Skip to content
2000
image of New 4-Benzenesulfonamide Derivatives of Pyrazolo[1,5-a][1,3,5]triazine as Purine Bioisosteres: Development, Synthesis, and Anticancer Perspective

Abstract

Introduction

Seven new 4-[2-(dichloromethyl)pyrazolo[1,5-][1,3,5]triazine derivatives were investigated for anticancer activity, possible molecular mechanisms of anticancer action, and ADMET properties.

Methods

The 4-benzenesulfonamide derivatives of pyrazolo[1,5-][1,3,5]triazine were synthesized using the condensation of -(2,2-dichloro-1-cyanovinyl)-amides IV with 1-pyrazol-5-amine. Compound antitumor activities were evaluated using the NCI-60 human cancer cell line. AutoDockTools and AutoDock Vina software were used for molecular modeling. Using the ADMETlab 3.0 and pkCSM web sources, the ADMET properties of compounds , , and were calculated.

Results

Seven new pyrazolo[1,5-][1,3,5]triazine derivatives were synthesized. The compounds , , and exhibit high activity >1 µM against leukemia, colon, and renal cancer. Compound 4 exhibited the most potent activity, with IC values of 0.32  µM against leukemia, 0.49-0.89  µM against colon cancer, and 0.92  µM against renal cancer. Molecular modeling has demonstrated a potential antitumor mechanism involving CDK. The predicted ADMET profile of compounds , , and is favorable.

Discussion

The seven novel pyrazolo[1,5-][1,3,5]triazines, as purine bioisosteres, were developed, synthesized, and investigated by and methods.

Conclusion

Seven novel pyrazolo[1,5-][1,3,5]triazine derivatives exhibited anticancer activity against the NCI-60 cancer cell lines. The compounds , , and demonstrated strong anticancer activity, with growth inhibition (GI) values exceeding 50% across all nine cancer types tested. The most active compound, , is against leukemia, colon cancer, renal cancer, and lung cancer. All compounds exhibit low toxicity, with LC values of 100 µM or greater. The molecular docking of compounds , , and revealed the potential to inhibit cancer-associated cyclin-dependent kinases. The predicted ADMET profiles of their compounds are favorable, providing a basis for further improvement of their anticancer activity.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673385989250711112625
2025-07-31
2025-11-04
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673385989250711112625/BMS-CMC-2025-81.html?itemId=/content/journals/cmc/10.2174/0109298673385989250711112625&mimeType=html&fmt=ahah

References

  1. Besson A. Dowdy S.F. Roberts J.M. CDK inhibitors: Cell cycle regulators and beyond. Dev. Cell 2008 14 2 159 169 10.1016/j.devcel.2008.01.013 18267085
    [Google Scholar]
  2. Łukasik P. Załuski M. Gutowska I. Cyclin-dependent kinases (CDK) and their role in diseases development–review. Int. J. Mol. Sci. 2021 22 6 2935 10.3390/ijms22062935 33805800
    [Google Scholar]
  3. Adon A.M. Zeng X. Harrison M.K. Sannem S. Kiyokawa H. Kaldis P. Saavedra H.I. CDK2 and CDK4 regulate the centrosome cycle and are critical mediators of centrosome amplification in p53-null cells. Mol. Cell. Biol. 2010 30 3 694 710 10.1128/MCB.00253‑09 19933848
    [Google Scholar]
  4. Fagundes R. Teixeira L.K. Cyclin E/CDK2: DNA replication, replication stress and genomic instability. Front. Cell Dev. Biol. 2021 9 774845 10.3389/fcell.2021.774845 34901021
    [Google Scholar]
  5. Tadesse S. Anshabo A.T. Portman N. Lim E. Tilley W. Caldon C.E. Wang S. Targeting CDK2 in cancer: Challenges and opportunities for therapy. Drug Discov. Today 2020 25 2 406 413 10.1016/j.drudis.2019.12.001 31839441
    [Google Scholar]
  6. Wang L. Shao X. Zhong T. Wu Y. Xu A. Sun X. Gao H. Liu Y. Lan T. Tong Y. Tao X. Du W. Wang W. Chen Y. Li T. Meng X. Deng H. Yang B. He Q. Ying M. Rao Y. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nat. Chem. Biol. 2021 17 5 567 575 10.1038/s41589‑021‑00742‑5 33664520
    [Google Scholar]
  7. Ghafouri-Fard S. Khoshbakht T. Hussen B.M. Dong P. Gassler N. Taheri M. Baniahmad A. Dilmaghani N.A. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int. 2022 22 1 325 10.1186/s12935‑022‑02747‑z 36266723
    [Google Scholar]
  8. Caruso J.A. Duong M.T. Carey J.P.W. Hunt K.K. Keyomarsi K. Low-molecular-weight cyclin E in human cancer: Cellular consequences and opportunities for targeted therapies. Cancer Res. 2018 78 19 5481 5491 10.1158/0008‑5472.CAN‑18‑1235 30194068
    [Google Scholar]
  9. Chohan T. Qian H. Pan Y. Chen J.Z. Cyclin-dependent kinase-2 as a target for cancer therapy: Progress in the development of CDK2 inhibitors as anti-cancer agents. Curr. Med. Chem. 2014 22 2 237 263 10.2174/0929867321666141106113633 25386824
    [Google Scholar]
  10. Shah A. Teraiya N. Kamdar J.H. Juneja T. Sangani C.B. Ahmed S. Kapadiya K. Novel purine derivatives as selective CDK2 inhibitors with potential anticancer activities: Design, synthesis and biological evaluation. Bioorg. Chem. 2024 153 107841 10.1016/j.bioorg.2024.107841 39326340
    [Google Scholar]
  11. Cicenas J. Kalyan K. Sorokinas A. Stankunas E. Levy J. Meskinyte I. Stankevicius V. Kaupinis A. Valius M. Roscovitine in cancer and other diseases. Ann. Transl. Med. 2015 3 10 135 10.3978/j.issn.2305‑5839.2015.03.61 26207228
    [Google Scholar]
  12. Łukasik P. Baranowska-Bosiacka I. Kulczycka K. Gutowska I. Inhibitors of cyclin-dependent kinases: Types and their mechanism of action. Int. J. Mol. Sci. 2021 22 6 2806 10.3390/ijms22062806 33802080
    [Google Scholar]
  13. Velihina Y.S. Pil’o S.G. Zyabrev V.S. Moskvina V.S. Shablykina O.V. Brovarets V.S. 2-(Dichloromethyl)pyrazolo[1,5-a][1,3,5]triazines: Synthesis and anticancer activity. Biopolim. Kletka 2020 36 1 60 73 10.7124/bc.000A21
    [Google Scholar]
  14. Severin O. Pilyo S. Semenyuta I. Kachaeva M. Zhirnov V. Brovaret V. Design, synthesis and anticancer activity of novel 4-(5-amino-4-cyano-1,3-oxazol-2-yl)benzenesulfonamide derivative. Current Chemistry Letters 2025 14 1 159 172 10.5267/j.ccl.2024.8.001
    [Google Scholar]
  15. Boyd M.R. Paull K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res. 1995 34 2 91 109 10.1002/ddr.430340203
    [Google Scholar]
  16. Boyd M.R. The NCI in vitro anticancer drug discovery screen. Anticancer Drug Development Guide. Cancer Drug Discovery and Development Humana Press Totowa, New Jersey 1997 10.1007/978‑1‑4615‑8152‑9_2
    [Google Scholar]
  17. Marvin Sketch 5.5.0.1. Available from: https://www.chemaxon.com
  18. Hanwell M.D. Curtis D.E. Lonie D.C. Vandermeersch T. Zurek E. Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012 4 1 17 10.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  19. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  20. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  21. Discovery Studio Visualizer. Available from: https://discover.3ds.com/
  22. Fu L. Shi S. Yi J. Wang N. He Y. Wu Z. Peng J. Deng Y. Wang W. Wu C. Lyu A. Zeng X. Zhao W. Hou T. Cao D. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024 52 W1 W422 W431 10.1093/nar/gkae236 38572755
    [Google Scholar]
  23. Pires D.E.V. Blundell T.L. Ascher D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015 58 9 4066 4072 10.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  24. Velihina Y. Kachaeva M. Pil’o S. Moskvina V. Shablykina O. Brovarets V. Synthesis of 4-hetaryl-2- (dichloromethyl)pyrazolo[1,5-a][1,3,5]-triazines. J. Chem. Ukrainian 2020 86 5 53 62 10.33609/2708‑129X.86.5.2020.53‑62
    [Google Scholar]
  25. Velihina Y. S. Pil’o S. G. Zyabrev V. S. Brovarets V.S. Synthesis and evaluation of the antiviral activity of 2-(dichloromethyl)pyrazolo[1,5-a][1,3,5]triazines. Rep Natl Acad Sci Ukr 2019 7 7 75 80 10.15407/dopovidi2019.07.075
    [Google Scholar]
  26. Oudah K.H. Najm M.A.A. Samir N. Serya R.A.T. Abouzid K.A.M. Design, synthesis and molecular docking of novel pyrazolo[1,5-a][1,3,5]triazine derivatives as CDK2 inhibitors. Bioorg. Chem. 2019 92 103239 10.1016/j.bioorg.2019.103239 31513938
    [Google Scholar]
  27. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The protein data bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  28. Zhang M. Zhang L. Hei R. Li X. Cai H. Wu X. Zheng Q. Cai C. CDK inhibitors in cancer therapy, an overview of recent development. Am. J. Cancer Res. 2021 11 5 1913 1935 34094661
    [Google Scholar]
  29. Mounika P. Gurupadayya B. Kumar H.Y. Namitha B. An overview of CDK enzyme inhibitors in cancer therapy. Curr. Cancer Drug Targets 2023 23 8 603 619 10.2174/1568009623666230320144713 36959160
    [Google Scholar]
  30. Huang J. Zheng L. Sun Z. Li J. CDK4/6 inhibitor resistance mechanisms and treatment strategies (Review). Int. J. Mol. Med. 2022 50 4 128 10.3892/ijmm.2022.5184
    [Google Scholar]
  31. Braal C.L. Jongbloed E.M. Wilting S.M. Mathijssen R.H.J. Koolen S.L.W. Jager A. Inhibiting CDK4/6 in breast cancer with palbociclib, ribociclib, and abemaciclib: Similarities and differences. Drugs 2021 81 3 317 331 10.1007/s40265‑020‑01461‑2 33369721
    [Google Scholar]
  32. Delou J.M.A. Souza A.S.O. Souza L.C.M. Borges H.L. Highlights in resistance mechanism pathways for combination therapy. Cells 2019 8 9 1013 10.3390/cells8091013 31480389
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673385989250711112625
Loading
/content/journals/cmc/10.2174/0109298673385989250711112625
Loading

Data & Media loading...

Supplements

Supplementary material with the published article is available on the publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test