Skip to content
2000
image of Romosozumab's Effect on Bone Mineral Density in Patients with Osteoporosis: A Systematic Review and Meta-Analysis

Abstract

Introduction

One of the most effective osteoanabolic drugs for treating osteoporosis is romosozumab, which was developed as a consequence of growing knowledge of the Wnt signaling system. This review explored how romosozumab affects the bone mineral density (BMD) in osteoporotic patients.

Methods

Up until January 2024, PubMed, Web of Science, and Scopus were reviewed for any randomized controlled trials (RCTs) evaluating the impact of osteoporotic treatment with romosozumab on BMD changes and bone metabolism markers in primary osteoporosis patients. Pooled Hedges’ g indices, which were consistently used across all included studies to measure standardized mean differences, were computed along with their corresponding 95% confidence intervals using either a random-effects or fixed-effects model.

Results

Out of the 1855 papers, 24 RCTs met the inclusion criteria. Patients with osteoporosis who received romosozumab for a period of time demonstrated an augmentation in their lumbar spine BMD. The study findings indicated that the total hip and femoral neck BMD demonstrated significant enhancement in 22 (out of 23) and 19 (out of 21) studies, respectively.

Conclusion

In patients with osteoporosis, romosozumab could markedly increase the total hip, lumbar spine, and femoral neck BMD. This finding could be verified by measuring bone turnover indicators such as PINP, TRACP-5b, and CTX.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673371957250707161319
2025-08-14
2025-11-05
Loading full text...

Full text loading...

References

  1. Kanis J.A. McCloskey E.V. Johansson H. Oden A. Melton L.J. III Khaltaev N. A reference standard for the description of osteoporosis. Bone 2008 42 3 467 475 10.1016/j.bone.2007.11.001 18180210
    [Google Scholar]
  2. Amarnath S.S. Kumar V. Das S.L. Classification of Osteoporosis. Indian J. Orthop. 2023 57 S1 49 54 10.1007/s43465‑023‑01058‑3 38107823
    [Google Scholar]
  3. Ballane G. Cauley J.A. Luckey M.M. El-Hajj Fuleihan G. Worldwide prevalence and incidence of osteoporotic vertebral fractures. Osteoporos. Int. 2017 28 5 1531 1542 10.1007/s00198‑017‑3909‑3 28168409
    [Google Scholar]
  4. Sànchez-Riera L. Wilson N. Kamalaraj N. Nolla J.M. Kok C. Li Y. Macara M. Norman R. Chen J.S. Smith E.U.R. Sambrook P.N. Hernández C.S. Woolf A. March L. Osteoporosis and fragility fractures. Best Pract. Res. Clin. Rheumatol. 2010 24 6 793 810 10.1016/j.berh.2010.10.003 21665127
    [Google Scholar]
  5. Haixia W Shu M Li Y Panpan W Kehuan S Yingquan X Effectiveness associated with different therapies for senile osteoporosis: A network meta-analysis. J Tradit Chin Med 2020 40 1 17 27 32227762
    [Google Scholar]
  6. Liu H. Xiong Y. Wang H. Yang L. Wang C. Liu X. Wu Z. Li X. Ou L. Zhang R. Zhu X. Effects of water extract from epimedium on neuropeptide signaling in an ovariectomized osteoporosis rat model. J. Ethnopharmacol. 2018 221 126 136 10.1016/j.jep.2018.04.035 29705515
    [Google Scholar]
  7. Tu K.N. Lie J.D. Wan C.K.V. Cameron M. Austel A.G. Nguyen J.K. Van K. Hyun D. Osteoporosis: A review of treatment options. P&T 2018 43 2 92 104 29386866
    [Google Scholar]
  8. Walker M.D. Shane E. Postmenopausal osteoporosis. N. Engl. J. Med. 2023 389 21 1979 1991 10.1056/NEJMcp2307353 37991856
    [Google Scholar]
  9. Cheng C.H. Chen L.R. Chen K.H. Osteoporosis due to hormone imbalance: An overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int. J. Mol. Sci. 2022 23 3 1376 10.3390/ijms23031376 35163300
    [Google Scholar]
  10. Johnell O. Kanis J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006 17 12 1726 1733 10.1007/s00198‑006‑0172‑4 16983459
    [Google Scholar]
  11. Vilaca T. Eastell R. Schini M. Osteoporosis in men. Lancet Diabetes Endocrinol. 2022 10 4 273 283 10.1016/S2213‑8587(22)00012‑2 35247315
    [Google Scholar]
  12. Langdahl B.L. Harsløf T. Medical treatment of osteoporotic vertebral fractures. Ther. Adv. Musculoskelet. Dis. 2011 3 1 17 29 10.1177/1759720X10392105 22870463
    [Google Scholar]
  13. Li S.S. He S.H. Xie P.Y. Li W. Zhang X.X. Li T.F. Li D.F. Recent progresses in the treatment of osteoporosis. Front. Pharmacol. 2021 12 717065 10.3389/fphar.2021.717065 34366868
    [Google Scholar]
  14. McClung M.R. Role of bone-forming agents in the management of osteoporosis. Aging Clin. Exp. Res. 2021 33 4 775 791 10.1007/s40520‑020‑01708‑8 33594648
    [Google Scholar]
  15. Lim S.Y. Romosozumab for the treatment of osteoporosis in women: Efficacy, safety, and cardiovascular risk. Womens Health 2022 18 17455057221125577 10.1177/17455057221125577 36154750
    [Google Scholar]
  16. Langdahl B.L. Overview of treatment approaches to osteoporosis. Br. J. Pharmacol. 2021 178 9 1891 1906 10.1111/bph.15024 32060897
    [Google Scholar]
  17. Miller P.D. Adachi J.D. Albergaria B.H. Cheung A.M. Chines A.A. Gielen E. Langdahl B.L. Miyauchi A. Oates M. Reid I.R. Santiago N.R. Vanderkelen M. Wang Z. Yu Z. Efficacy and safety of romosozumab among postmenopausal women with osteoporosis and mild-to-moderate chronic kidney disease. J. Bone Miner. Res. 2020 37 8 1437 1445 10.1002/jbmr.4563 35466448
    [Google Scholar]
  18. Cosman F. Crittenden D.B. Adachi J.D. Binkley N. Czerwinski E. Ferrari S. Hofbauer L.C. Lau E. Lewiecki E.M. Miyauchi A. Zerbini C.A.F. Milmont C.E. Chen L. Maddox J. Meisner P.D. Libanati C. Grauer A. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 2016 375 16 1532 1543 10.1056/NEJMoa1607948 27641143
    [Google Scholar]
  19. Saag K.G. Petersen J. Brandi M.L. Karaplis A.C. Lorentzon M. Thomas T. Maddox J. Fan M. Meisner P.D. Grauer A. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med. 2017 377 15 1417 1427 10.1056/NEJMoa1708322 28892457
    [Google Scholar]
  20. Ominsky M.S. Li C. Li X. Tan H.L. Lee E. Barrero M. Asuncion F.J. Dwyer D. Han C.Y. Vlasseros F. Samadfam R. Jolette J. Smith S.Y. Stolina M. Lacey D.L. Simonet W.S. Paszty C. Li G. Ke H.Z. Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J. Bone Miner. Res. 2011 26 5 1012 1021 10.1002/jbmr.307 21542004
    [Google Scholar]
  21. Singh S. Dutta S. Khasbage S. Kumar T. Sachin J. Sharma J. Varthya S.B. A systematic review and meta-analysis of efficacy and safety of Romosozumab in postmenopausal osteoporosis. Osteoporos. Int. 2022 33 1 1 12 10.1007/s00198‑021‑06095‑y 34432115
    [Google Scholar]
  22. Li R. Mukherjee M.B. Jin Z. Liu H. Lin K. Liu Q. Dilger J.P. Lin J. The potential effect of general anesthetics in cancer surgery: Meta-analysis of postoperative metastasis and inflammatory cytokines. Cancers 2023 15 10 2759 10.3390/cancers15102759 37345096
    [Google Scholar]
  23. Moher D. Liberati A. Tetzlaff J. Altman D.G. PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009 151 4 264 269, W64 10.7326/0003‑4819‑151‑4‑200908180‑00135 19622511
    [Google Scholar]
  24. Barker T.H. Stone J.C. Sears K. Klugar M. Tufanaru C. Leonardi-Bee J. Aromataris E. Munn Z. The revised JBI critical appraisal tool for the assessment of risk of bias for randomized controlled trials. JBI. Evidence. Synthesis. 2023 21 3 494 506 10.11124/JBIES‑22‑00430 36727247
    [Google Scholar]
  25. Moola S. Munn Z. Tufanaru C. Aromataris E. Sears K. Sfetcu R. Systematic reviews of etiology and risk. JBI. Manual. for Evidence. Synthesis JBI 2020 10.46658/JBIMES‑24‑06
    [Google Scholar]
  26. Samarghandian S Farkhondeh T Samini F. A review on possible therapeutic effect of Nigella sativa and thymoquinone in neurodegenerative diseases. CNS. Neurol. Disord. Drug. Targets. 2018 17 6 412 420 10.2174/1871527317666180702101455 29962349
    [Google Scholar]
  27. Mahumud R.A. Kamara J.K. Renzaho A.M.N. The epidemiological burden and overall distribution of chronic comorbidities in coronavirus disease-2019 among 202,005 infected patients: Evidence from a systematic review and meta-analysis. Infection 2020 48 6 813 833 10.1007/s15010‑020‑01502‑8 32813220
    [Google Scholar]
  28. Porto De Toledo I. Stefani F.M. Porporatti A.L. Mezzomo L.A. Peres M.A. Flores-Mir C. De Luca Canto G. Prevalence of otologic signs and symptoms in adult patients with temporomandibular disorders: A systematic review and meta-analysis. Clin. Oral. Investig. 2017 21 2 597 605 10.1007/s00784‑016‑1926‑9 27511214
    [Google Scholar]
  29. Baek K.H. Chung Y.S. Koh J.M. Kim I.J. Kim K.M. Min Y.K. Park K.D. Dinavahi R. Maddox J. Yang W. Kim S. Lee S.J. Cho H. Lim S.K. Romosozumab in postmenopausal Korean women with osteoporosis: A randomized, double-blind, placebo-controlled efficacy and safety study. Endocrinol. Metab. 2021 36 1 60 69 10.3803/EnM.2020.848 33677928
    [Google Scholar]
  30. Ebina K. Hirao M. Tsuboi H. Nagayama Y. Kashii M. Kaneshiro S. Miyama A. Nakaya H. Kunugiza Y. Okamura G. Etani Y. Takami K. Goshima A. Nakata K. Effects of prior osteoporosis treatment on early treatment response of romosozumab in patients with postmenopausal osteoporosis. Bone 2020 140 115574 10.1016/j.bone.2020.115574 32777516
    [Google Scholar]
  31. Inage K. Orita S. Eguchi Y. Shiga Y. Koda M. Aoki Y. Kotani T. Akazawa T. Furuya T. Nakamura J. Takahashi H. Suzuki-Narita M. Maki S. Hagiwara S. Inoue M. Norimoto M. Kinoshita H. Sato T. Sato M. Enomoto K. Takaoka H. Mizuki N. Hozumi T. Tsuchiya R. Kim G. Otagiri T. Mukaihata T. Hishiya T. Ohtori S. Time-course changes in bone metabolism markers and density in patients with osteoporosis treated with romosozumab: A multicenter retrospective study. Yonsei Med. J. 2021 62 9 829 835 10.3349/ymj.2021.62.9.829 34427069
    [Google Scholar]
  32. Inose H. Ariga A. Motoyoshi T. Fukushima K. Tomizawa S. Kato T. Takahashi K. Yoshii T. Okawa A. The real-world effect of 12 months of romosozumab treatment on patients with osteoporosis with a high risk of fracture and factors predicting the rate of bone mass increase: A multicenter retrospective study. JBMR Plus 2022 6 7 e10637 10.1002/jbm4.10637 35866147
    [Google Scholar]
  33. Ishibashi H. Crittenden D.B. Miyauchi A. Libanati C. Maddox J. Fan M. Chen L. Grauer A. Romosozumab increases bone mineral density in postmenopausal Japanese women with osteoporosis: A phase 2 study. Bone 2017 103 209 215 10.1016/j.bone.2017.07.005 28687496
    [Google Scholar]
  34. Jeong C. Kim J. Lim Y. Ha J. Kang M.I. Baek K.H. Effect of romosozumab on trabecular bone score compared to anti-resorptive agents in postmenopausal women with osteoporosis. J. Bone Metab. 2021 28 4 317 323 10.11005/jbm.2021.28.4.317 34905678
    [Google Scholar]
  35. Kobayakawa T. Miyazaki A. Saito M. Suzuki T. Takahashi J. Nakamura Y. Denosumab versus romosozumab for postmenopausal osteoporosis treatment. Sci. Rep. 2021 11 1 11801 10.1038/s41598‑021‑91248‑6 34083636
    [Google Scholar]
  36. Kobayakawa T. Miyazaki A. Takahashi J. Nakamura Y. Effects of romosozumab with and without active vitamin D analog supplementation for postmenopausal osteoporosis. Clin. Nutr. ESPEN 2022 48 267 274 10.1016/j.clnesp.2022.02.002 35331501
    [Google Scholar]
  37. Kobayakawa T. Suzuki T. Nakano M. Saito M. Miyazaki A. Takahashi J. Nakamura Y. Real-world effects and adverse events of romosozumab in Japanese osteoporotic patients: A prospective cohort study. Bone Rep. 2021 14 101068 10.1016/j.bonr.2021.101068 33981812
    [Google Scholar]
  38. Lane N.E. Betah D. Deignan C. Oates M. Wang Z. Timoshanko J. Khan A.A. Binkley N. Effect of romosozumab treatment in postmenopausal women with osteoporosis and knee osteoarthritis: Results from a substudy of a phase 3 clinical trial. ACR Open Rheumatol. 2024 6 1 43 51 10.1002/acr2.11619 37985218
    [Google Scholar]
  39. Langdahl B. Hofbauer L.C. Ferrari S. Wang Z. Fahrleitner-Pammer A. Gielen E. Lakatos P. Czerwinski E. Gimeno E.J. Timoshanko J. Oates M. Libanati C. Romosozumab efficacy and safety in European patients enrolled in the FRAME trial. Osteoporos. Int. 2022 33 12 2527 2536 10.1007/s00198‑022‑06544‑2 36173415
    [Google Scholar]
  40. Lewiecki E.M. Blicharski T. Goemaere S. Lippuner K. Meisner P.D. Miller P.D. Miyauchi A. Maddox J. Chen L. Horlait S. A phase III randomized placebo-controlled trial to evaluate efficacy and safety of romosozumab in men with osteoporosis. J. Clin. Endocrinol. Metab. 2018 103 9 3183 3193 10.1210/jc.2017‑02163 29931216
    [Google Scholar]
  41. McClung M.R. Brown J.P. Diez-Perez A. Resch H. Caminis J. Meisner P. Bolognese M.A. Goemaere S. Bone H.G. Zanchetta J.R. Maddox J. Bray S. Grauer A. Effects of 24 months of treatment with romosozumab followed by 12 months of denosumab or placebo in postmenopausal women with low bone mineral density: A randomized, double-blind, phase 2, parallel group study. J. Bone Miner. Res. 2018 33 8 1397 1406 10.1002/jbmr.3452 29694685
    [Google Scholar]
  42. McClung M.R. Grauer A. Boonen S. Bolognese M.A. Brown J.P. Diez-Perez A. Langdahl B.L. Reginster J.Y. Zanchetta J.R. Wasserman S.M. Katz L. Maddox J. Yang Y.C. Libanati C. Bone H.G. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 2014 370 5 412 420 10.1056/NEJMoa1305224 24382002
    [Google Scholar]
  43. Miyauchi A. Dinavahi R.V. Crittenden D.B. Yang W. Maddox J.C. Hamaya E. Nakamura Y. Libanati C. Grauer A. Shimauchi J. Increased bone mineral density for 1 year of romosozumab, vs. placebo, followed by 2 years of denosumab in the Japanese subgroup of the pivotal FRAME trial and extension. Arch. Osteoporos. 2019 14 1 59 10.1007/s11657‑019‑0608‑z 31168657
    [Google Scholar]
  44. Miyauchi A. Hamaya E. Yang W. Nishi K. Libanati C. Tolman C. Shimauchi J. Romosozumab followed by denosumab in Japanese women with high fracture risk in the FRAME trial. J. Bone Miner. Metab. 2021 39 2 278 288 10.1007/s00774‑020‑01147‑5 33057807
    [Google Scholar]
  45. Mochizuki T. Yano K. Ikari K. Okazaki K. Effects of romosozumab or denosumab treatment on the bone mineral density and disease activity for 6 months in patients with rheumatoid arthritis with severe osteoporosis: An open-label, randomized, pilot study. Osteoporos. Sarcopenia 2021 7 3 110 114 10.1016/j.afos.2021.08.001 34632114
    [Google Scholar]
  46. Padhi D. Allison M. Kivitz A.J. Gutierrez M.J. Stouch B. Wang C. Jang G. Multiple doses of sclerostin antibody romosozumab in healthy men and postmenopausal women with low bone mass: A randomized, double-blind, placebo-controlled study. J. Clin. Pharmacol. 2014 54 2 168 178 10.1002/jcph.239 24272917
    [Google Scholar]
  47. Saito T. Mizobuchi M. Kato T. Suzuki T. Fujiwara Y. Kanamori N. Makuuchi M. Honda H. One-year romosozumab treatment followed by one-year denosumab treatment for osteoporosis in patients on hemodialysis: An observational study. Calcif. Tissue Int. 2022 112 1 34 44 10.1007/s00223‑022‑01031‑6 36287217
    [Google Scholar]
  48. Sato M. Inaba M. Yamada S. Emoto M. Ohno Y. Tsujimoto Y. Efficacy of romosozumab in patients with osteoporosis on maintenance hemodialysis in Japan; an observational study. J. Bone Miner. Metab. 2021 39 6 1082 1090 10.1007/s00774‑021‑01253‑y 34324082
    [Google Scholar]
  49. Tominaga A. Wada K. Okazaki K. Nishi H. Terayama Y. Kato Y. Early clinical effects, safety, and predictors of the effects of romosozumab treatment in osteoporosis patients: One-year study. Osteoporos. Int. 2021 32 10 1999 2009 10.1007/s00198‑021‑05925‑3 33770201
    [Google Scholar]
  50. Tominaga A. Wada K. Kato Y. Nishi H. Terayama Y. Okazaki K. Early clinical effects, safety, and appropriate selection of bone markers in romosozumab treatment for osteoporosis patients: A 6-month study. Osteoporos. Int. 2021 32 4 653 661 10.1007/s00198‑020‑05639‑y 32979066
    [Google Scholar]
  51. Shakeri A. Adanty C. Romosozumab (sclerostin monoclonal antibody) for the treatment of osteoporosis in postmenopausal women: A review. J. Popul. Ther. Clin. Pharmacol. 2020 27 1 e25 e31 10.15586/jptcp.v27i1.655 31922699
    [Google Scholar]
  52. Shah A.D. Shoback D. Lewiecki E.M. Sclerostin inhibition: A novel therapeutic approach in the treatment of osteoporosis. Int. J. Womens Health 2015 7 565 580 10.2147/IJWH.S73244 26082665
    [Google Scholar]
  53. Vasiliadis E.S. Evangelopoulos D.S. Kaspiris A. Benetos I.S. Vlachos C. Pneumaticos S.G. The role of sclerostin in bone diseases. J. Clin. Med. 2022 11 3 806 10.3390/jcm11030806 35160258
    [Google Scholar]
  54. Guañabens N. Gifre L. Peris P. The role of Wnt signaling and sclerostin in the pathogenesis of glucocorticoid-induced osteoporosis. Curr. Osteoporos. Rep. 2014 12 1 90 97 10.1007/s11914‑014‑0197‑0 24488619
    [Google Scholar]
  55. Marini F. Giusti F. Palmini G. Brandi M.L. Role of Wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporos. Int. 2023 34 2 213 238 10.1007/s00198‑022‑06523‑7 35982318
    [Google Scholar]
  56. Zhong Y. Li J. Luo J. Chen F. Advances in bone turnover markers (PINP and CTX) in optimizing anti-resorptive and anabolic therapies against osteoporosis. Discov. Med. 2021 32 167 149 154 35221001
    [Google Scholar]
  57. Koivula M.K. Risteli L. Risteli J. Measurement of aminoterminal propeptide of type I procollagen (PINP) in serum. Clin. Biochem. 2012 45 12 920 927 10.1016/j.clinbiochem.2012.03.023 22480789
    [Google Scholar]
  58. Gillet M. Vasikaran S. Inderjeeth C. The role of PINP in diagnosis and management of metabolic bone disease. Clin. Biochem. Rev. 2021 42 1 3 10 10.33176/AACB‑20‑0001 34305208
    [Google Scholar]
  59. Ashrafizadeh M. Ang H.L. Moghadam E.R. Mohammadi S. Zarrin V. Hushmandi K. Samarghandian S. Zarrabi A. Najafi M. Mohammadinejad R. Kumar A.P. MicroRNAs and their influence on the ZEB family: Mechanistic aspects and therapeutic applications in cancer therapy. Biomolecules 2020 10 7 1040 10.3390/biom10071040 32664703
    [Google Scholar]
  60. Halleen J.M. Tiitinen S.L. Ylipahkala H. Fagerlund K.M. Väänänen H.K. Tartrate-resistant acid phosphatase 5b (TRACP 5b) as a marker of bone resorption. Clin. Lab. 2006 52 9-10 499 509 17078477
    [Google Scholar]
  61. Farkhondeh T. Samarghandian S. Azimin-Nezhad M. Samini F. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. Int. J. Clin. Exp. Med. 2015 8 2 2465 2470 25932190
    [Google Scholar]
  62. Fabre S. Funck-Brentano T. Cohen-Solal M. Anti-sclerostin antibodies in osteoporosis and other bone diseases. J. Clin. Med. 2020 9 11 3439 10.3390/jcm9113439 33114755
    [Google Scholar]
  63. Liu H. Xiong Y. Zhu X. Gao H. Yin S. Wang J. Chen G. Wang C. Xiang L. Wang P. Fang J. Zhang R. Yang L. Icariin improves osteoporosis, inhibits the expression of PPARγ, C/EBPα, FABP4 mRNA, N1ICD and jagged1 proteins, and increases Notch2 mRNA in ovariectomized rats. Exp. Ther. Med. 2017 13 4 1360 1368 10.3892/etm.2017.4128 28413478
    [Google Scholar]
  64. Wu Z. Ou L. Wang C. Yang L. Wang P. Liu H. Xiong Y. Sun K. Zhang R. Zhu X. Icaritin induces MC3T3-E1 subclone14 cell differentiation through estrogen receptor-mediated ERK1/2 and p38 signaling activation. Biomed. Pharmacother. 2017 94 1 9 10.1016/j.biopha.2017.07.071 28742995
    [Google Scholar]
  65. Takada J. Dinavahi R. Miyauchi A. Hamaya E. Hirama T. Libanati C. Nakamura Y. Milmont C.E. Grauer A. Relationship between P1NP, a biochemical marker of bone turnover, and bone mineral density in patients transitioned from alendronate to romosozumab or teriparatide: A post hoc analysis of the STRUCTURE trial. J. Bone Miner. Metab. 2020 38 3 310 315 10.1007/s00774‑019‑01057‑1 31707465
    [Google Scholar]
  66. Eriksen E.F. Chapurlat R. Boyce R.W. Shi Y. Brown J.P. Horlait S. Betah D. Libanati C. Chavassieux P. Modeling-based bone formation after 2 months of Romosozumab treatment: results from the FRAME clinical trial. J. Bone Miner. Res. 2020 37 1 36 40 10.1002/jbmr.4457 34633116
    [Google Scholar]
  67. Appelman-Dijkstra N.M. Papapoulos S.E. Modulating bone resorption and bone formation in opposite directions in the treatment of postmenopausal osteoporosis. Drugs 2015 75 10 1049 1058 10.1007/s40265‑015‑0417‑7 26056029
    [Google Scholar]
  68. Inose H. Kato T. Tomizawa S. Ariga A. Motoyoshi T. Fukushima K. Takahashi K. Yoshii T. Okawa A. Impact of romosozumab on serum calcium concentration and factors predicting the fluctuations in calcium concentration upon romosozumab administration: A multicenter retrospective study. Bone Rep. 2022 17 101635 10.1016/j.bonr.2022.101635 36389625
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673371957250707161319
Loading
/content/journals/cmc/10.2174/0109298673371957250707161319
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keywords: Romosozumab ; PINP ; bisphosphonates ; CTX ; TRACP-5b ; BMD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test