Skip to content
2000
image of Long Non-Coding RNA VPS9D1-AS1 in Human Cancer: Functions, Mechanisms, and Clinical Utility

Abstract

Introduction

VPS9 domain-containing 1 antisense RNA 1 (VPS9D1-AS1), also known as c-Myc-upregulated lncRNA (MYU) and FAK-interacting and stabilizing lncRNA (FAISL), is a novel long non-coding RNA (lncRNA) located at the human chromosome 16q24.3 locus. It has been reported to be highly expressed in various human cancers and associated with poor clinical pathological features and unfavorable prognosis in eight of the malignant tumors.

Methods

A comprehensive literature search was conducted using PubMed, Web of Science, and Google Scholar databases to identify relevant articles on “VPS9D1-AS1”, “MYU”, or “FAISL”. Only peer-reviewed publications were included, and articles related to oncology were specifically collected.

Results

Mechanistically, VPS9D1-AS1 serves as a key regulator in four molecular models: signal, scaffold, guide, and decoy. These functions allow it to regulate the expression of target genes and activation of signaling pathways, thereby influencing the malignant phenotype of tumors.

Discussion

The diverse molecular mechanisms of VPS9D1-AS1 highlight its significant role in the development and progression of various cancers. Its ability to act as a signal, scaffold, guide, and decoy suggests that it can influence multiple aspects of tumor biology, including proliferation, invasion, and metastasis.

Conclusion

VPS9D1-AS1 plays a significant role in the development and progression of various cancers through its diverse molecular mechanisms. Further research on VPS9D1-AS1 may provide valuable insights, which may facilitate the development of new diagnostic and therapeutic strategies for cancer.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206400852250818061543
2025-09-01
2025-11-09
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  3. Zhang K. Fu R. Liu R. Su Z. Circulating cell-free DNA-based multi-cancer early detection. Trends Cancer 2024 10 2 161 174 10.1016/j.trecan.2023.08.010 37709615
    [Google Scholar]
  4. Kopp F. Mendell J.T. Functional classification and experi-mental dissection of long noncoding RNAs. Cell 2018 172 3 393 407 10.1016/j.cell.2018.01.011 29373828
    [Google Scholar]
  5. Gong L. Zhou S. Chen J. Li Y. Zhang L. Gao Z. BDLR: lncRNA identification using ensemble learning. Biocell 2022 46 4 951 960 10.32604/biocell.2022.016625
    [Google Scholar]
  6. Ferrer J. Dimitrova N. Transcription regulation by long non-coding RNAs: Mechanisms and disease relevance. Nat. Rev. Mol. Cell Biol. 2024 25 5 396 415 10.1038/s41580‑023‑00694‑9 38242953
    [Google Scholar]
  7. Lonsdale J. Thomas J. Salvatore M. Phillips R. Lo E. Shad S. Hasz R. Walters G. Garcia F. Young N. Foster B. Moser M. Karasik E. Gillard B. Ramsey K. Sullivan S. Bridge J. Magazine H. Syron J. Fleming J. Siminoff L. Traino H. Mosavel M. Barker L. Jewell S. Rohrer D. Maxim D. Filkins D. Harbach P. Cortadillo E. Berghuis B. Turner L. Hudson E. Feenstra K. Sobin L. Robb J. Branton P. Korzeniewski G. Shive C. Tabor D. Qi L. Groch K. Nampally S. Buia S. Zimmerman A. Smith A. Burges R. Robinson K. Valentino K. Bradbury D. Cosen-tino M. Diaz-Mayoral N. Kennedy M. Engel T. Williams P. Erickson K. Ardlie K. Winckler W. Getz G. DeLuca D. MacArthur D. Kellis M. Thomson A. Young T. Gel-fand E. Donovan M. Meng Y. Grant G. Mash D. Mar-cus Y. Basile M. Liu J. Zhu J. Tu Z. Cox N.J. Nicolae D.L. Gamazon E.R. Im, H.K.; Konkashbaev, A.; Pritchard, J.; Stevens, M.; Flutre, T.; Wen, X.; Dermitzakis, E.T.; Lap-palainen, T.; Guigo, R.; Monlong, J.; Sammeth, M.; Koller, D.; Battle, A.; Mostafavi, S.; McCarthy, M.; Rivas, M.; Maller, J.; Rusyn, I.; Nobel, A.; Wright, F.; Shabalin, A.; Feolo, M.; Sha-ropova, N.; Sturcke, A.; Paschal, J.; Anderson, J.M.; Wilder, E.L.; Derr, L.K.; Green, E.D.; Struewing, J.P.; Temple, G.; Volpi, S.; Boyer, J.T.; Thomson, E.J.; Guyer, M.S.; Ng, C.; Abdallah, A.; Colantuoni, D.; Insel, T.R.; Koester, S.E.; Little, A.R.; Bender, P.K.; Lehner, T.; Yao, Y.; Compton, C.C.; Vaught, J.B.; Sawyer, S.; Lockhart, N.C.; Demchok, J.; Moore, H.F. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013 45 6 580 585 10.1038/ng.2653 23715323
    [Google Scholar]
  8. Tang Z. Kang B. Li C. Chen T. Zhang Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019 47 W1 W556 W560 10.1093/nar/gkz430 31114875
    [Google Scholar]
  9. Mas-Ponte D. Carlevaro-Fita J. Palumbo E. Hermoso Pulido T. Guigo R. Johnson R. LncATLAS database for subcellular localization of long noncoding RNAs. RNA 2017 23 7 1080 1087 10.1261/rna.060814.117 28386015
    [Google Scholar]
  10. Yang L. Xu L. Wang Q. Wang M. An G. Dysregulation of long non-coding RNA profiles in human colorectal cancer and its association with overall survival. Oncol. Lett. 2016 12 5 4068 4074 10.3892/ol.2016.5138 27895773
    [Google Scholar]
  11. Ferkel S.A.M. Holman E.A. Sojwal R.S. Rubin S.J.S. Rogalla S. Tumor-infiltrating immune cells in colorectal can-cer. Neoplasia 2025 59 101091 10.1016/j.neo.2024.101091 39642846
    [Google Scholar]
  12. Kawasaki Y. Komiya M. Matsumura K. Negishi L. Suda S. Okuno M. Yokota N. Osada T. Nagashima T. Hiyo-shi M. Okada-Hatakeyama M. Kitayama J. Shirahige K. Akiyama T. MYU, a target lncRNA for Wnt/c-Myc signaling, mediates induction of CDK6 to promote cell cycle progres-sion. Cell Rep. 2016 16 10 2554 2564 10.1016/j.celrep.2016.08.015 27568568
    [Google Scholar]
  13. Gao X. Zhang S. Wang X. VPS9D1-AS1 gene rs7206570 polymorphism associated with the clinical stage of colorectal cancer and binding with hsa-miR-361-3p. Hum. Cell 2022 35 2 522 527 10.1007/s13577‑021‑00658‑1 35022999
    [Google Scholar]
  14. Huang G. Yang Y. Lv M. Huang T. Zhan X. Kang W. Hou J. VPS9D1-AS1, a novel long-non-coding RNA, acts as a tumor promoter by regulating the miR-324-5p/ITGA2 axis in colon adenocarcinoma. Am. J. Transl. Res. 2022 14 2 955 966 35273698
    [Google Scholar]
  15. Yang L. Dong X. Liu Z. Tan J. Huang X. Wen T. Qu H. Wang Z. VPS9D1-AS1 overexpression amplifies intra-tumoral TGF-β signaling and promotes tumor cell escape from CD8+ T cell killing in colorectal cancer. eLife 2022 11 79811 10.7554/eLife.79811 36458816
    [Google Scholar]
  16. Zhang W. Fang D. Li S. Bao X. Jiang L. Sun X. Con-struction and validation of a novel ferroptosis-related lncRNA signature to predict prognosis in colorectal cancer patients. Front. Genet. 2021 12 709329 10.3389/fgene.2021.709329 34777458
    [Google Scholar]
  17. Yoshinami Y. Shoji H. Recent advances in immunotherapy and molecular targeted therapy for gastric cancer. Future Sci. OA 2023 9 2 FSO842 10.2144/fsoa‑2023‑0002 37009054
    [Google Scholar]
  18. Zhang X. Jin M. Yao X. Liu J. Yang Y. Huang J. Jin G. Liu S. Zhang B. Upregulation of LncRNA WT1-AS in-hibits tumor growth and promotes autophagy in gastric cancer via suppression of PI3K/Akt/mTOR pathway. Curr. Mol. Pharmacol. 2024 17 18761429318398 10.2174/0118761429318398240918063450 39592900
    [Google Scholar]
  19. Zhu Y. Huang C. Zhang C. Zhou Y. Zhao E. Zhang Y. Pan X. Huang H. Liao W. Wang X. LncRNA MIR200CHG inhibits EMT in gastric cancer by stabilizing miR-200c from target-directed miRNA degradation. Nat. Commun. 2023 14 1 8141 10.1038/s41467‑023‑43974‑w 38065939
    [Google Scholar]
  20. Zhang F. Wang H. Yu J. Yao X. Yang S. Li W. Xu L. Zhao L. LncRNA CRNDE attenuates chemoresistance in gas-tric cancer via SRSF6-regulated alternative splicing of PICALM. Mol. Cancer 2021 20 1 6 10.1186/s12943‑020‑01299‑y 33397371
    [Google Scholar]
  21. Chen M. Wu X. Ma W. Zhou Q. Wang X. Zhang R. Wang J. Yang X. Decreased expression of lncRNA VPS9D1-AS1 in gastric cancer and its clinical significance. Cancer Biomark. 2017 21 1 23 28 10.3233/CBM‑170172 29036784
    [Google Scholar]
  22. Liu C.Q. Ma Y.L. Qin Q. Wang P.H. Luo Y. Xu P.F. Cui Y. Epidemiology of esophageal cancer in 2020 and pro-jections to 2030 and 2040. Thorac. Cancer 2023 14 1 3 11 10.1111/1759‑7714.14745 36482832
    [Google Scholar]
  23. Morgan E. Soerjomataram I. Rumgay H. Coleman H.G. Thrift A.P. Vignat J. Laversanne M. Ferlay J. Arnold M. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates From GLOBOCAN 2020. Gastroenterology 2022 163 3 649 658.e2 10.1053/j.gastro.2022.05.054 35671803
    [Google Scholar]
  24. Ando N. Kato H. Igaki H. Shinoda M. Ozawa S. Shimi-zu H. Nakamura T. Yabusaki H. Aoyama N. Kurita A. Ikeda K. Kanda T. Tsujinaka T. Nakamura K. Fukuda H. A randomized trial comparing postoperative adjuvant chemotherapy with cisplatin and 5-fluorouracil versus pre-operative chemotherapy for localized advanced squamous cell carcinoma of the thoracic esophagus (JCOG9907). Ann. Surg. Oncol. 2012 19 1 68 74 10.1245/s10434‑011‑2049‑9 21879261
    [Google Scholar]
  25. Gu S. Qian L. Liu Y. Miao J. Shen H. Zhang S. Mao G. Upregulation of long non coding RNA MYU promotes proliferation, migration and invasion of esophageal squamous cell carcinoma cells. Exp. Ther. Med. 2021 21 6 644 10.3892/etm.2021.10076 33968175
    [Google Scholar]
  26. Ma L. Yan W. Sun X. Chen P. Long noncoding RNA VPS9D1-AS1 promotes esophageal squamous cell carcinoma progression via the Wnt/β-catenin signaling pathway. J. Cancer 2021 12 22 6894 6904 10.7150/jca.54556 34659577
    [Google Scholar]
  27. Kim E. Viatour P. Hepatocellular carcinoma: Old friends and new tricks. Exp. Mol. Med. 2020 52 12 1898 1907 10.1038/s12276‑020‑00527‑1 33268834
    [Google Scholar]
  28. Zheng J. Wang S. Xia L. Sun Z. Chan K.M. Bernards R. Qin W. Chen J. Xia Q. Jin H. Hepatocellular carcino-ma: Signaling pathways and therapeutic advances. Signal Transduct. Target. Ther. 2025 10 1 35 10.1038/s41392‑024‑02075‑w 39915447
    [Google Scholar]
  29. Fa X. Song P. Fu Y. Deng Y. Liu K. Long non‐coding RNA VPS9D1-AS1 facilitates cell proliferation, migration and stemness in hepatocellular carcinoma. Cancer Cell Int. 2021 21 1 131 10.1186/s12935‑020‑01741‑7 33627127
    [Google Scholar]
  30. Zhou N. Li S. Wu D. Zhang F. Tang F. Li Y. The lncRNA VPS9D1-AS1 promotes hepatocellular carcinoma cell cycle progression by regulating the HuR/CDK4 axis. DNA Cell Biol. 2021 40 10 1278 1289 10.1089/dna.2021.0235 34558987
    [Google Scholar]
  31. Chen H. Yang S. Wang L. Wu Y. Wu Y. Ma S. He Z. Zhang C. Liu Y. Tang H. Dong H. Wang Q. High-dose furmonertinib in patients with EGFR-mutated NSCLC and lep-tomeningeal metastases: A prospective real-world study. J. Thorac. Oncol. 2025 20 1 65 75 10.1016/j.jtho.2024.09.1385 39260521
    [Google Scholar]
  32. Tan J. Yang L. Long noncoding RNA VPS9D1-AS1 overex-pression predicts a poor prognosis in non-small cell lung can-cer. Biomed. Pharmacother. 2018 106 1600 1606 10.1016/j.biopha.2018.07.113 30119235
    [Google Scholar]
  33. Liu J. Feng Y. Zeng X. He M. Gong Y. Liu Y. LncRNA VPS9D1-AS1 promotes malignant progression of lung adeno-carcinoma by targeting miRNA-30a-5p/KIF11 axis. Front. Genet. 2022 12 807628 10.3389/fgene.2021.807628 35140744
    [Google Scholar]
  34. Gao W. Lu J. Yang Z. Li E. Cao Y. Xie L. Mitotic functions and characters of KIF11 in cancers. Biomolecules 2024 14 4 386 10.3390/biom14040386 38672404
    [Google Scholar]
  35. Wang X. Su R. Guo Q. Liu J. Ruan B. Wang G. Com-peting endogenous RNA (ceRNA) hypothetic model based on comprehensive analysis of long non-coding RNA expression in lung adenocarcinoma. PeerJ 2019 7 8024 10.7717/peerj.8024 31720124
    [Google Scholar]
  36. Yang Y. Zhang S. Guo L. Characterization of cell cycle-related competing endogenous RNAs using robust rank aggre-gation as prognostic biomarker in lung adenocarcinoma. Front. Oncol. 2022 12 807367 10.3389/fonc.2022.807367 35186743
    [Google Scholar]
  37. Ji L. Yang T. Liu M. Li J. Si Q. Wang Y. Liu J. Dai L. Construction of lncRNA TYMSOS/hsa-miR-101-3p/CEP55 and TYMSOS/hsa-miR-195-5p/CHEK1 axis in non-small cell lung Cancer. Biochem. Genet. 2023 61 3 995 1014 10.1007/s10528‑022‑10299‑0 36352081
    [Google Scholar]
  38. Hamed M.A. Wasinger V. Wang Q. Graham P. Malouf D. Bucci J. Li Y. Prostate cancer-derived extracellular vesi-cles metabolic biomarkers: Emerging roles for diagnosis and prognosis. J. Control. Release 2024 371 126 145 10.1016/j.jconrel.2024.05.029 38768661
    [Google Scholar]
  39. Wang J. Yang X. Li R. Wang L. Gu Y. Zhao Y. Huang K. Cheng T. Yuan Y. Gao S. Long non-coding RNA MYU promotes prostate cancer proliferation by mediating the miR-184/c-Myc axis. Oncol. Rep. 2018 40 5 2814 2825 10.3892/or.2018.6661 30132573
    [Google Scholar]
  40. Lian X. Zhou H. Liu S. Identification and validation of the TRHDE‐AS1/hsa‐miR ‐449a/ADAMTS5 axis as a novel prognostic biomarker in prostate cancer. Biofactors 2024 50 6 1251 1267 10.1002/biof.2083 38818922
    [Google Scholar]
  41. Liu D. Yin H. Wang Y. Cao Y. Yin J. Zhang J. Yin H. Zhao X. Development of a highly sensitive digital PCR assay to quantify long non-coding RNA MYU in urine samples which exhibited great potential as an alternative diagnostic bi-omarker for prostate cancer. Transl. Androl. Urol. 2021 10 10 3815 3825 10.21037/tau‑21‑820 34804824
    [Google Scholar]
  42. Wang X. Chen Q. Wang X. Li W. Yu G. Zhu Z. Zhang W. ZEB1 activated-VPS9D1-AS1 promotes the tumorigenesis and progression of prostate cancer by sponging miR-4739 to upregulate MEF2D. Biomed. Pharmacother. 2020 122 109557 10.1016/j.biopha.2019.109557 31918265
    [Google Scholar]
  43. Wu C. Chen J. Wang D. LncRNA VPS9D1-AS1 regulates miR-187-3p/fibroblast growth factor receptor-like 1 axis to promote proliferation, migration, and invasion of prostate cancer cells. Chin. J. Physiol. 2023 66 5 295 305 10.4103/cjop.CJOP‑D‑23‑00054 37929340
    [Google Scholar]
  44. Leon-Ferre R.A. Goetz M.P. Advances in systemic therapies for triple negative breast cancer. BMJ 2023 381 071674 10.1136/bmj‑2022‑071674 37253507
    [Google Scholar]
  45. Li Y. Zhang H. Merkher Y. Chen L. Liu N. Leonov S. Chen Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J. Hematol. Oncol. 2022 15 1 121 10.1186/s13045‑022‑01341‑0 36038913
    [Google Scholar]
  46. Zhang Y. Wei S. Chen Z. Xu R. Li S.R. You L. Wu R. Zhang Y. Liao J.Y. Xu X. Song E. Luo M.L. LncRNA FAISL inhibits calpain 2‐mediated proteolysis of FAK to promote progression and metastasis of triple negative breast cancer. Adv. Sci. 2024 11 42 2407493 10.1002/advs.202407493 39287113
    [Google Scholar]
  47. Kerstein P.C. Patel K.M. Gomez T.M. Calpain-mediated proteolysis of Talin and FAK regulates adhesion dynamics necessary for axon guidance. J. Neurosci. 2017 37 6 1568 1580 10.1523/JNEUROSCI.2769‑16.2016 28069919
    [Google Scholar]
  48. Shen Y. Tian Y. Ding J. Chen Z. Zhao R. Lu Y. Li L. Zhang H. Wu H. Li X. Zhang Y. Unravelling the molecu-lar landscape of endometrial cancer subtypes: Insights from multiomics analysis. Int. J. Surg. 2024 110 9 5385 5395 10.1097/JS9.0000000000001685 38775562
    [Google Scholar]
  49. Salmon A. Lebeau A. Streel S. Dheur A. Schoenen S. Goffin F. Gonne E. Kridelka F. Kakkos A. Gennigens C. Locally advanced and metastatic endometrial cancer: Current and emerging therapies. Cancer Treat. Rev. 2024 129 102790 10.1016/j.ctrv.2024.102790 38972136
    [Google Scholar]
  50. Chen L. Shen M. LncRNA VPS9D1-AS1 sponging miR-520a-5p contributes to the development of uterine corpus en-dometrial carcinoma by enhancing BIRC5 expression. Mol. Biotechnol. 2022 64 12 1328 1339 10.1007/s12033‑022‑00510‑3 35619019
    [Google Scholar]
  51. Peng T.F. Zhou Y.J. Zhou J. Zhou Y. Li X.C. Ouyang Q. Long non‐coding RNA VPS9D1‐AS1 enhances prolifera-tion, invasion, and epithelial‐mesenchymal transition in en-dometrial cancer via miR ‐377‐3p/SGK1. Kaohsiung J. Med. Sci. 2022 38 11 1048 1059 10.1002/kjm2.12606 36245426
    [Google Scholar]
  52. Ren W. Ouyang L. Long noncoding RNA VPS9D1 ‐ AS1 promotes the progression of endometrial cancer via regulation of the miR‐187‐3p/S100A4 axis. Environ. Toxicol. 2024 39 9 4447 4458 10.1002/tox.24351 38953363
    [Google Scholar]
  53. Wang L. Wang X. Zhu X. Zhong L. Jiang Q. Wang Y. Tang Q. Li Q. Zhang C. Wang H. Zou D. Drug resistance in ovarian cancer: From mechanism to clinical trial. Mol. Cancer 2024 23 1 66 10.1186/s12943‑024‑01967‑3 38539161
    [Google Scholar]
  54. Wang S. Zheng Q. Wang J. Chen S. Chen L. Long non-coding RNA MYU promotes ovarian cancer cell proliferation by sponging miR-6827-5p and upregulating HMGA1. Pathol. Oncol. Res. 2023 29 1610870 10.3389/pore.2023.1610870 36776216
    [Google Scholar]
  55. Cruz-Miranda G.M. Hidalgo-Miranda A. Bárcenas-López D.A. Núñez-Enríquez J.C. Ramírez-Bello J. Mejía-Aranguré J.M. Jiménez-Morales S. Long Non-Coding RNA and Acute Leukemia. Int. J. Mol. Sci. 2019 20 3 735 10.3390/ijms20030735 30744139
    [Google Scholar]
  56. Pollyea D.A. Altman J.K. Assi R. Bixby D. Fathi A.T. Foran J.M. Gojo I. Hall A.C. Jonas B.A. Kishtagari A. Lancet J. Maness L. Mangan J. Mannis G. Marcucci G. Mims A. Moriarty K. Mustafa Ali M. Neff J. Nejati R. Olin R. Percival M.E. Perl A. Przespolewski A. Rao D. Ravandi F. Shallis R. Shami P.J. Stein E. Stone R.M. Sweet K. Thota S. Uy G. Vachhani P. Cassara C.J. Freedman-Cass D.A. Stehman K. Acute myeloid leukemia, version 3.2023, NCCN clinical practice guidelines in oncolo-gy. J. Natl. Compr. Canc. Netw. 2023 21 5 503 513 10.6004/jnccn.2023.0025 37156478
    [Google Scholar]
  57. Iacobucci I. Witkowski M.T. Mullighan C.G. Single-cell analysis of acute lymphoblastic and lineage-ambiguous leu-kemia: approaches and molecular insights. Blood 2023 141 4 356 368 10.1182/blood.2022016954 35926109
    [Google Scholar]
  58. Xiao S. Xu N. Ding Q. Huang S. Zha Y. Zhu H. LncRNA VPS9D1-AS1 promotes cell proliferation in acute lymphoblastic leukemia through modulating GPX1 expression by miR-491-5p and miR-214-3p evasion. Biosci. Rep. 2020 40 10 BSR20193461 10.1042/BSR20193461 32808668
    [Google Scholar]
  59. Handy D.E. Loscalzo J. The role of glutathione peroxidase-1 in health and disease. Free Radic. Biol. Med. 2022 188 146 161 10.1016/j.freeradbiomed.2022.06.004 35691509
    [Google Scholar]
  60. Pang B. Mao H. Wang J. Yang W. MiR-185-5p suppress-es acute myeloid leukemia by inhibiting GPX1. Microvasc. Res. 2022 140 104296 10.1016/j.mvr.2021.104296 34863990
    [Google Scholar]
  61. Lin L. Que Y. Lu P. Li H. Xiao M. Zhu X. Li D. Chidamide inhibits acute myeloid leukemia cell proliferation by lncRNA VPS9D1-AS1 downregulation via MEK/ERK sig-naling pathway. Front. Pharmacol. 2020 11 569651 10.3389/fphar.2020.569651 33192510
    [Google Scholar]
  62. Cao H.Y. Li L. Xue S.L. Dai H.P. Chidamide: Targeting epigenetic regulation in the treatment of hematological malig-nancy. Hematol. Oncol. 2023 41 3 301 309 10.1002/hon.3088 36251458
    [Google Scholar]
  63. Gong M. Feng S. Zhou D. Luo J. Lin T. Qiu S. Yuan R. Dong W. Upregulation of BMP1 through ncRNAs corre-lates with adverse outcomes and immune infiltration in clear cell renal cell carcinoma. Eur. J. Med. Res. 2023 28 1 440 10.1186/s40001‑023‑01422‑x 37848987
    [Google Scholar]
  64. Ren C. Wang Q. Xu Z. Pan Y. Wang S. Liu X. Upregu-lation of CCNB2 and a novel lncRNAs-related risk model predict prognosis in clear cell renal cell carcinoma. J. Cancer Res. Clin. Oncol. 2024 150 2 64 10.1007/s00432‑024‑05611‑x 38300330
    [Google Scholar]
  65. Rajput M. Pandey M. Dixit R. Shukla V.K. Is cross-species horizontal gene transfer responsible for gallbladder carcinogenesis. World J. Surg. Oncol. 2024 22 1 201 10.1186/s12957‑024‑03492‑5 39080678
    [Google Scholar]
  66. Yin Z. Wang J. Zhu C. Xu C. Fang J. Li Q. Identifica-tion and verification of a novel disulfidptosis-related lncRNAs prognostic signature to predict the prognosis and immune activity of head and neck squamous carcinoma. Iran. J. Public Health 2024 53 10 2328 2340 10.18502/ijph.v53i10.16720 39544861
    [Google Scholar]
  67. Wei J. Fang D.L. Huang C.K. Hua S.L. Lu X.S. Screen-ing a novel signature and predicting the immune landscape of metastatic osteosarcoma in children via immune-related lncRNAs. Transl. Pediatr. 2021 10 7 1851 1866 10.21037/tp‑21‑226 34430433
    [Google Scholar]
  68. Wang K.C. Chang H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 2011 43 6 904 914 10.1016/j.molcel.2011.08.018 21925379
    [Google Scholar]
  69. Liu Y. Ding W. Yu W. Zhang Y. Ao X. Wang J. Long non-coding RNAs: Biogenesis, functions, and clinical signifi-cance in gastric cancer. Mol. Ther. Oncolytics 2021 23 458 476 10.1016/j.omto.2021.11.005 34901389
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206400852250818061543
Loading
/content/journals/acamc/10.2174/0118715206400852250818061543
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: VPS9D1-AS1 ; MYU ; lncRNA ; therapeutic target ; FAISL ; biomarker ; Cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test