Anti-Cancer Agents in Medicinal Chemistry - Online First
Description text for Online First listing goes here...
21 - 40 of 71 results
-
-
Unveiling the Distinct Effects of a Two-Dimensional Copper/Sodium Complex: Oxidative Stress on Erythrocytes and Cytotoxicity, Apoptosis, Drug Resistance, and Inflammation in Lung Cancer Cells
Authors: Chenchen Li, Mostafa Heidari Majd, Ameneh Heidari, Zohreh Razmara and Dongdong GuoAvailable online: 03 September 2025More LessIntroductionCopper complexes, as endogenous metals, have potential in cancer therapy, addressing issues associated with cisplatin. Since cisplatin uses Copper Transporter 1 (CTR1) for cellular entry, copper complexes may utilize this pathway to enhance transport efficiency.
MethodsThe Cu/Na dipicolinic acid complex was synthesized to assess its cytotoxicity, induction of apoptosis, drug resistance, and inflammation in cancerous and normal lung cells. The effects of oxidative stress on erythrocytes were also examined.
ResultsCytotoxicity tests (MTT and SRB) showed superior inhibitory effects on A549 lung cancer cells compared to cisplatin, with no toxicity observed in MRC-5 normal lung fibroblast cells. Real-time PCR revealed increased caspase-3 expression (extrinsic apoptosis) for the complex compared to cisplatin, possibly due to CTR1-mediated entry. The complex did not induce drug resistance, as shown by AKT1 expression, and reduced TNF-α expression, preventing inflammation in normal cells. In contrast to cisplatin, the complex caused minimal oxidative stress in erythrocytes.
DiscussionIt can be concluded that the Cu/Na dipicolinic acid complex may be easily transported by CTR1 to malignant tumors, particularly lung cancer. This complex has the ability to inhibit cancer cell growth and induce apoptosis in lung cancer cells. Therefore, copper complexes show promise as potential therapeutic options for treating this type of cancer.
ConclusionThe copper/sodium complex demonstrates enhanced therapeutic efficacy in lung cancer cells, requiring lower doses than cisplatin, while being safer for normal cells and erythrocytes.
-
-
-
Luteolin Enhances Anticancer Effects of PX-478 during Hypoxic Response in Metastatic Breast Cancer Cells
Authors: Muzaffer Dukel and Fatema ZarzourAvailable online: 03 September 2025More LessIntroductionThe presence of severe hypoxic stress can drive tumor growth, angiogenesis, and metastatic characteristics via up-regulated hypoxia-inducible factor 1-alpha (HIF-1a). Hence, targeting HIF-1α is considered a promising strategy, as increased HIF-1α activity is a key factor in the aggressive phenotype of malignancies. In this study, we aimed to investigate the anti-cancer effects of several flavonoids, both single and in combination with PX-478, in breast cancer cell lines.
MethodsWe tested the effects of luteolin and PX-478, both alone and in combination, on HIF-1a level in breast cancer cells under hypoxia using the cell viability assay. To determine the rationale for the cell growth inhibition induced by the luteolin+PX-478 combination, we conducted experiments to assess cell survival, apoptosis, cell cycle, invasion, and migration under both normoxic and hypoxic conditions. Furthermore, we evaluated the effect of this combination on DNA damage response under hypoxic stress via Comet assay and immunofluorescence staining.
ResultsOur findings revealed that the luteolin+PX-478 combination significantly suppressed the growth of MDA-MB-231 cells. In addition, we assessed time-dependent expression of HIF1a in MDA-MB-231 cells and observed that the combination of luteolin and PX-478 down-regulated the HIF-1a level. Finally, we found that the luteolin+PX-478 combination induced apoptosis and G2 cell cycle arrest and enhanced DNA damage response. This combination also sensitized breast cancer cells to ionizing radiation in hypoxic stress.
DiscussionThe findings suggested that targeting HIF-1α with a combination of luteolin and PX-478 may provide a synergistic approach to suppressing tumor growth and enhancing therapeutic response under hypoxic conditions. The observed effects on apoptosis, cell cycle arrest, and DNA damage response indicated that this combination could be a promising strategy for overcoming hypoxia-induced resistance in breast cancer therapy.
ConclusionCollectively, our results suggested the combination of luteolin and PX-478 to enhance the anti-cancer effects of PX-478 in breast carcinoma cells by impeding the cell growth and inducing DNA damage response under hypoxia.
-
-
-
A Comprehensive Review of the Anticancer Activity of Farnesiferol C and Umbelliferone
Available online: 02 September 2025More Lessancer remains a growing challenge in modern society, presenting a significant obstacle in both developed and developing countries. Conventional treatments are often costly and limited by issues such as drug resistance and undesirable side effects. Consequently, the exploration of natural compounds has emerged as a promising strategy for developing more effective and tolerable cancer therapies. Among these, Ferula plants have gained attention for their potential anticancer components. Notably, two coumarin compounds derived from these plants, farnesiferol C and umbelliferone, have demonstrated substantial anticancer activity, as supported by an increasing number of published studies. This review aims to consolidate existing evidence on the anticancer effects of farnesiferol C and umbelliferone while comparing their efficacy as potential therapeutic agents. To accomplish this, a comprehensive literature search was conducted using the terms “umbelliferone” and “farnesiferol C” paired with “anticancer” across databases such as ISI Web of Knowledge, PubMed, and Google Scholar. Relevant studies up to March 2024 were retrieved, summarized, and incorporated into this analysis. The findings indicate that both compounds exhibit significant anticancer properties, positioning them as viable candidates for future drug development. A comparative analysis of their IC50 values, the concentration required to inhibit 50% of cancer cell growth, reveals that farnesiferol C demonstrates greater cytotoxic potency against various cancer cell lines compared to umbelliferone. However, while these results are encouraging, further research is recommended, particularly in vivo studies to evaluate the compounds’ toxicity and therapeutic potential in living organisms.
-
-
-
Unlocking the Potential of Polysaccharides for the Treatment of Lung Cancer
Authors: Himanshu Singh, Rajnish Kumar and Avijit MazumderAvailable online: 01 September 2025More LessBackgroundLung cancer remains a leading cause of cancer-related deaths worldwide, with its incidence continuing to rise. Despite advancements in clinical treatments, their effectiveness is often restricted, emphasizing the need for novel therapeutic strategies. Natural products have long been explored for drug development, and among them, polysaccharides have gained significant attention due to their biocompatibility, biodegradability, and multiple biological functions.
MethodsA comprehensive review examined contemporary research on the anticancer properties of natural polysaccharides, focusing specifically on their effects in lung cancer. The analysis included studies investigating their influence on cancer cell growth, immune system modulation, and therapeutic outcomes. Evidence from laboratory (in vitro), animal (in vivo), and clinical studies was evaluated to provide a comprehensive overview of their potential role in lung cancer management.
ResultsFindings from recent studies indicate that polysaccharides can effectively inhibit the proliferation of lung cancer cells, thereby slowing tumor development. These compounds also appear to enhance immune responses by activating various immune cells and regulating cytokine production. Furthermore, polysaccharides have been shown to positively affect the gut microbiota, which may contribute to improved drug efficacy and a reduction in resistance to chemotherapy.
DiscussionThe evidence suggests that natural polysaccharides exert multifaceted effects in the context of lung cancer treatment. Their ability to directly suppress tumor growth, modulate the immune system, and interact with the gut microbiome positions them as promising adjuncts to existing therapies. However, the precise molecular mechanisms underlying these effects are not yet fully understood, and variability in study designs warrants cautious interpretation of the results.
ConclusionNatural polysaccharides represent a promising complementary approach for lung cancer therapy, given their potential to inhibit tumor progression, enhance immune function, and improve the effectiveness of conventional drugs. Continued research is essential to fully elucidate their mechanisms of action and to translate these findings into effective clinical interventions.
-
-
-
Microbial-Derived Anti-Cancer Compounds: Advances in Drug Discovery, Bioengineering, and Therapeutic Applications
Authors: Ekta Tyagi, Divya Jain, Rajabrata Bhuyan and Anand PrakashAvailable online: 01 September 2025More LessIntroductionMicrobial metabolites represent a valuable source of bioactive compounds with promising anticancer properties. However, conventional drug discovery approaches are time-intensive and resource-demanding.
MethodsRecent developments in artificial intelligence (AI), machine learning (ML), molecular docking, and quantitative structure-activity relationship (QSAR) modeling have been examined for their role in the identification and optimization of microbial metabolites.
ResultsAI-driven approaches have significantly enhanced compound screening and prediction of therapeutic efficacy. Nanocarrier-based drug delivery systems have improved the bioavailability, specificity, and stability of microbial metabolites while minimizing systemic toxicity. Despite these advancements, challenges remain in clinical translation due to the lack of in vivo validation and comprehensive pharmacokinetic data.
DiscussionThis review highlights the integration of advanced computational tools and nanotechnology in accelerating the discovery and delivery of microbial-derived anticancer agents.
ConclusionFuture directions should focus on integrating AI with synthetic biology to engineer microbial strains capable of producing enhanced bioactive compounds. Additionally, leveraging nanotechnology could refine targeted delivery mechanisms. A deeper understanding of molecular pathways and drug resistance mechanisms is essential to support the development of combination therapies. Overall, microbial-derived compounds hold substantial potential in advancing precision oncology.
-
-
-
Long Non-Coding RNA VPS9D1-AS1 in Human Cancer: Functions, Mechanisms, and Clinical Utility
Authors: Jingjie Yang, Haodong He, Haoran Liu, Zhouya Xu, Li Li, Houdong Li and Chengfu YuanAvailable online: 01 September 2025More LessIntroductionVPS9 domain-containing 1 antisense RNA 1 (VPS9D1-AS1), also known as c-Myc-upregulated lncRNA (MYU) and FAK-interacting and stabilizing lncRNA (FAISL), is a novel long non-coding RNA (lncRNA) located at the human chromosome 16q24.3 locus. It has been reported to be highly expressed in various human cancers and associated with poor clinical pathological features and unfavorable prognosis in eight of the malignant tumors.
MethodsA comprehensive literature search was conducted using PubMed, Web of Science, and Google Scholar databases to identify relevant articles on “VPS9D1-AS1”, “MYU”, or “FAISL”. Only peer-reviewed publications were included, and articles related to oncology were specifically collected.
ResultsMechanistically, VPS9D1-AS1 serves as a key regulator in four molecular models: signal, scaffold, guide, and decoy. These functions allow it to regulate the expression of target genes and activation of signaling pathways, thereby influencing the malignant phenotype of tumors.
DiscussionThe diverse molecular mechanisms of VPS9D1-AS1 highlight its significant role in the development and progression of various cancers. Its ability to act as a signal, scaffold, guide, and decoy suggests that it can influence multiple aspects of tumor biology, including proliferation, invasion, and metastasis.
ConclusionVPS9D1-AS1 plays a significant role in the development and progression of various cancers through its diverse molecular mechanisms. Further research on VPS9D1-AS1 may provide valuable insights, which may facilitate the development of new diagnostic and therapeutic strategies for cancer.
-
-
-
Euxanthone Inhibits Hepatocellular Carcinoma Progression by Targeting the miR-199a-5p/E2F3 Regulatory Axis
Available online: 28 August 2025More LessIntroductionHepatocellular carcinoma (HCC) ranks among the leading causes of cancer-related deaths on a global scale. This study aimed to evaluate the effects of euxanthone on the proliferation of HCC cell lines and elucidate the underlying molecular mechanisms.
MethodsHCC cell lines (HepG2, Huh-7, SNU-398, SK-HEP-1, Hep3B) and the normal liver cell line THLE-2 were cultured and treated with euxanthone at concentrations between 0 and 100 µM. Cell viability was evaluated using the MTT assay, while phase contrast microscopy and cell cycle analysis were performed to evaluate morphological changes and cell cycle distribution. qRT-PCR was utilized to measure miRNA and mRNA expression levels, while a dual luciferase reporter assay validated the interaction between miR-199a-5p and E2F3.
ResultsEuxanthone significantly (P < 0.05) inhibited cell proliferation in all HCC cell lines, with IC50 values between 6.25 and 25 µM. HepG2 cells exhibited pronounced sensitivity, with an IC50 of 6.25 µM. Euxanthone induced a G1 phase arrest, characterized by decreased expression of Cyclin D1 and E, and increased levels of p21. Additionally, it upregulated miR-199a-5p, which was identified as a mediator of the antiproliferative effects by targeting E2F3. Euxanthone treatment also significantly (P < 0.05) inhibited HepG2 cell migration in a wound healing assay.
DiscussionThe findings demonstrate that euxanthone exerts its anticancer activity in HCC cells by modulating the miR-199a-5p/E2F3 axis, leading to G1 arrest and inhibition of migration. These results align with prior studies on natural compounds as modulators of oncogenic signaling pathways and highlight miR-199a-5p as a crucial mediator for anticancer effects of euxanthone. The low toxicity toward normal liver cells further emphasizes its therapeutic potential.
ConclusionTaken together, euxanthone exerts antiproliferative effects on HCC cells via the miR-199a-5p–E2F3 axis and inhibits cell migration. These findings support its potential as a therapeutic agent for HCC, highlighting the need for further investigation into its clinical applications.
-
-
-
Evaluation of Anticancer Potential in Human Colorectal Carcinoma HCT-116 Cells by Fungal-Mediated Zinc Oxide Nanoparticles
Available online: 27 August 2025More LessIntroductionChemotherapy faces limitations such as toxicity and resistance, necessitating novel cancer treatments. Green-synthesized zinc oxide nanoparticles (ZnO-NPs) have attracted attention for their safety, biocompatibility, and therapeutic potential. This study investigates the anticancer efficacy of ZnO-NPs synthesized using the extracellular matrix of Aspergillus biplanus against colorectal cancer cell lines (HCT-116).
MethodsZnO-NPs were synthesized extracellularly using A. biplanus fungal extract. The nanoparticles were characterized through UV-Vis spectrophotometry, showing an absorbance peak at 375 nm, and scanning electron microscopy (SEM), which determined their morphology and size. The anticancer activity was evaluated in vitro using HCT-116 cells. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were assessed to understand the mechanism of cytotoxicity. In vivo studies were proposed for further validation.
ResultsThe synthesized ZnO-NPs appeared pale white and exhibited a characteristic absorbance at 375 nm. SEM revealed spherical particles ranging from 35–150 nm. The ZnO-NPs showed strong anticancer activity with an IC50 value of 40.6 µg/mL. ROS levels increased significantly in treated cells, while the MMP decreased to 77.25% compared to 100% in controls.
DiscussionZnO-NPs exerted cytotoxic effects via ROS generation and mitochondrial dysfunction. These results underscore the nanoparticles’ ability to induce apoptosis in cancer cells through oxidative stress pathways.
ConclusionBiogenically synthesized ZnO-NPs from A. biplanus show promise as eco-friendly anticancer agents. Further in vivo studies are recommended to confirm their therapeutic potential.
-
-
-
Ursolic Acid Inhibits Triple-Negative Breast Cancer Progression by Modulating the FGFR1/AKT/ERK Pathway: Evidence from Network Pharmacology andExperimental Validation
Authors: Ziming Chen, Weiqiang Guo, Yahan Gao, Pu Zhao, Xin Liu, Min Qian, Shuhui You, Xiaoxiao Wang and Min XiangAvailable online: 21 August 2025More LessIntroductionUrsolic acid (UA) exhibits antitumor activity; however, its effects and mechanisms on triple-negative breast cancer (TNBC) cells are not well understood. The present study aimed to explore the anti-TNBC mechanisms of UA by network pharmacology and experimental validation.
MethodsTNBC cell lines MDA-MB-231 and BT-549 cells were treated with UA. A CCK-8 assay was performed to detect cell growth, while flow cytometry assessed cell cycle arrest and apoptosis. The underlying mechanism and potential targets of UA for TNBC treatment were investigated by network pharmacology, including PharmMapper database, GO, KEGG enrichment, and PPI analysis. The protein expressions and phosphorylation levels of FGFR1, AKT, and ERK were measured by western blot. Pull-down assay, cellular thermal shift assay (CETSA), and molecular docking were used to analyze the interaction between UA and FGFR1. Xenograft models were established to examine the effect of UA on TNBC tumor growth.
ResultsUA effectively reduced cell viability, induced apoptosis, and arrested cell cycle in TNBC cells. Moreover, UA significantly regulated the expression of Bcl-2 and Bax to induce apoptosis. The results of network pharmacology and western blot suggested that UA reduced FGFR1/AKT/ERK pathway. Furthermore, pull-down, CETSA, and molecular docking results revealed that UA directly bound to FGFR1. In the xenograft model, UA inhibited the growth by suppressing FGFR1.
DiscussionIn this study, we employed network pharmacology and experimental approaches to elucidate the mechanism of UA on TNBC. The results demonstrated that UA targeted FGFR1 to inhibit TNBC via mediating FGFR1/AKT/ERK pathway.
ConclusionsOur findings demonstrate that UA inhibits the FGFR1/AKT/ERK pathway by directly targeting FGFR1, thereby suppressing TNBC progression and supporting its potential as a therapeutic agent for TNBC treatment.
-
-
-
Genetic and Molecular Determinants of Immunotherapy Response in Recurrent Ovarian Cancer
Available online: 18 August 2025More LessOvarian cancer remains a significant public health challenge. It originates in the ovaries and presents in various histological subtypes. Surgery and chemotherapy are the most suitable treatments to combat this disease. This study aims to provide insights into the mechanisms and biological complexity needed to understand the pathogenesis of recurrent ovarian cancer. A thorough review of the relevant literature on recurrent ovarian cancer and immunotherapy was conducted to gather information on genetic factors, immune responses, therapeutic strategies, and other pertinent data. The findings were analyzed and discussed to provide an in-depth understanding aligned with the study’s objectives. Recurrent ovarian cancer is a major clinical challenge that occurs when the disease returns after initial treatment and a period of remission. Recurrence typically arises when residual cancer cells remain in the body after treatment, eventually leading to disease progression. Genetic factors, including mutations in BRCA1/BRCA2 and other genetic markers, play a crucial role in ovarian cancer recurrence and influence responses to therapies. The immune system's response to cancer cells is also critical, with therapeutic interventions either enhancing or reducing efficacy. The complex mechanisms underlying ovarian cancer and its recurrence have left many aspects of the disease pathway still to be fully understood. In conclusion, a comprehensive understanding of genetic and immune factors is crucial for developing effective and personalized treatments.
-
-
-
Design, Synthesis, Antimicrobial and Antitumor Activities of Benzo[f]chromene Derivatives: DFT and Molecular Docking
Available online: 15 August 2025More LessIntroductionBenzochromenes are heterocyclic compounds of growing interest in medicinal chemistry due to their diverse biological activities, including antioxidant, anticancer, and antimicrobial properties.
MethodsA one-pot, three-component synthesis was employed to prepare benzochromene derivatives (4a–f) using 2-naphthol or its derivatives, active methylene compounds, and 2-methoxybenzaldehyde in ethanol with piperidine as a catalyst. The compounds were evaluated for their anticancer activity against MCF-7, HepG-2, and HCT-116 cell lines, as well as for their antimicrobial activity through molecular docking studies targeting cancer-related and microbial proteins.
ResultsAll synthesized compounds were obtained in moderate to good yields. Compounds 4c, 4e, and 4f demonstrated superior biological activity compared to standard drugs Doxorubicin and Augmentin. Docking studies revealed strong binding affinities to key targets, including the TGF-βI receptor and the choline-binding domain.
DiscussionThe hydroxyl group at position 9 in compounds 4c and 4f likely contributed to enhanced antimicrobial activity, while the bromo group in 4e correlated with significant anticancer effects. These findings suggest meaningful structure–activity relationships and validate the design strategy.
ConclusionThe synthesized benzochromene derivatives exhibit promising anticancer and antimicrobial activities. Supported by molecular docking, these findings lay the groundwork for further pharmacological and in vivo evaluations of this scaffold.
-
-
-
Timosaponin A-III Induces ROS-mediated Apoptosis and Triggers Protective Autophagy via the AMPK/mTOR Pathway in Prostate Cancer
Authors: Jianjian Wu, Juntao Li, Qiang Guo, Chutian Xiao, Yifei Zhang, Dejuan Wang, Qiong Wu and Jianguang QiuAvailable online: 12 August 2025More LessIntroductionTimosaponin A-III (TAIII) is an effective anti-tumor ingredient extracted from the rhizomes of Anemarrhena asphodeloides. However, the effect of TAIII on prostate cancer cells (PCa) and its underlying mechanisms is rarely investigated. The current study aimed to investigate the anti-tumor effect and potential mechanisms of TAIII in PCa cells.
MethodsThe effect of TAIII on the cell proliferation of PCa was evaluated by CCK-8 assay, colony formation assay, and EDU assay. Cell apoptosis and reactive oxygen species (ROS) production were evaluated by flow cytometry. The puncta of LC3 were detected by immunofluorescence analysis. The protein levels of apoptosis, autophagy, and AMPK/mTOR pathway were assessed by western blot. Finally, a PC3 xenograft nude mouse model was constructed to determine the effect of TAIII combined with chloroquine (CQ) in vivo.
ResultsOur data showed that TAIII inhibited the proliferation of PCa cells and induced ROS-dependent apoptosis. TAIII treatment dramatically promoted the formation of LC3-positive puncta, and increased the expression of LC3B-II and P62 protein. Moreover, the combination of TAIII with CQ significantly enhanced the pro-apoptosis effect of TAIII in PCa cells and the PC3 xenograft model. In addition, the activation of the AMPK/mTOR pathway and the induction of autophagy induced by TAIII were reversed by Compound C. Suppressing AMPK with Compound C enhanced the apoptosis induced by TAIII in PCa cells.
DiscussionThis study establishes TAIII as a potent anti-prostate-cancer agent that kills tumor cells via ROS-driven apoptosis while simultaneously triggering cytoprotective autophagy through the AMPK–mTOR axis. However, TAIII’s clinical potential awaits pharmacokinetic, bioavailability, and toxicity evaluation.
ConclusionTAIII induced ROS-mediated cell apoptosis and promoted cytoprotective autophagy via the AMPK/mTOR pathway in PCa. These findings may provide a new strategy for combining TAIII with CQ together for PCa treatment.
-
-
-
Gaussian-based 3D-QSAR and Pharmacophore Mapping Studies of Indole Derivatives as Aromatase Inhibitors
Authors: Neha Bhatia and Suresh TharejaAvailable online: 12 August 2025More LessIntroductionAromatase inhibition is one of the most effective strategy for the treatment of ER+ breast cancer, which accounts for about 70% of breast cancer cases. Indole-based aromatase inhibitors have altered the dynamics of the search for anti-breast cancer drugs with efficacy in nanomolar concentrations. In the present study, we have integrated pharmacophore mapping with Gaussian-based 3D-QSAR analysis to map the essential pharmacophoric features of indole-based aromatase inhibitors, aiming to optimize lead molecules.
MethodsPharmacophore mapping and Gaussian-based 3D-QSAR were integrated to identify the steric and electrostatic features essential for aromatase inhibitory activity.
ResultsA Gaussian-based 3D-QSAR model with an r2 value of 0.7621 and stability of 0.817 was generated to determine the nature of substitutions essential for optimal biological activity. Pharmacophore mapping results indicated that H-bond Donor (D), a Hydrophobic (H) feature, and three aromatic rings (R) are essential for potent inhibitory activity.
DiscussionIn order to identify important structural characteristics of indole-based aromatase inhibitors, the current study successfully integrated pharmacophore mapping investigations with 3D-QSAR. The designed molecule S1 demonstrated activity comparable to letrozole, with a predicted pIC50 value of 9.332 nM.
ConclusionThe designed compound S1 demonstrated a predicted IC50 value of 9.332 nM, comparable to the most active compound 15 and the standard reference Letrozole. The developed models may be utilized by medicinal chemists for the optimization of new indole-based aromatase inhibitors for the effective treatment of ER+ breast cancer.
-
-
-
Molecular Pathways and Biomarkers in Endometrial Carcinoma: Paving the Way for Precision Medicine
Authors: Krishana Kumar Sharma, Swati Tamta, Mohit Pandey, Ritu Gupta and Gajendra KumarAvailable online: 11 August 2025More LessEndometrial carcinoma (EC) is one of the most prevalent gynecological malignancies, with an increasing incidence globally. This review explores the role of molecular markers in revolutionizing the diagnosis, prognosis, and management of EC. This article provides an overview of endometrial carcinoma, emphasizing its subtypes and the molecular mechanisms driving disease progression. Current biomarkers, while clinically significant, often present limitations in sensitivity, specificity, and predictive value, necessitating the discovery of novel markers. Recent advances in genetic and epigenetic profiling have identified key mutations, such as PTEN, TP53, and POLE, along with DNA methylation patterns and microRNAs, as crucial contributors to EC pathophysiology. Furthermore, transcriptomic and proteomic studies reveal the potential of RNA-based markers (e.g., lncRNAs, mRNAs) and proteomic signatures in improving early diagnosis and prognostic predictions. Immunohistochemical markers and insights into tumor microenvironment dynamics pave the way for targeted therapeutic strategies. In the context of endometrial carcinoma (EC), clinical trials play a pivotal role in validating targeted therapies based on molecular subtypes and biomarkers, such as HER2 amplification, POLE mutations, and mismatch repair deficiency (MMRd). This review underscores the integration of biomarkers into precision oncology, enabling personalized treatment regimens. However, challenges such as barriers to clinical translation and the need for advanced technologies highlight the importance of continued research in marker discovery for EC.
-
-
-
The Hematological Variations and Effect of Cadmium Induced Toxicity on Mammary Tumors Development in Albino Mice. A Comparative Model Study on the Effect of Heavy Metals in Human Breast Cancer
Authors: Saba Munir, Yasir Nawaz, Fouzia Tanvir and Khalid Mahmood AnjumAvailable online: 08 August 2025More LessIntroductionBreast cancer develops in breast tissues, in ducts and lobules. It affects both genders, though it is uncommon in men. Hematological variations are important considerations and deficiencies in metals can negatively impact human health. Cadmium is highly toxic and plays role in breast cancer progression. This study was designed for hematological variations and cadmium induced toxicity in mice and humans causing breast cancer.
MethodsMice, obtained from local supplier, housed at university laboratory for 11 weeks, exposed to cadmium. Following dissection, blood and organs were harvested for examination. Histological analysis of liver and mammary gland tissues was conducted.
ResultsAffected mice had higher Hb, RBC, HCT, MCV, and MCH, while humans showed lower Hb, HCT, and MCV but similar RBC and MCH. Other blood values also show changes. Histopathology revealed changes in mammary glands (higher cadmium led to increased fat deposition, degeneration of alveolar epithelial cells, and a reduction in alveolar milk lumen size, indicating compromised glandular function) and Liver damage (vacuolation, lipid accumulation, fibrosis, and collagen deposition, was noticeable with prolonged cadmium). These changes causes liver fibrosis and impaired mammary gland function.
DiscussionThe cadmium exposure induces distinct hematological alterations and severe tissues damage, reflecting species-specific responses. The observed liver fibrosis and mammary gland dysfunction emphasize cadmium’s potential to compromise critical organ functions over time.
ConclusionSignificant effects of cadmium exposure in mice were observed. Histological damage was seen in mammary glands and liver. Further research on protective measures and dose-response relationships for cadmium exposure is needed.
-
-
-
Serotonin Metabolism Shapes the Tumor Immune Microenvironment and Serves as a Therapeutic Target in Lung Cancer
Authors: Miersalijiang Yasen, Naikun Sun, Jiude Jia, Weixiang Hong, Leiting Zhuang, Jinwang Huang, Xiaohui Chen and Wenhui ShenAvailable online: 08 August 2025More LessIntroductionLung cancer progression involves complex interactions between metabolic pathways and the immune microenvironment. The role of serotonin, a tryptophan-derived metabolite, in immune responses to lung tumors remains unclear.
MethodsAn orthotopic lung cancer model was established by intravenously injecting KP (KrasG12D/p53-/-) cells into C57BL/6 mice. Metabolomic and flux analyses were conducted on tumor versus normal lung tissues. Serotonin was administered to tumor-bearing mice, followed by immunofluorescence and flow cytometry to assess immune responses. Human lung cancer datasets were analyzed to validate clinical relevance.
ResultsTumor tissues exhibited a significant decrease in serotonin levels. Although tryptophan, serotonin, and kynurenine levels were decreased overall, flux analysis revealed a metabolic shift favoring kynurenine synthesis, with a ~10-fold increase in the kynurenine-to-serotonin ratio. Serotonin supplementation significantly prolonged survival and enhanced dendritic cell and CD8+ T cell infiltration and activation in tumors. Analysis of public datasets showed that serotonin expression positively correlated with CD8+ T cell activation signatures and patient prognosis.
DiscussionBy revealing serotonin as a potential biomarker and therapeutic target, this study paves new avenues for improving lung cancer treatment strategies through modulation of the immune microenvironment. Moreover, the precise receptor-mediated mechanisms underlying serotonin's immunomodulatory effects remain to be clarified, and translational validation in human tissues is warranted to strengthen clinical relevance.
ConclusionSerotonin deficiency in the tumor microenvironment of the lung suppresses antitumor immunity. Its restoration reverses immune dysfunction and limits tumor progression. These findings identify serotonin as a potential metabolic regulator and immunotherapeutic target in lung cancer.
-
-
-
Anticancer Efficacy and Metabolomic Profiling of Punica granatum Leaf Extracts:
Available online: 06 August 2025More LessIntroductionCurrent research focuses on identifying and analyzing bioactive metabolites with significant therapeutic properties derived from Punic granatum L. (Pomegranate) leaves. Methods: The biological potential of these metabolites was evaluated through anticancer activity. In contrast, LC-QTOF-MS and GC-QTOF-MS methods were used to profile the metabolites. In silico molecular docking was performed using various online and offline tools to validate the active metabolites.
ResultsPAC exhibited significant anticancer activity. The identified metabolites were screened, and 40 compounds from different categories were chosen for further in silico interaction studies.
DiscussionThe molecular docking analysis discovered lead molecules that exhibited promising binding energy scores, efficiency, and stable modulation with specific protein domains. However, clinical trials are required for the applications of the lead molecules in the design of anticancer drugs.
ConclusionThe findings from both in vitro and in silico analyses support the notion that the P. granatum Acetone Extract (PAC) is an excellent source of potential metabolites with therapeutic properties. According to the findings, this research enhances the treatment of human breast cancer and validates several plant traditions for their numerous benefits.
-
-
-
Bioinformatics And Experimental Insights Into Sotorasib Resistance Mechanisms in Non-small-cell Lung Cancer
Authors: Dongbing Li and Guizhen LyuAvailable online: 06 August 2025More LessIntroductionThis study aims to identify the key genes and pathways associated with sotorasib resistance in Non-Small Cell Lung Cancer (NSCLC) using bioinformatics analyses and experimental validation, with a focus on uncovering the potential mechanisms underlying resistance.
MethodsWe compared gene expression profiles between sotorasib-resistant (SR) and non-resistant NSCLC cell lines using the GSE229070 dataset and between NSCLC tissues and adjacent normal tissues using the GSE18842 dataset. Differentially expressed genes (DEGs) were identified and intersected across datasets using the Venn diagram package. Functional enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The transcriptional activity and prognostic impact of key genes were evaluated using the UALCAN portal and Kaplan-Meier Plotter, respectively. The correlation between gene expression and immune cell infiltration was analyzed using the TIMER database, and co-expressed genes were explored using LinkedOmics. qRT-PCR and Western blot were used to validate the expression of AREG in parental and SR cell lines.
ResultsWe identified 33 overlapping DEGs, including TENM2, COL12A1, COL5A2, and LRRC15 (upregulated) and AREG (downregulated). AREG expression was significantly lower in NSCLC patients and associated with worse survival outcomes. AREG expression was also correlated with the levels of immune cell infiltration. Functional enrichment analysis revealed that AREG was associated with pathways including the NOD-like receptor signaling pathway, focal adhesion, DNA replication, and homologous recombination. Experimental validation confirmed that AREG mRNA and protein levels were significantly reduced in HCC78-SR cells compared to parental HCC78 cells.
DiscussionThe downregulation of AREG is closely associated with sotorasib resistance in NSCLC, potentially contributing to resistance through alterations in signaling pathways and the tumor immune microenvironment. This finding aligns with previous studies on AREG's role in drug resistance, highlighting its potential as a therapeutic target. However, limitations include reliance on publicly available datasets and the need for further validation in clinical cohorts.
ConclusionThe study identifies AREG as a key gene associated with sotorasib resistance in NSCLC, suggesting its potential as a biomarker and therapeutic target. Further research is needed to elucidate the mechanisms underlying AREG's role in resistance and to explore its clinical significance.
-
-
-
dHG-5 Exhibits Dual Efficacy of Anti-Metastatic and Anti-hypercoagulability in Mice by Inhibiting Heparanase and Intrinsic Coagulation Pathway
Authors: Ziheng Tong, Zhipeng Xu, Wen Yang, Huaizheng Song, Shuguo Zheng and Lutan ZhouAvailable online: 06 August 2025More LessIntroductionCancer metastasis and associated thrombosis are significant contributors to cancer-related mortality, necessitating therapeutic strategies that simultaneously address both issues. This study aimed to evaluate the dual anti-metastatic and anti-hypercoagulability properties of dHG-5, a low-molecular-weight fucosylated glycosaminoglycan derived from the sea cucumber Holothuria fuscopunctata.
MethodsThe heparanase-inhibitory and anticoagulant effects of dHG-5 were assessed in vitro using biochemical assays. The impact of dHG-5 on 4T1 cell migration and invasion was evaluated using Transwell assays. The anti-metastatic and anti-hypercoagulability efficacy of dHG-5 was further tested in a 4T1 mammary carcinoma mouse model, with enoxaparin (LMWH) used as a control.
ResultsdHG-5 exhibited potent heparanase inhibition (IC50 = 91.0 nM) and significantly reduced 4T1 cell migration and invasion at 4.0 µmol/L. In vivo, dHG-5 reduced lung metastasis without affecting tumor growth or proliferation. At a dose of 20 mg/kg, dHG-5 prolonged activated partial thromboplastin time (APTT) from 23.5 ± 1.85 s to 30.4 ± 3.36 s, effectively reversing hypercoagulability in tumor-bearing mice. Compared to low-molecular-weight heparin, dHG-5 selectively prolonged APTT with negligible effects on prothrombin time and thrombin time.
DiscussionThe findings highlighted the dual-action mechanism of dHG-5, namely inhibiting heparanase and selectively targeting the intrinsic coagulation pathway. This selective action minimized bleeding risk, a common issue with traditional anticoagulants. However, this study focused on a single cancer type and the use of a mouse model, which may not fully represent human pathophysiology. We would explore dHG-5's effects across different cancer types and investigate its potential synergistic effects with existing cancer therapies in the future.
ConclusiondHG-5 suppressed metastasis and hypercoagulability through heparanase inhibition and selective action on the intrinsic coagulation pathway. These findings highlight dHG-5 as a promising dual-action therapeutic candidate for managing metastasis and cancer-associated thrombosis, offering a safer alternative to traditional anticoagulants.
-
-
-
The Potential of Next-generation Multi-functional Nanoplatforms for Breast Cancer
Authors: Shreya Gupta, Tanmay J Urs, Navya Aggarwal, Shinjini Sen and Banashree BondhopadhyayAvailable online: 24 July 2025More LessThe next-generation nanoparticles overcome the drawbacks of early nanoplatforms by integrating multiple functions, such as drug delivery, controlled drug release, and combination therapy, into a single system. This study examines the biomedical applications of quantum dots, carbon nanotubes, superparamagnetic iron oxide nanoparticles, and layered double hydroxides for the delivery of breast cancer drugs. They are termed as “next-generation” nanoparticles, as they are advanced nanocarriers that offer a comprehensive and alternative approach towards breast cancer treatment, providing enhanced specificity and efficacy compared to their predecessors. The development of these nanoplatforms has significantly enhanced drug bioavailability and reduced toxicity. A comprehensive analysis of a nanotechnology-based drug delivery system was conducted. The keywords used for this review were “Breast Cancer”, “Targeted Drug Delivery”, “Quantum Dots”, “Carbon Nanotubes”, “Layer Double Hydroxides”, and “Superparamagnetic Iron Oxide Nanoparticles”. The inclusion criteria consisted of studies focusing on breast cancer, targeted drug delivery, and therapeutic applications of these nanocarriers. In contrast, exclusion criteria included studies focusing on the synthesis of nanocarriers and the diagnostic applications of these nanostructures. The study underscores their mechanisms, limitations, and future development directions. Additionally, the study tracks the evolution of the nanocarriers since their early discovery. Next-generation nanocarriers (QDs, CNTs, SPIONs, and LDHs) have strong therapeutic potential owing to their precisely engineered properties, such as size, shape, morphology, and surface modifications. Their trigger-initiated drug release mechanisms enable targeted delivery with a better rate of tumor penetration, while their ability to co-deliver multiple therapeutic agents addresses drug resistance issues and provides synergistic effects. Comparative analyses have revealed that these advanced nanoplatforms significantly outperform early-generation carriers in terms of bioavailability, reduced toxicity, and treatment efficacy across various breast cancer types. Next-generation nanoplatforms offer unprecedented opportunities for targeted and efficient cancer treatment. Continued research and innovation are necessary to address existing challenges and to optimize their therapeutic potential for clinical applications.
-