Skip to content
2000
image of Design, Synthesis, Antimicrobial and Antitumor Activities of Benzo[f]chromene Derivatives: DFT and Molecular Docking

Abstract

Introduction

Benzochromenes are heterocyclic compounds of growing interest in medicinal chemistry due to their diverse biological activities, including antioxidant, anticancer, and antimicrobial properties.

Methods

A one-pot, three-component synthesis was employed to prepare benzochromene derivatives ( using 2-naphthol or its derivatives, active methylene compounds, and 2-methoxybenzaldehyde in ethanol with piperidine as a catalyst. The compounds were evaluated for their anticancer activity against -7, , and cell lines, as well as for their antimicrobial activity through molecular docking studies targeting cancer-related and microbial proteins.

Results

All synthesized compounds were obtained in moderate to good yields. Compounds , , and demonstrated superior biological activity compared to standard drugs and . Docking studies revealed strong binding affinities to key targets, including the TGF-βI receptor and the choline-binding domain.

Discussion

The hydroxyl group at position 9 in compounds and likely contributed to enhanced antimicrobial activity, while the bromo group in correlated with significant anticancer effects. These findings suggest meaningful structure–activity relationships and validate the design strategy.

Conclusion

The synthesized benzochromene derivatives exhibit promising anticancer and antimicrobial activities. Supported by molecular docking, these findings lay the groundwork for further pharmacological and evaluations of this scaffold.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206403354250808100701
2025-08-15
2025-12-16
Loading full text...

Full text loading...

References

  1. Katta B. Vijayakumar C. Dutta S. Dubashi B. Nelamangala Ramakrishnaiah V.P. The incidence and severity of patient-reported side effects of chemotherapy in routine clinical care: A prospective observational study. Cureus 2023 15 4 e38301 10.7759/cureus.38301 37261144
    [Google Scholar]
  2. Costa Cerqueira M. Silva A. Martins Sousa S. Pinto-Ribeiro F. Baltazar F. Afonso J. Freitas Costa M. Chromene-based compounds as drug candidates for renal and bladder cancer therapy – A systematic review. Bioorg. Chem. 2024 153 107865 10.1016/j.bioorg.2024.107865 39393199
    [Google Scholar]
  3. Larsson D.G.J. Flach C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022 20 5 257 269 10.1038/s41579‑021‑00649‑x 34737424
    [Google Scholar]
  4. Mancuso G. Midiri A. Gerace E. Biondo C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021 10 10 1310 10.3390/pathogens10101310 34684258
    [Google Scholar]
  5. Malik M.S. Ather H. Asif Ansari S.M. Siddiqua A. Jamal Q.M.S. Alharbi A.H. Al-Rooqi M.M. Jassas R.S. Hussein E.M. Moussa Z. Obaid R.J. Ahmed S.A. Novel indole-tethered chromene derivatives: Synthesis, cytotoxic properties, and key computational insights. Pharmaceuticals 2023 16 3 333 10.3390/ph16030333 36986433
    [Google Scholar]
  6. Feliciano A. Gómez-García O. Escalante C.H. Rodríguez-Hernández M.A. Vargas-Fuentes M. Andrade-Pavón D. Villa-Tanaca L. Álvarez-Toledano C. Ramírez-Apan M.T. Vázquez M.A. Tamariz J. Delgado F. Three-component synthesis of 2-Amino-3-cyano-4H-Chromenes, in silico analysis of their pharmacological profile, and in vitro anticancer and antifungal testing. Pharmaceuticals 2021 14 11 1110 10.3390/ph14111110 34832892
    [Google Scholar]
  7. Ghomashi S. Ghomashi R. Damavandi M.S. Fakhar Z. Mousavi S.Y. Salari-Jazi A. Gharaghani S. Massah A.R. Evaluation of antibacterial, cytotoxicity, and apoptosis activity of novel chromene-sulfonamide hybrids synthesized under solvent-free conditions and 3D-QSAR modeling studies. Sci. Rep. 2024 14 1 12878 10.1038/s41598‑024‑63535‑5 38834651
    [Google Scholar]
  8. Fouda A.M. Hassan A.H. Eliwa E.M. Ahmed H.E.A. Al-Dies A.A.M. Omar A.M. Nassar H.S. Halawa A.H. Aljuhani N. El-Agrody A.M. Targeted potent antimicrobial benzochromene-based analogues: Synthesis, computational studies, and inhibitory effect against 14α-Demethylase and DNA Gyrase. Bioorg. Chem. 2020 105 104387 10.1016/j.bioorg.2020.104387 33130344
    [Google Scholar]
  9. El-Wahab A.H.F.A. Borik R.M. Al-Dies A.A.M. Fouda A.M. Mohamed H.M. El-Eisawy R.A. Sharaf M.H. Alzahrani A.Y.A. Elhenawy A.A. El-Agrody A.M. Targeted potent antimicrobial and antitumor oxygen-heterocyclic-based pyran analogues: Synthesis and computational studies. Sci. Rep. 2024 14 1 9862 10.1038/s41598‑024‑59193‑2 38684707
    [Google Scholar]
  10. Abd El-Mawgoud H.K. Radwan H.A.M. El-Mariah F. El-Agrody A.M. Synthesis characterization, biological activity of novel 1H-benzo[f]chromene and 12H-benzo [f]chromeno-[2,3-d]pyrimidine derivatives. Lett. Drug Des. Discov. 2018 15 8 857 865 10.2174/1570180814666171027160854
    [Google Scholar]
  11. Chaudhary A. Singh K. Verma N. Kumar S. Kumar D. Sharma P.P. Chromenes - A novel class of heterocyclic compounds: Recent advancements and future directions. Mini Rev. Med. Chem. 2022 22 21 2736 2751 10.2174/1389557522666220331161636 35362382
    [Google Scholar]
  12. Guo T. Chen Y. Chen W. Semple S.J. Gu X. Polyak S.W. Sun G. Venter H. Ma S. Design and synthesis of benzochromene derivatives as AcrB inhibitors for the reversal of bacterial multidrug resistance. Eur. J. Med. Chem. 2023 249 115148 10.1016/j.ejmech.2023.115148 36709649
    [Google Scholar]
  13. dos Reis G.O. da Rosa J.S. Lubschinksi T.L. Martin E.F. Sandjo L.P. Dalmarco E.M. Evidence that the anti‐inflammatory effect of 4‐aryl‐4 H ‐Chromenes is linked to macrophage repolarization. Fundam. Clin. Pharmacol. 2022 36 6 1020 1030 10.1111/fcp.12809 35697364
    [Google Scholar]
  14. Maddahi M. Asghari S. Pasha G.F. A facile one-pot green synthesis of novel 2-amino-4H-chromenes: Antibacterial and antioxidant evaluation. Res. Chem. Intermed. 2023 49 1 253 272 10.1007/s11164‑022‑04893‑5
    [Google Scholar]
  15. Johnson T.A. Roe E.W. Crawford M.J. Basile O.N. Shellenberger B.M. Rudolph M.E. Awad S.H. Brogdon P. Nelson P.N. Henry G.E. Synthesis, antioxidant, DNA interaction, electrochemical, and spectroscopic properties of chromene-based Schiff bases: Experimental and theoretical approach. J. Mol. Struct. 2024 1307 138020 10.1016/j.molstruc.2024.138020
    [Google Scholar]
  16. Nongthombam G.S. Barman D. Iyer P.K. Through-space charge-transfer-based aggregation-induced emission and thermally activated delayed fluorescence in fused 2H-chromene coumarin congener generating ROS for antiviral (SARS-CoV-2) approach. ACS Appl. Bio Mater. 2024 7 3 1899 1909 10.1021/acsabm.3c01262 38417048
    [Google Scholar]
  17. Shaik M.S. Nadiveedhi M.R. Gundluru M. Narreddy A.K.R. Thathireddy K.R. Ramakrishna R. Cirandur S.R. 2‐Amino‐3‐cyano‐4H ‐chromene‐4‐ylphosphonates as potential antiviral agents: Synthesis, in ovo and in silico approach. J. Heterocycl. Chem. 2021 58 1 137 152 10.1002/jhet.4154
    [Google Scholar]
  18. Oliveira-Pinto S. Pontes O. Lopes D. Sampaio-Marques B. Costa M.D. Carvalho L. Gonçalves C.S. Costa B.M. Maciel P. Ludovico P. Baltazar F. Proença F. Costa M. Unravelling the anticancer potential of functionalized chromeno[2,3-b]pyridines for breast cancer treatment. Bioorg. Chem. 2020 100 103942 10.1016/j.bioorg.2020.103942 32450388
    [Google Scholar]
  19. Abd El-Wahab A.H.F. Borik R.M.A. Al-Dies A.A.M. Fouda A.M. Mohamed H.M. El-Eisawy R.A. Mora A. El-Nassag M.A.A. Abd elhady, A.M.; Elhenawy, A.A.; El-Agrody, A.M. Design, synthesis and bioactivity study on oxygen-heterocyclic-based pyran analogues as effective P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cell. Sci. Rep. 2024 14 1 7589 10.1038/s41598‑024‑56197‑w 38555345
    [Google Scholar]
  20. El Gaafary M. Syrovets T. Mohamed H.M. Elhenawy A.A. El-Agrody A.M. Amr A.E. Ghabbour H.A. Almehizia A.A. Synthesis, Cytotoxic Activity, Crystal Structure, DFT Studies and Molecular Docking of 3-Amino-1-(2,5-dichlorophenyl)-8-methoxy-1Hbenzo[f]chromene-2-carbonitrile. Crystals 2021 11 184 205 10.3390/cryst11020184
    [Google Scholar]
  21. El-Agrody A.M. Fouda A.M. Khattab E.S.A.E.H. Halogenated 2-amino-4H-benzo[h]chromene derivatives as antitumor agents and the relationship between lipophilicity and antitumor activity. Med. Chem. Res. 2017 26 4 691 700 10.1007/s00044‑016‑1773‑x
    [Google Scholar]
  22. Al-Harbi L.M. Al-Harbi E.A. Okasha R.M. El-Eisawy R.A. El-Nassag M.A.A. Mohamed H.M. Fouda A.M. Elhenawy A.A. Mora A. El-Agrody A.M. El-Mawgoud H.K.A. Discovery of benzochromene derivatives first example with dual cytotoxic activity against the resistant cancer cell MCF-7/ADR and inhibitory effect of the P -glycoprotein expression levels. J. Enzyme Inhib. Med. Chem. 2023 38 1 2155814 10.1080/14756366.2022.2155814 36662632
    [Google Scholar]
  23. Bistgani A.M. Moradi L. Dehghani A. Preparation and characterization of MWCNTs/CONHBu and investigation of its catalytic effect in the multi component synthesis of 2-amino-4H-chromenes under green conditions. Catal. Commun. 2023 182 106755 10.1016/j.catcom.2023.106755
    [Google Scholar]
  24. Ezzatzadeh E. Hossaini Z. Four-component green synthesis of benzochromene derivatives using nano-KF/clinoptilolite as basic catalyst: Study of antioxidant activity. Mol. Divers. 2020 24 1 81 91 10.1007/s11030‑019‑09935‑6 30830596
    [Google Scholar]
  25. Sandra A. Miryam G.M. Paula C.C. Subhan A. Raquel P.H. Eugenia M.L. Multicomponent Cyanation of 2-Amino-3-cyano-4H-chromenes in Aqueous Media. Asian J. Org. Chem. 2024 13 12 1 6
    [Google Scholar]
  26. El-Agrody A.M. Abd El-Mawgoud H.K. Fouda A.M. Khattab E.S.A.E.H. Synthesis, in-vitro cytotoxicity of 4H-benzo[h]chromene derivatives and structure–activity relationships of 4-aryl group and 3-, 7-positions. Chem. Pap. 2016 70 9 1279 1292 10.1515/chempap‑2016‑0049
    [Google Scholar]
  27. Halawa A.H. Fouda A.M. Al-Dies A.M. El-Agrody A.M. Synthesis, biological evaluation and molecular docking studies of 4H-benzo[h]chromenes, 7H-benzo[h]chromeno[2,3-d]Pyrimidines as antitumor agents. Lett. Drug Des. Discov. 2016 13 77 88 10.2174/1570180812666150611185830
    [Google Scholar]
  28. Alblewi F.F. Okasha R.M. Eskandrani A.A. Afifi T.H. Mohamed H.M. Halawa A.H. Fouda A.M. Al-Dies A.A.M. Mora A. El-Agrody A.M. Design and synthesis of novel heterocyclic-based 4H-benzo[h]chromene moieties: Targeting antitumor caspase 3/7 activities and cell cycle analysis. Molecules 2019 24 6 1060 1076 10.3390/molecules24061060 30889862
    [Google Scholar]
  29. Ahmed H.E.A. El-Nassag M.A.A. Hassan A.H. Mohamed H.M. Halawa A.H. Okasha R.M. Ihmaid S. Abd El-Gilil S.M. Khattab E.S.A.E.H. Fouda A.M. El-Agrody A.M. Aljuhani A. Afifi T.H. Developing lipophilic aromatic halogenated fused systems with specific ring orientations, leading to potent anticancer analogs and targeting the c-Src Kinase enzyme. J. Mol. Struct. 2019 1186 212 223 10.1016/j.molstruc.2019.03.012
    [Google Scholar]
  30. Alblewi F.F. Okasha R.M. Hritani Z.M. Mohamed H.M. El-Nassag M.A.A. Halawa A.H. Mora A. Fouda A.M. Assiri M.A. Al-Dies A.A.M. Afifi T.H. El-Agrody A.M. Antiproliferative effect, cell cycle arrest and apoptosis generation of novel synthesized anticancer heterocyclic derivatives based 4H-benzo[h]chromene. Bioorg. Chem. 2019 87 560 571 10.1016/j.bioorg.2019.03.059 30928878
    [Google Scholar]
  31. Ahmed H.E.A. El-Nassag M.A.A. Hassan A.H. Okasha R.M. Ihmaid S. Fouda A.M. Afifi T.H. Aljuhani A. El-Agrody A.M. Introducing novel potent anticancer agents of 1H -benzo[ f]chromene scaffolds, targeting c-Src kinase enzyme with MDA-MB-231 cell line anti-invasion effect. J. Enzyme Inhib. Med. Chem. 2018 33 1 1074 1088 10.1080/14756366.2018.1476503 29923425
    [Google Scholar]
  32. Fouda A.M. Okasha R.M. Alblewi F.F. Mora A. Afifi T.H. El-Agrody A.M. A proficient microwave synthesis with structure elucidation and the exploitation of the biological behavior of the newly halogenated 3-amino-1H-benzo[f]chromene molecules, targeting dual inhibition of topoisomerase II and microtubules. Bioorg. Chem. 2020 95 103549 10.1016/j.bioorg.2019.103549 31887476
    [Google Scholar]
  33. Elgaafary M. Fouda A.M. Mohamed H.M. Hamed A. El-Mawgoud H.K.A. Jin L. Ulrich J. Simmet T. Syrovets T. El-Agrody A.M. Synthesis of β-enaminonitriles linked 8-methoxy-1H-benzo[f]chromene moieties and analysis of their antitumor mechanisms. Front Chem. 2001 9 759149
    [Google Scholar]
  34. Fouda A.M. Assiri M.A. Mora A. Ali T.E. Afifi T.H. El-Agrody A.M. Microwave synthesis of novel halogenated β-enaminonitriles linked 9-bromo-1H-benzo[f]chromene moieties: Induces cell cycle arrest and apoptosis in human cancer cells via dual inhibition of topoisomerase I and II. Bioorg. Chem. 2019 93 103289 10.1016/j.bioorg.2019.103289 31586716
    [Google Scholar]
  35. El Gaafary M. Lehner J. Fouda A.M. Hamed A. Ulrich J. Simmet T. Syrovets T. El-Agrody A.M. El-Agrody A.M. Synthesis and evaluation of antitumor activity of 9-methoxy-1H-benzo[f]chromene derivatives. Bioorg. Chem. 2021 116 105402 10.1016/j.bioorg.2021.105402 34670333
    [Google Scholar]
  36. Piazzi L. Cavalli A. Belluti F. Bisi A. Gobbi S. Rizzo S. Bartolini M. Andrisano V. Recanatini M. Rampa A. Extensive SAR and Computational Studies of 3-4-[(Benzylmethylamino)methyl]phenyl-6,7-dimethoxy-2 H -2-chromenone (AP2238) Derivatives. J. Med. Chem. 2007 50 17 4250 4254 10.1021/jm070100g 17655212
    [Google Scholar]
  37. Gorle S. Maddila S. Maddila S. Naicker K. Singh M. Singh P. Jonnalagadda S. Synthesis, molecular docking study and in vitro anticancer activity of tetrazole linked benzochromene derivatives. Anticancer. Agents Med. Chem. 2017 17 3 464 470 10.2174/1871520616666160627090249 27357544
    [Google Scholar]
  38. Elgaafary M. Fouda A.M. Mohamed H.M. Hamed A. El-Mawgoud H.K.A. Jin L. Ulrich J. Simmet T. Syrovets T. El-Agrody A.M. Synthesis of β-Enaminonitrile-Linked 8-Methoxy-1H-Benzo[f]Chromene Moieties and Analysis of Their Antitumor Mechanisms. Front Chem. 2021 9 759148 10.3389/fchem.2021.759148 34881224
    [Google Scholar]
  39. Mehmet A. Alan R.K. Shaaban K.M. Sabry H.H.Y. Gary J.M. 3-amino-1-phenyl-1H-benzo[f]chromene-2-carbonitrile. Acta Crystallogr. Sect. E Struct. Rep. Online 2013 69 Pt 3 o401 10.1107/S1600536813004376 23476583
    [Google Scholar]
  40. Shaaban K.M. Peter N.H. Mehmet A. Sabry H.H.Y. Mustafa R.A. Crystal structure of 2-amino-4-phenyl-4H-benzo[h]chromene-3-carbonitrile. Acta Crystallogr. E Crystallogr. Commun. 2015 71 Pt 7 o516 o517 10.1107/S2056989015011536 26279939
    [Google Scholar]
  41. Radini I.A. Abd El-Wahab A.H.F. Heteroaromatization with 4-phenyldiazenyl-1-naphthol. Part I: Synthesis of some new naphthopyrans and naphthopyranopyrimidines. Eur. J. Chem. 2016 7 2 230 237 10.5155/eurjchem.7.2.230‑237.1432
    [Google Scholar]
  42. Ashraf H.F.A. Mosa H.M.K. Ali H.H.A. Mohammad Y.M.A. Synthesis, antimicrobial, and antitumor activity of some new chromene compounds. Indian J. Heterocycl. Chem. 2020 30 369 379
    [Google Scholar]
  43. El-Wahab A.H.F.A. Mohamed H.M. Synthesis and DFT study of 7-Bromophenylnaphthopyran moieties. Asian J. Chem. 2023 35 8 1819 1826 10.14233/ajchem.2023.28032
    [Google Scholar]
  44. Abdelwahab A.H.F. Fekry S.A.H. Anti-cancerous properties of the synthesized substituted chromene compounds and their pharmacological activities. Lett. Drug Des. Discov. 2023 20 8 1098 1106 10.2174/1570180819666220811102040
    [Google Scholar]
  45. Ahmed Borik R.M. Amri N.J.H. Mukhrish Y.E. Abd El-Wahab A.H.F. Mohamed H.M. Ibrahim D.A.E-S. Deeb A.D.H. Design, synthesis, reactions, molecular docking, antitumor activities of novel naphthopyran, naphthopyranopyrimidines, and naphthoyranotriazolopyrimidine derivatives. Curr. Org. Chem. 2023 27 19 1717 1727 10.2174/0113852728264994231018063921
    [Google Scholar]
  46. Ahmed Borik R.M. El-Wahab A.H.F.A. Heteroaromatization of coumarin Part I: Design, synthesis, reactions, antitumor activities of novel pyridine and naphthyridine derivatives. Curr. Org. Synth. 2024 21 4 571 581 10.2174/0115701794265924230920061222 38174438
    [Google Scholar]
  47. Fouda A.M. El-Eisawy R.A. El-Nassag M.A.A. Mohamed H.M. Fekry A.H.F. El-Mawgoud H.K.A. Shati A.A. Alfaifi M.Y. Elbehairi S.E.I. Elhenawy A.A. Mora A. El-Agrody A.M. Discovery of pyran annulated heterocyclic scaffolds linked to carboxamide fragments: Anticancer evaluation, topoisomerase I/II, tyrosine kinase receptor inhibition and molecular docking studies. J. Mol. Struct. 2024 1295 1 136518 10.1016/j.molstruc.2023.136518
    [Google Scholar]
  48. Borik R.M.A. Abd El-Wahab A.H.F. Mohamed H.M. Ismail K.S. Heteroaromatization of coumarin part II: Synthesis, reactions, and antimicrobial activities of novel pyrido[2,3-d]pyrimidine derivatives. Curr. Org. Synth. 2025 22 1 108 117 10.2174/0115701794290718240322054346
    [Google Scholar]
  49. Abd El-Wahab A.H.F. Synthesis and antitumor activities of novel 5-amino-3-(halophenyl)-1- phenyl-1H-pyrazole-4-carbonitriles. Curr. Org Synth 2025 22 1 72-78 72-78 10.2174/0115701794259226231023091306
    [Google Scholar]
  50. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin. Microbiol. Infect. 2000 6 9 509 515 10.1046/j.1469‑0691.2000.00142.x 11168187
    [Google Scholar]
  51. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically 2000 Available from: https://www.vtpi.org/access.pdf
  52. Pedreira A. Vázquez J.A. García M.R. Kinetics of bacterial adaptation, growth, and death at Didecyldimethylammonium Chloride sub-MIC Concentrations. Front. Microbiol. 2022 13 758237 10.3389/fmicb.2022.758237 35464917
    [Google Scholar]
  53. Jhanji R. Singh A. Kumar A. Antibacterial potential of selected phytomolecules: An experimental study. Microbiol. Immunol. 2021 65 8 325 332 10.1111/1348‑0421.12890 33930208
    [Google Scholar]
  54. Singla N. Singh G. Bhatia R. Kumar A. Kaur R. Kaur S. Design, synthesis and antimicrobial evaluation of 1,3,4‐Oxadiazole/1,2,4‐Triazole‐Substituted thiophenes. ChemistrySelect 2020 5 13 3835 3842 10.1002/slct.202000191
    [Google Scholar]
  55. Abdelsalam E.A. Abd El-Hafeez A.A. Eldehna W.M. El Hassab M.A. Marzouk H.M.M. Elaasser M.M. Abou Taleb N.A. Amin K.M. Abdel-Aziz H.A. Ghosh P. Hammad S.F. Discovery of novel thiazolyl-pyrazolines as dual EGFR and VEGFR-2 inhibitors endowed with in vitro antitumor activity towards non-small lung cancer. J. Enzyme Inhib. Med. Chem. 2022 37 1 2265 2282 10.1080/14756366.2022.2104841 36000167
    [Google Scholar]
  56. Gomha S.M. Riyadh S.M. Mahmmoud E.A. Elaasser M.M. Synthesis and anticancer activities of thiazoles, 1,3-thiazines, and thiazolidine using chitosan-grafted-poly(vinylpyridine) as basic catalyst. Heterocycles 2015 91 1227 1243 10.3987/COM‑15‑13210
    [Google Scholar]
  57. Goerigk L. Reimers J.R. Efficient Methods for the Quantum Chemical Treatment of Protein Structures: The Effects of London-Dispersion and Basis-Set Incompleteness on Peptide and Water-Cluster Geometries. J. Chem. Theory Comput. 2013 9 7 3240 3251 10.1021/ct400321m 26583999
    [Google Scholar]
  58. Bochevarov A.D. Harder E. Hughes T.F. Greenwood J.R. Braden D.A. Philipp D.M. Rinaldo D. Halls M.D. Zhang J. Friesner R.A. Jaguar: A high‐performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem. 2013 113 18 2110 2142 10.1002/qua.24481
    [Google Scholar]
  59. Srinivasan U. Iyer G.H. Przybycien T.A. Samsonoff W.A. Bell J.A. Crystine: Fibrous biomolecular material from protein crystals cross-linked in a specific geometry. Protein Eng. Des. Sel. 2002 15 11 895 902 10.1093/protein/15.11.895 12538909
    [Google Scholar]
  60. Gellibert F. Woolven J. Fouchet M.H. Mathews N. Goodland H. Lovegrove V. Laroze A. Nguyen V.L. Sautet S. Wang R. Janson C. Smith W. Krysa G. Boullay V. de Gouville A.C. Huet S. Hartley D. Identification of 1,5-naphthyridine derivatives as a novel series of potent and selective TGF-β type I receptor inhibitors. J. Med. Chem. 2004 47 18 4494 4506 10.1021/jm0400247 15317461
    [Google Scholar]
  61. Forli S. Huey R. Pique M.E. Sanner M.F. Goodsell D.S. Olson A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016 11 5 905 919 10.1038/nprot.2016.051 27077332
    [Google Scholar]
  62. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  63. Rawda M.O. Ahmed M.F. Majed A.B. Ahmed M.N. Abdulrahman A.A. Hazem A.G. Ahmed A.E. AbdEl-Galil E. A.; Ahmed M. E. The crystal structure of 3-Amino-1-(4-Chlorophenyl)-9-Methoxy-1H-Benzo[f]Chromene-2-Carbonitrile: Antimicrobial activity and docking studies. Crystals 2022 12 982 10.3390/cryst12070982
    [Google Scholar]
  64. Caruana J.C. Walper S.A. Bacterial membrane vesicles as mediators of microbe–microbe and microbe–host community interactions. Front. Microbiol. 2020 11 432 10.3389/fmicb.2020.00432 32265873
    [Google Scholar]
  65. Johansson E. Parkinson G.N. Denny W.A. Neidle S. Studies on the nitroreductase prodrug-activating system. Crystal structures of complexes with the inhibitor dicoumarol and dinitrobenzamide prodrugs and of the enzyme active form. J. Med. Chem. 2003 46 19 4009 4020 10.1021/jm030843b 12954054
    [Google Scholar]
  66. Abdelwahab A.H.F. Borik R.M.A. Alamri A.A. Mohamed H.M. Mostafa M.S. Al-Dies A.A.M. Ismail K.S. Elhenawy A.A. From bench to bioactivity: Pyranopyrazole synthesis, anticancer, antimicrobial efficacy, DFT, molecular docking, and molecular dynamic insights. Anticancer. Agents Med. Chem. 2025 25 16 1253 1271 10.2174/0118715206376210250319053528 40129153
    [Google Scholar]
  67. Handayani D. Putri R.A. Ismed F. Hertiani T. Ariantari N.P. Proksch P. Bioactive metabolite from marine spongederived fungus Cochliobolus geniculatus WR12. Rasayan J. Chem. 2020 13 1 417 422 10.31788/RJC.2020.1315517
    [Google Scholar]
  68. Albalawi F.F. El-Nassag M.A.A. El-Eisawy R.A. Mohamed M.B.I. Fouda A.M. Afifi T.H. Elhenawy A.A. Mora A. El-Agrody A.M. El-Mawgoud H.K.A. Synthesis of 9-Hydroxy-1H-Benzo[f]chromene derivatives with effective cytotoxic activity on MCF7/ADR, P-glycoprotein inhibitors, cell cycle arrest and apoptosis effects. Int. J. Mol. Sci. 2022 24 1 49 10.3390/ijms24010049 36613493
    [Google Scholar]
  69. Akhtar J. Khan A.A. Ali Z. Haider R. Shahar Yar M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem. 2017 125 143 189 10.1016/j.ejmech.2016.09.023 27662031
    [Google Scholar]
  70. Shamsudin N.F. Uddin A.Q. Mahmood S. Shah S.A.A. Khatib A. Mukhtar S. Alsharif M.A. Parveen H. Zakaria Z.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules 2022 27 4 1149 10.3390/molecules27041149 35208939
    [Google Scholar]
  71. Itoh H. Comprehensive structure–activity relationship studies of macrocyclic natural products enabled by their total syntheses. Chem. Rev. 2019 119 17 10002 10031 10.1021/acs.chemrev.9b00063
    [Google Scholar]
  72. Fernández-Tornero C. García E. de Pascual-Teresa B. López R. Giménez-Gallego G. Romero A. Ofloxacin-like antibiotics inhibit pneumococcal cell wall-degrading virulence factors. J. Biol. Chem. 2005 280 20 19948 19957 10.1074/jbc.M501236200 15769740
    [Google Scholar]
  73. Gansäuer A. Seddiqzai M. Dahmen T. Sure R. Grimme S. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines. Beilstein J. Org. Chem. 2013 9 1620 1629 10.3762/bjoc.9.185 24062821
    [Google Scholar]
  74. Zhao H. Wei J. Sun J. Roles of TGF-β signaling pathway in tumor microenvirionment and cancer therapy. Int. Immunopharmacol 2020 89 Pt B )107101 10.1016/j.intimp.2020.107101 33099067
    [Google Scholar]
  75. Shah T.A. Alam A. Zainab; Khan, M.; Elhenawy, A.A.; Ayaz, M.; Ali, M.; Latif, A.; Shah, S.A.A.; Ahmad, M. Experimental and computational profiling of novel bis-Schiff base derivatives bearing α-naphthalene moiety as potential tyrosinase inhibitors. J. Mol. Struct. 2025 1321 3 139919 10.1016/j.molstruc.2024.139919
    [Google Scholar]
  76. Al-Dies A.A.M. El-Wahab A.H.F.A. Alamri A.A. Borik R.M.A. Mohamed H.M. Assirey E.A. Alsehli M.H. Moussa Z. Alzamly A. Mehany A.B.M. Elhenawy A.A. El-Agrody A.M. Synthesis, crystal structure, DFT studies, molecular docking, of 2-amino-6-methoxy-4-(4-nitrophenyl)-4H-benzo[h]chromene-3-carbonitrile as tyrosinase inhibitor. J. Mol. Struct. 2025 1322 2 140289 10.1016/j.molstruc.2024.140289
    [Google Scholar]
  77. Xu X. Goddard W.A. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc. Natl. Acad. Sci. USA 2004 101 9 2673 2677 10.1073/pnas.0308730100 14981235
    [Google Scholar]
  78. Zhao Y. Truhlar D.G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 2008 41 2 157 167 10.1021/ar700111a 18186612
    [Google Scholar]
  79. Ataei S. Nemati-Kande E. Bahrami A. Quantum DFT studies on the drug delivery of favipiravir using pristine and functionalized chitosan nanoparticles. Sci. Rep. 2023 13 1 21984 10.1038/s41598‑023‑49298‑5 38081997
    [Google Scholar]
  80. Beigiazaraghbelagh P. Rostamizadeh S. Poursattar Marjani A. Bahrami A. Ghiasvand A. Arabi Z. Experimental and DFT studies on the green synthesis of 2-amino-4H-chromenes using a recyclable GOQDs-NS-doped catalyst. Sci. Rep. 2024 14 1 31737 10.1038/s41598‑024‑82347‑1 39738359
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206403354250808100701
Loading
/content/journals/acamc/10.2174/0118715206403354250808100701
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: 2-naphthols ; molecular docking ; antimicrobial ; DFT ; benzochromenes ; antitumor activities
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test