tornøe C.W. Christensen C. Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem 2002 67 9 3057 3064 10.1021/jo011148j 11975567
    [Google Scholar]
  56. Tian S. Wang J. Li Y. Li D. Xu L. Hou T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev 2015 86 2 10 10.1016/j.addr.2015.01.009 25666163
    [Google Scholar]
  57. Sen B. Johnson F. M. Regulation of Src family kinases in human cancers. J. Signal. Transduct 2011 2011 865819 10.1155/2011/865819
    [Google Scholar]
  58. Seeliger M.A. Ranjitkar P. Kasap C. Shan Y. Shaw D.E. Shah N.P. Kuriyan J. Maly D.J. Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations. Cancer Res 2009 69 6 2384 2392 10.1158/0008‑5472.CAN‑08‑3953 19276351
    [Google Scholar]
  59. Zhou T.J. Sun L.G. Gao Y. Goldsmith E.J. Crystal structure of the MAP3K TAO2 kinase domain bound by an inhibitor staurosporine. Acta Biochim Biophys Sin (Shanghai) 2006 38 6 385 392 10.1111/j.1745‑7270.2006.00173.x 16761096
    [Google Scholar]
  60. Wu Y.Q. Limburg D.C. Wilkinson D.E. Hamilton G.S. Formation of nitrogen-containing heterocycles using di(imidazole-1-yl)methanimine. J. Heterocycl. Chem 2003 40 1 191 193 10.1002/jhet.5570400129
    [Google Scholar]
  61. Kakkar S. Kumar S. Narasimhan B. Ramasamy K. Design, synthesis and biological potential of heterocyclic benzoxazole scafolds as promising antimicrobial and anticancer agents. Chem. Cent. J 2018 12 96 106 10.1186/s13065‑018‑0464‑8 30232633
    [Google Scholar]
  62. Daina A. Michielin O. Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  63. Hocquet A. Langgård M. An evaluation of the MM+ force field. J. Mol. Model 1998 4 3 94 112 10.1007/s008940050128
    [Google Scholar]
  64. Stewart J.J.P. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem 1989 10 2 209 220 10.1002/jcc.540100208
    [Google Scholar]
  65. Hsu K.C. Chen Y.F. Lin S.R. Yang J.M. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics 2011 12 S1 S33 10.1186/1471‑2105‑12‑S1‑S33 21342564
    [Google Scholar]
  66. Krstulović L. Mišković Špoljarić K. Rastija V. Filipović N. Bajić M. Glavaš-Obrovac L. Novel 1,2,3- triazole-containing quinoline-benzimidazole hybrids: synthesis, antiproliferative activity, in silico ADME predictions, and docking. Molecules 2023 28 19 6950 10.3390/molecules28196950 37836794
    [Google Scholar]
  67. Boček Pavlinac I. Dragić M. Persoons L. Daelemans D. Hranjec M. Synthesis and antiproliferative activity of 2,6-disubstituted imidazo[4,5-b]pyridines prepared by Suzuki cross coupling. Molecules 2023 28 20 7208 10.3390/molecules28207208 37894686
    [Google Scholar]
  68. Perin N. Hok L. Beč A. Persoons L. Vanstreels E. Daelemans D. Vianello R. Hranjec M. N-substituted benzimidazole acrylonitriles as in vitro tubulin polymerization inhibitors: Synthesis, biological activity and computational analysis. Eur. J. Med. Chem 2021 211 113003 10.1016/j.ejmech.2020.113003 33248847
    [Google Scholar]
  69. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  70. Lovering F. Bikker J. Humblet C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem 2009 52 21 6752 6756 10.1021/jm901241e 19827778
    [Google Scholar]
  71. Fagerholm U. Prediction of human pharmacokinetics —gastrointestinal absorption. J. Pharm. Pharmacol 2007 59 7 905 916 10.1211/jpp.59.7.0001 17637184
    [Google Scholar]
  72. Daina A. Zoete V. A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016 11 11 1117 1121 10.1002/cmdc.201600182 27218427
    [Google Scholar]
  73. Veber D.F. Johnson S.R. Cheng H.Y. Smith B.R. Ward K.W. Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem 2002 45 12 2615 2623 10.1021/jm020017n 12036371
    [Google Scholar]
  74. English J.M. Cobb M.H. Pharmacological inhibitors of MAPK pathways. Trends. Pharmacol. Sci 2002 23 1 40 45 10.1016/S0165‑6147(00)01865‑4 11804650
    [Google Scholar]
  75. Malsy M. Bitzinger D. Graf B. Bundscherer A. Staurosporine induces apoptosis in pancreatic carcinoma cells PaTu 8988t and Panc-1 via the intrinsic signaling pathway. Eur. J. Med. Res 2019 24 1 5 10.1186/s40001‑019‑0365‑x 30686270
    [Google Scholar]
  76. Li S. Src kinase signaling in leukaemia. Int. J. Biochem. Cell. Biol 2007 39 7-8 1483 1488 10.1016/j.biocel.2007.01.027 17350876
    [Google Scholar]
  77. Cui Z. Chen S. Wang Y. Gao C. Chen Y. Tan C. Jiang Y. Design, synthesis and evaluation of azaacridine derivatives as dual-target EGFR and Src kinase inhibitors for antitumor treatment. Eur. J. Med. Chem 2017 136 372 381 10.1016/j.ejmech.2017.05.006 28525838
    [Google Scholar]
  78. Rastija V. Jukić M. Opačak-Bernardi T. Krstulović L. Stolić I. Glavaš-Obrovac L. Bajić M. Investigation of the structural and physicochemical requirements ofquinoline-arylamidine hybrids for the growth inhibition of K562 and Rajileukemia cells. Turk. J. Chem 2019 43 1 251 265 10.3906/kim‑1807‑61
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673393777250714045359
Loading
/content/journals/cmc/10.2174/0109298673393777250714045359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test