Skip to content
2000
image of Genetic and Molecular Determinants of Immunotherapy Response in Recurrent Ovarian Cancer

Abstract

Ovarian cancer remains a significant public health challenge. It originates in the ovaries and presents in various histological subtypes. Surgery and chemotherapy are the most suitable treatments to combat this disease. This study aims to provide insights into the mechanisms and biological complexity needed to understand the pathogenesis of recurrent ovarian cancer. A thorough review of the relevant literature on recurrent ovarian cancer and immunotherapy was conducted to gather information on genetic factors, immune responses, therapeutic strategies, and other pertinent data. The findings were analyzed and discussed to provide an in-depth understanding aligned with the study’s objectives. Recurrent ovarian cancer is a major clinical challenge that occurs when the disease returns after initial treatment and a period of remission. Recurrence typically arises when residual cancer cells remain in the body after treatment, eventually leading to disease progression. Genetic factors, including mutations in BRCA1/BRCA2 and other genetic markers, play a crucial role in ovarian cancer recurrence and influence responses to therapies. The immune system's response to cancer cells is also critical, with therapeutic interventions either enhancing or reducing efficacy. The complex mechanisms underlying ovarian cancer and its recurrence have left many aspects of the disease pathway still to be fully understood. In conclusion, a comprehensive understanding of genetic and immune factors is crucial for developing effective and personalized treatments.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206402903250809112441
2025-08-18
2025-12-25
Loading full text...

Full text loading...

References

  1. Colombo N. Lorusso D. Scollo P. Impact of recurrence of ovarian cancer on quality of life and outlook for the future. Int. J. Gynecol. Cancer 2017 27 6 1134 1140 10.1097/IGC.0000000000001023 28640766
    [Google Scholar]
  2. Generali M. Annunziata G. Pirillo D. D’Ippolito G. Ciar-lini G. Aguzzoli L. Mandato V.D. The role of minimally invasive surgery in epithelial ovarian cancer treatment: A nar-rative review. Front. Med. 2023 10 1196496 10.3389/fmed.2023.1196496 37387787
    [Google Scholar]
  3. Chandra A. Pius C. Nabeel M. Nair M. Vishwanatha J.K. Ahmad S. Basha R. Ovarian cancer: Current status and strategies for improving therapeutic outcomes. Cancer Med. 2019 8 16 7018 7031 10.1002/cam4.2560 31560828
    [Google Scholar]
  4. Siminiak N. Czepczyński R. Zaborowski M.P. Iżycki D. Immunotherapy in ovarian cancer. Arch. Immunol. Ther. Exp. 2022 70 1 19 10.1007/s00005‑022‑00655‑8 35941287
    [Google Scholar]
  5. Morand S. Devanaboyina M. Staats H. Stanbery L. Nemunaitis J. Ovarian cancer immunotherapy and personal-ized medicine. Int. J. Mol. Sci. 2021 22 12 6532 10.3390/ijms22126532 34207103
    [Google Scholar]
  6. Xu H. Wang L. Xu D. Global citation productivity and research trends on recurrent ovarian cancer: A bibliometric study. Front. Oncol. 2024 14 1422213 10.3389/fonc.2024.1422213 39035742
    [Google Scholar]
  7. Huang C.Y. Huang W.K. Yeh K.Y. Chang J.W.C. Lin Y.C. Chou W.C. Integrating comprehensive genomic profil-ing in the management of oncology patients: Applications and challenges in Taiwan. Biomed. J. 2025 ••• 100851 10.1016/j.bj.2025.100851 40185203
    [Google Scholar]
  8. Swarnkar S.K. Guru A. Chhabra G.S. Devarajan H.R. Artificial Intelligence Revolutionizing Cancer Care: Precision Diagnosis and Patient-Centric Healthcare 1ed; CRC Press 2025
    [Google Scholar]
  9. Chen K. Wang J. Yang M. Deng S. Sun L. Immunother-apy in recurrent ovarian cancer. Biomedicines 2025 13 1 168 10.3390/biomedicines13010168 39857752
    [Google Scholar]
  10. Leung S.A. Konstantinopoulos P.A. Advances in the treat-ment of platinum resistant epithelial ovarian cancer: An up-date on standard and experimental therapies. Expert Opin. Investig. Drugs 2021 30 7 695 707 10.1080/13543784.2021.1939305 34082614
    [Google Scholar]
  11. Pawłowska A. Rekowska A. Kuryło W. Pańczyszyn A. Kotarski J. Wertel I. Current understanding on why ovarian cancer is resistant to immune checkpoint inhibitors. Int. J. Mol. Sci. 2023 24 13 10859 10.3390/ijms241310859 37446039
    [Google Scholar]
  12. Gonzalez T. Muminovic M. Nano O. Vulfovich M. Folate receptor alpha—a novel approach to cancer therapy. Int. J. Mol. Sci. 2024 25 2 1046 10.3390/ijms25021046 38256120
    [Google Scholar]
  13. Yang C. Xia B.R. Zhang Z.C. Zhang Y.J. Lou G. Jin W.L. Immunotherapy for ovarian cancer: Adjuvant, combina-tion, and neoadjuvant. Front. Immunol. 2020 11 577869 10.3389/fimmu.2020.577869 33123161
    [Google Scholar]
  14. Alizadeh H. Akbarabadi P. Dadfar A. Tareh M.R. Soltani B. A comprehensive overview of ovarian cancer stem cells: Correlation with high recurrence rate, underlying mech-anisms, and therapeutic opportunities. Mol. Cancer 2025 24 1 135 10.1186/s12943‑025‑02345‑3 40329326
    [Google Scholar]
  15. Li M. Li L. Cheng X. Li L. Tu K. Hypoxia promotes the growth and metastasis of ovarian cancer cells by suppressing ferroptosis via upregulating SLC2A12. Exp. Cell Res. 2023 433 2 113851 10.1016/j.yexcr.2023.113851 37940066
    [Google Scholar]
  16. Demircan N.C. Boussios S. Tasci T. Öztürk M.A. Current and future immunotherapy approaches in ovarian cancer. Ann. Transl. Med. 2020 8 24 1714 10.21037/atm‑20‑4499 33490226
    [Google Scholar]
  17. Gitto S.B. Ihewulezi C.J.N. Powell D.J. Adoptive T cell therapy for ovarian cancer. Gynecol. Oncol. 2024 186 77 84 10.1016/j.ygyno.2024.04.001 38603955
    [Google Scholar]
  18. Mabuchi S. Morishige K. Kimura T. Use of monoclonal antibodies in the treatment of ovarian cancer. Curr. Opin. Obstet. Gynecol. 2010 22 1 3 8 10.1097/GCO.0b013e3283324114 19770762
    [Google Scholar]
  19. Brazier J. Antrobus M.R. Herbert A.J. Callus P.C. Kha-nal P. Stebbings G.K. Day S.H. Heffernan S.M. Kilduff L.P. Bennett M.A. Erskine R.M. Raleigh S.M. Collins M. Pitsiladis Y.P. Williams A.G. Gene variants previously as-sociated with reduced soft‐tissue injury risk: Part 2 – Poly-genic associations with elite status in Rugby. Eur. J. Sport Sci. 2023 23 8 1779 1788 10.1080/17461391.2022.2155877 36503489
    [Google Scholar]
  20. Donlon N.E. Power R. Hayes C. Reynolds J.V. Lysaght J. Radiotherapy, immunotherapy, and the tumour microenvi-ronment: Turning an immunosuppressive milieu into a thera-peutic opportunity. Cancer Lett. 2021 502 84 96 10.1016/j.canlet.2020.12.045 33450360
    [Google Scholar]
  21. Saman S. Srivastava N. Yasir M. Chauhan I. A compre-hensive review on current treatments and challenges involved in the treatment of ovarian cancer. Curr. Cancer Drug Targets 2024 24 2 142 166 10.2174/1568009623666230811093139 37642226
    [Google Scholar]
  22. Aliyuda F. Moschetta M. Ghose A. Sofia Rallis K. Sher-iff M. Sanchez E. Rassy E. Boussios S. Advances in ovarian cancer treatment beyond PARP inhibitors. Curr. Cancer Drug Targets 2023 23 6 433 446 10.2174/1568009623666230209121732 36757037
    [Google Scholar]
  23. Balachandran H. Byran G. Karri V.V.S.R. Murugesan S.K. Rajagopal K. Understanding DNA and PARP in cancer: Tackling inhibitor resistance. Drug Metab. Bioanal Lett 2025 18 10.2174/0118723128343916250212094926
    [Google Scholar]
  24. Chatterjee A. Mishra V.K. Saha S. Swarnakar S. An in-sight into targeted therapy for ovarian cancer. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer 2022 2635 2656 10.1007/978‑981‑16‑5422‑0_230
    [Google Scholar]
  25. Pietragalla A. Arcieri M. Marchetti C. Scambia G. Fagotti A. Ovarian cancer predisposition beyond BRCA1 and BRCA2 genes. Int. J. Gynecol. Cancer 2020 30 11 1803 1810 10.1136/ijgc‑2020‑001556 32895312
    [Google Scholar]
  26. Angeli D. Salvi S. Tedaldi G. Genetic predisposition to breast and ovarian cancers: How many and which genes to test? Int. J. Mol. Sci. 2020 21 3 1128 10.3390/ijms21031128 32046255
    [Google Scholar]
  27. Andrews L. Mutch D.G. Hereditary ovarian cancer and risk reduction. Best Pract. Res. Clin. Obstet. Gynaecol. 2017 41 31 48 10.1016/j.bpobgyn.2016.10.017 28254144
    [Google Scholar]
  28. Liang Y. Shen R. Zhou W. Fan S. Chan P.P. Tham C.C.Y. Congdon N. Friedman D.S. Wang N. Prevalence and ocular biometric characteristics of myopia in primary an-gle closure disease in rural china: The handan eye study. Invest. Ophthalmol. Vis. Sci. 2022 63 12 19 10.1167/iovs.63.12.19 36374513
    [Google Scholar]
  29. Ministerial meeting on population of the non-aligned m. denpasar declaration on population and development. Integration 1994 40 27 29
    [Google Scholar]
  30. Miscellaneous. Halls J. Health. 1887 34 3 71 72 36491824
    [Google Scholar]
  31. De Francesco S. Galluzzi S. Vanacore N. Festari C. Ros-sini P.M. Cappa S.F. Frisoni G.B. Redolfi A. Norms for automatic estimation of hippocampal atrophy and a step for-ward for applicability to the italian population. Front. Neurosci. 2021 15 656808 10.3389/fnins.2021.656808 34262425
    [Google Scholar]
  32. Inui-Yukawa M. Miyaoka H. Yamamoto K. Kamijo Y. Takai M. Yonemoto N. Kawanishi C. Otsuka K. Tachikawa H. Hirayasu Y. Effectiveness of assertive case management for patients with suicidal intent. Psychiatry Res. 2021 304 114125 10.1016/j.psychres.2021.114125 34332432
    [Google Scholar]
  33. Banou L. Dastiridou A. Giannoukas A. Kouvelos G. Baros C. Androudi S. The role of color doppler imaging in the diagnosis of glaucoma: A review of the literature. Diagnostics 2023 13 4 588 10.3390/diagnostics13040588 36832076
    [Google Scholar]
  34. Curti J.N. Fraser D. Escalona M. Fairbairn C.W. Sacco S. Sahasrabudhe R. Nguyen O. Seligmann W. Sudmant P.H. Toffelmier E. Vazquez J.M. Wayne R. Shaffer H.B. Buchalski M.R. A genome assembly of the Yuma myotis bat, Myotis yumanensis. J. Hered. 2024 115 1 139 148 10.1093/jhered/esad053 37712349
    [Google Scholar]
  35. Marchetti C. De Felice F. Romito A. Iacobelli V. Sassu C.M. Corrado G. Ricci C. Scambia G. Fagotti A. Chemo-therapy resistance in epithelial ovarian cancer: Mechanisms and emerging treatments. Semin. Cancer Biol. 2021 77 144 166 10.1016/j.semcancer.2021.08.011 34464704
    [Google Scholar]
  36. El Bairi K. Al Jarroudi O. Afqir S. Revisiting antibody-drug conjugates and their predictive biomarkers in platinum-resistant ovarian cancer. Semin. Cancer Biol. 2021 77 42 55 10.1016/j.semcancer.2021.03.031 33812984
    [Google Scholar]
  37. McMullen M. Madariaga A. Lheureux S. New approaches for targeting platinum-resistant ovarian cancer. Semin. Cancer Biol. 2021 77 167 181 10.1016/j.semcancer.2020.08.013 32871277
    [Google Scholar]
  38. Khan M.A. Vikramdeo K.S. Sudan S.K. Singh S. Wilhite A. Dasgupta S. Rocconi R.P. Singh A.P. Platinum-resistant ovarian cancer: From drug resistance mechanisms to liquid biopsy-based biomarkers for disease management. Semin. Cancer Biol. 2021 77 99 109 10.1016/j.semcancer.2021.08.005 34418576
    [Google Scholar]
  39. Batista M.V. Ulrich J. Costa L. Ribeiro L.A. Multiple primary malignancies in head and neck cancer: A university hospital experience over a five-year period. Cureus 2021 13 8 e17349 10.7759/cureus.17349 34567890
    [Google Scholar]
  40. O’Donnell R. Dolan J. Anaesthesia and analgesia for knee joint arthroplasty. BJA Educ. 2018 18 1 8 15 10.1016/j.bjae.2017.11.003 33456789
    [Google Scholar]
  41. Sun C. Liu L. Wang L. Li B. Jin C. Lin X. Melatonin: A master regulator of plant development and stress responses. J. Integr. Plant Biol. 2021 63 1 126 145 10.1111/jipb.12993 32678945
    [Google Scholar]
  42. Jeevanandam J. Chan Y.S. Danquah M.K. Cytotoxicity and insulin resistance reversal ability of biofunctional phytosynthesized MgO nanoparticles. 3 Biotech 2020 10 11 489 10.1007/s13205‑020‑02480‑2 33123456
    [Google Scholar]
  43. Porzuczek J. Assessment of the spatial distribution of mois-ture content in granular material using electrical impedance tomography. Sensors 2019 19 12 2807 10.3390/s19122807 31234567
    [Google Scholar]
  44. Shabbir S. Muslim M. Muthu S.A. Pissurlenkar R.R.S. Fatima S. Ali A. Ahmad A. Ahmad M. Ahmad B. The cocrystal of 3-((4-(3-isocyanobenzyl) piperazine-1-yl) me-thyl) benzonitrile with 5-hydroxy isophthalic acid prevents protofibril formation of serum albumin. J. Biomol. Struct. Dyn. 2022 40 1 538 548 10.1080/07391102.2020.1815585 32876543
    [Google Scholar]
  45. Riordan G. Riordan J. Giant cell arteritis presenting as cho-lestatic hepatitis. Case Reports Hepatol. 2021 2021 1 2 10.1155/2021/4455748 34567812
    [Google Scholar]
  46. Santos C.S.A. Sotillo A. Gupta T. Delgado S. Müller W. Stienen E.W.M. de Neve L. Lens L. Soares A.M.V.M. Monteiro M.S. Loureiro S. Mercury uptake affects the de-velopment of Larus fuscus chicks. Environ. Toxicol. Chem. 2020 39 10 2008 2017 10.1002/etc.4823 32678941
    [Google Scholar]
  47. Shafiee R.T. Snow J.T. Hester S. Zhang Q. Rickaby R.E.M. Proteomic response of the marine ammonia‐oxidising archaeon Nitrosopumilus maritimus to iron limitation reveals strategies to compensate for nutrient scarcity. Environ. Microbiol. 2022 24 2 835 849 10.1111/1462‑2920.15491 33876540
    [Google Scholar]
  48. Osterreichische Kardiologische Gesellschaft Jahrestagung 2021: “Alte Herzen - Neue Perspektiven”. Wien. Klin. Wochenschr. 2021 133 Suppl. 3 33 154 10.1007/s00508‑021‑01884‑1
    [Google Scholar]
  49. Abu-Raya B. Maertens K. Munoz F.M. Zimmermann P. Curtis N. Halperin S.A. Rots N. Barug D. Holder B. Rice T.F. Kampmann B. Leuridan E. Sadarangani M. Fac-tors affecting antibody responses to immunizations in infants born to women immunized against pertussis in pregnancy and unimmunized women: Individual-participant data meta-analysis. Vaccine 2021 39 44 6545 6552 10.1016/j.vaccine.2021.09.022 34598822
    [Google Scholar]
  50. Naeim H.A. Alamodi O. Ajaz Ghani M. Albagi A.N. Abuelatta R. Transesophageal echocardiography guidance of percutaneous mitral valve replacement in failed annuloplasty ring: A case report. J. Cardiol. Cases 2020 22 2 64 67 10.1016/j.jccase.2020.05.006 32774522
    [Google Scholar]
  51. Bora N. Mahanta P. Kalita D. Deka S. Konwar R. Phukan C. Enamel surface damage following debonding of ceramic brackets: A hospital-based study. ScientificWorldJournal 2021 2021 1 8 10.1155/2021/5561040 34035672
    [Google Scholar]
  52. Wu M. Wajeeh H. McPhail M.N. Seyam O. Flora J. Nguyen H. Usage of tranexamic acid for treatment of subdu-ral hematomas. Cureus 2023 15 4 e37628 10.7759/cureus.37628 37200656
    [Google Scholar]
  53. Pellegrino B. Capoluongo E. Campanini N. Musolino A. Sikokis A. Casartelli C. Normanno N. Arenare L. Serra V. Llop-Guevara A. Association of HRD ovarian cancer by RAD51 with hot immune microenvironment: Translational analyses of MITO 16A/MaNGO-OV2 trial. J. Clin. Oncol. 2023 41 5527 10.1200/JCO.2023.41.16_suppl.5527
    [Google Scholar]
  54. Liu N. Song L. Liu M. Shang F. Anderson Z. Fox D.J. Challis G.L. Huang Y. Correction: Unique post-translational oxime formation in the biosynthesis of the azolemycin com-plex of novel ribosomal peptides from Streptomyces sp. FXJ1.264. Chem. Sci. 2016 7 1 810 10.1039/C5SC90063H 30123457
    [Google Scholar]
  55. Pražienková V. Marek A. Maletínská L. Iodination of CART(61‐102) peptide: Preserved binding and anorexigenic activity in mice. J. Labelled Comp. Radiopharm. 2021 64 2 61 64 10.1002/jlcr.3871 32678955
    [Google Scholar]
  56. Raphael B.P. Fournier G. McLaughlin S.R. Puder M. Jones S. Flett K.B. Antibiotic susceptibility and therapy in central line infections in pediatric home parenteral nutrition patients. J. Pediatr. Gastroenterol. Nutr. 2020 70 1 59 63 10.1097/MPG.0000000000002506 31567890
    [Google Scholar]
  57. Liu Q. Yang X. Yin Y. Zhang H. Yin F. Guo P. Zhang X. Sun C. Li S. Han Y. Yang Z. Identifying the role of oxidative stress‐related genes as prognostic biomarkers and predicting the response of immunotherapy and chemotherapy in ovarian cancer. Oxid. Med. Cell. Longev. 2022 2022 1 6575534 10.1155/2022/6575534 36561981
    [Google Scholar]
  58. Guo K. Lu M. Bi J. Yao T. Gao J. Ren F. Zhu L. Fer-roptosis: Mechanism, immunotherapy and role in ovarian cancer. Front. Immunol. 2024 15 1410018 10.3389/fimmu.2024.1410018 39192972
    [Google Scholar]
  59. Mbala-Kingebeni P. Pratt C. Mutafali-Ruffin M. Pauthner M.G. Bile F. Nkuba-Ndaye A. Black A. Kinganda-Lusamaki E. Faye M. Aziza A. Diagne M.M. Mukadi D. White B. Hadfield J. Gangavarapu K. Bisento N. Kazadi D. Nsunda B. Akonga M. Tshiani O. Misasi J. Ploquin A. Epaso V. Sana-Paka E. N’kasar Y.T.T. Mambu F. Edidi F. Matondo M. Bula Bula J. Diallo B. Keita M. Belizaire M.R.D. Fall I.S. Yam A. Mulangu S. Rimoin A.W. Salfati E. Torkamani A. Suchard M.A. Crozier I. Hensley L. Rambaut A. Faye O. Sall A. Sullivan N.J. Bedford T. Andersen K.G. Wiley M.R. Ahuka-Mundeke S. Muyembe Tamfum J.J. Ebola virus transmission initiated by relapse of systemic ebola virus disease. N. Engl. J. Med. 2021 384 13 1240 1247 10.1056/NEJMoa2024670 33789012
    [Google Scholar]
  60. Alahdal M. Elkord E. Non‐coding RNAs in cancer immuno-therapy: Predictive biomarkers and targets. Clin. Transl. Med. 2023 13 9 e1425 10.1002/ctm2.1425 37735815
    [Google Scholar]
  61. Wethington S.L. Fader A.N. ProMisE on the horizon: mo-lecular classification of endometrial cancer in young women. Gynecol. Oncol. 2019 153 465 466
    [Google Scholar]
  62. Laban S. Hoffmann T.K. Human papillomavirus immunity in oropharyngeal cancer: Time to change the game? Clin. Cancer Res. 2018 24 3 505 507 10.1158/1078‑0432.CCR‑17‑2991 29133574
    [Google Scholar]
  63. Alizadeh J. da Silva Rosa S.C. Weng X. Jacobs J. Lorza-deh S. Ravandi A. Vitorino R. Pecic S. Zivkovic A. Stark H. Shojaei S. Ghavami S. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur. J. Cell Biol. 2023 102 3 151337 10.1016/j.ejcb.2023.151337 37392580
    [Google Scholar]
  64. Achmad H. Chaklader M.R. Fotedar R. Foysal M.J. From waste to feed: Microbial fermented abalone waste improves the digestibility, gut health, and immunity in marron, cherax cainii. Fish Shellfish Immunol. 2023 137 108748 10.1016/j.fsi.2023.108748 37087026
    [Google Scholar]
  65. Chen H. Molberg K. Strickland A.L. Castrillon D.H. Carrick K. Jiang Q. Niu S. Rivera-Colon G. Gwin K. Hinson S. Lea J. Miller D.S. Zheng W. Lucas E. PD-L1 Expression and cd8+ tumor-infiltrating lymphocytes in dif-ferent types of tubo-ovarian carcinoma and their prognostic value in high-grade serous carcinoma. Am. J. Surg. Pathol. 2020 44 8 1050 1060 10.1097/PAS.0000000000001503 32384321
    [Google Scholar]
  66. Akdis C.A. Ballas Z.K. Precision medicine and precision health: Building blocks to foster a revolutionary health care model. J. Allergy Clin. Immunol. 2016 137 5 1359 1361 10.1016/j.jaci.2016.03.020 27155031
    [Google Scholar]
  67. Olorunsogo T.O. Balogun O.D. Ayo-Farai O. Ogundairo O. Maduka C.P. Okongwu C.C. Onwumere C. Bioinfor-matics and personalized medicine in the U.S.: A comprehen-sive review: Scrutinizing the advancements in genomics and their potential to revolutionize healthcare delivery. World J. Adv. Res. Rev. 2024 21 1 335 351 10.30574/wjarr.2024.21.1.0016
    [Google Scholar]
  68. López-Portugués C. Montes-Bayón M. Díez P. Biomarkers in ovarian cancer: Towards personalized medicine. Proteomes 2024 12 1 8 10.3390/proteomes12010008 38535506
    [Google Scholar]
  69. Aust S. Schwameis R. Gagic T. Müllauer L. Langthaler E. Prager G. Grech C. Reinthaller A. Krainer M. Pils D. Grimm C. Polterauer S. Precision medicine tumor boards: Clinical applicability of personalized treatment concepts in ovarian cancer. Cancers 2020 12 3 548 10.3390/cancers12030548 32120793
    [Google Scholar]
  70. Singh D. Dhiman V.K. Pandey M. Dhiman V.K. Sharma A. Pandey H. Verma S.K. Pandey R. Personalized medicine: An alternative for cancer treatment. Cancer Treat Res. Commun 2024 42 100860 10.1016/j.ctarc.2024.100860 39827574
    [Google Scholar]
  71. Millner L.M. Strotman L.N. The future of precision medi-cine in oncology. Clin. Lab. Med. 2016 36 3 557 573 10.1016/j.cll.2016.05.003 27514468
    [Google Scholar]
  72. Maciejko L. Smalley M. Goldman A. Cancer immunother-apy and personalized medicine: Emerging technologies and biomarker-based approaches. J. Mol. Biomark. Diagn. 2017 8 5 350 10.4172/2155‑9929.1000350 29285416
    [Google Scholar]
  73. Han G.Y.Q. Alexander M. Gattozzi J. Day M. Kirsch E. Tafreshi N. Chalar R. Rahni S. Gossner G. Burke W. Damaghi M. Ecological and evolutionary dynamics to design and improve ovarian cancer treatment. Clin. Transl. Med. 2024 14 9 e70012 10.1002/ctm2.70012 39210542
    [Google Scholar]
  74. Chen B. Liu J. Prospects and challenges of CAR-T in the treatment of ovarian cancer. Int. Immunopharmacol. 2024 133 112112 10.1016/j.intimp.2024.112112 38640714
    [Google Scholar]
  75. Duwa R. Jeong J.H. Yook S. Immunotherapeutic strategies for the treatment of ovarian cancer: Current status and future direction. J. Ind. Eng. Chem. 2021 94 62 77 10.1016/j.jiec.2020.11.015
    [Google Scholar]
  76. Kaur T. Slavcev R. Wettig S. Addressing the challenge: Current and future directions in ovarian cancer therapy. Curr. Gene Ther. 2009 9 6 434 458 10.2174/156652309790031148 20021329
    [Google Scholar]
  77. Wefers C. Lambert L.J. Torensma R. Hato S.V. Cellular immunotherapy in ovarian cancer: Targeting the stem of re-currence. Gynecol. Oncol. 2015 137 2 335 342 10.1016/j.ygyno.2015.02.019 25727651
    [Google Scholar]
  78. Tay C.T. Joham A.E. Teede H.J. Key standards and prin-ciples for developing evidence-based clinical guidelines: Bal-ancing health professional, patient, funder, and government needs. Fertil. Steril. 2025 123 4 561 568 10.1016/j.fertnstert.2025.01.023 39884335
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206402903250809112441
Loading
/content/journals/acamc/10.2174/0118715206402903250809112441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test