Skip to content
2000
image of Targeting WWPI HECT Domain by Small Inhibitors for Restoring PTEN Tumor Suppressive Role in Glioblastoma Therapy

Abstract

Introduction

PTEN (Phosphatase and tensin homolog) is a valuable regulator of the PI3K-AKT and mTOR pathways and is frequently mutated in cancer-like glioblastoma. The WWPI HECT domain has a group of enzymes called E3 ligases that ubiquitinate and inactivate PTEN by binding to it, which ultimately inhibits its lipid phosphatase function and promotes nuclear delocalization. This investigation seeks to restore the PTEN tumor suppressive activity by inhibiting the WWPI HECT domain .

Methods

We virtually screened a library of ~960 compounds in the active pocket of the human WWPI HECT domain, and fifteen compounds were chosen based on their favorable binding affinities and highly negative docking scores.

Results

Among those hits, five compounds, and properly fit the standard with favorable pharmacokinetic and drug-like quality. Their capacity to suppress cell propagation was evaluated in the U87 glioma cell line. The compounds (, , , and ) exhibited significant anti-proliferative capability with IC values of 6.98 ± 0.14 µM, 14.58 ± 1.49 µM, 11.12 ± 0.73 µM, 13.85 ± 1.63 µM and 18 ± 1.23 µM, respectively.

Discussion

Strong inhibitory action against glioma cells was shown by the discovered compounds, especially C5 and C8, suggesting that they may be able to restore PTEN tumor suppressive capabilities. A potential therapeutic intervention mechanism for glioblastoma is suggested by their interaction with the WWPI HECT domain.

Conclusion

This study has discovered novel inhibitors against the WWPI HECT domain, and a treatment option for glioblastoma.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206387854250811103423
2025-09-09
2025-11-09
Loading full text...

Full text loading...

References

  1. Wirsching H.G. Weller M. Malignant brain tumors: State-of-the-art treatment. Springer 2017 265 288
    [Google Scholar]
  2. Ohgaki H. Kleihues P. The definition of primary and secondary glioblastoma. Clin. Cancer Res. 2013 19 4 764 772 10.1158/1078‑0432.CCR‑12‑3002 23209033
    [Google Scholar]
  3. Di Cristofano A. Pandolfi P.P. The multiple roles of PTEN in tumor suppression. Cell 2000 100 4 387 390 10.1016/S0092‑8674(00)80674‑1 10693755
    [Google Scholar]
  4. Dahia P.L. PTEN, a unique tumor suppressor gene. Endocr. Relat. Cancer 2000 7 2 115 129 10.1677/erc.0.0070115 10903528
    [Google Scholar]
  5. Lee Y.R. Chen M. Lee J.D. Zhang J. Lin S.Y. Fu T.M. Chen H. Ishikawa T. Chiang S.Y. Katon J. Zhang Y. Shulga Y.V. Bester A.C. Fung J. Monteleone E. Wan L. Shen C. Hsu C.H. Papa A. Clohessy J.G. Teruya-Feldstein J. Jain S. Wu H. Matesic L. Chen R.H. Wei W. Pandolfi P.P. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science 2019 364 6441 eaau0159 10.1126/science.aau0159 31097636
    [Google Scholar]
  6. Yeung B. Ho K.C. Yang X. WWP1 E3 ligase targets LATS1 for ubiquitin-mediated degradation in breast cancer cells. PLoS One 2013 8 4 e61027 10.1371/journal.pone.0061027 23573293
    [Google Scholar]
  7. Wang K. Liu J. Li Y.L. Li J.P. Zhang R. Ubiquitination/de-ubiquitination: A promising therapeutic target for PTEN reactivation in cancer. Biochim. Biophys. Acta Rev. Cancer 2022 1877 3 188723 10.1016/j.bbcan.2022.188723 35314212
    [Google Scholar]
  8. Song M.S. Pandolfi P.P. The HECT family of E3 ubiquitin ligases and PTEN. Semin. Cancer Biol. 2022 85 43 51 10.1016/j.semcancer.2021.06.012 34129913
    [Google Scholar]
  9. Rotin D. Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 2009 10 6 398 409 10.1038/nrm2690 19436320
    [Google Scholar]
  10. Hsia H-E. Roles of the HECT-type ubiquitin E3 ligases of the Nedd4 and WWP subfamilies in neuronal development. Doctoral Thesis 2014 10.53846/goediss‑5079
    [Google Scholar]
  11. Bawa-Khalfe T. Yang F.M. Ritho J. Lin H.K. Cheng J. Yeh E.T.H. SENP1 regulates PTEN stability to dictate prostate cancer development. Oncotarget 2017 8 11 17651 17664 10.18632/oncotarget.13283 27852060
    [Google Scholar]
  12. Ho K.C. Zhou Z. She Y.M. Chun A. Cyr T.D. Yang X. Itch E3 ubiquitin ligase regulates large tumor suppressor 1 stability. Proc. Natl. Acad. Sci. USA 2011 108 12 4870 4875 10.1073/pnas.1101273108 21383157
    [Google Scholar]
  13. Lee Y.R. Chen M. Pandolfi P.P. The functions and regulation of the PTEN tumour suppressor: New modes and prospects. Nat. Rev. Mol. Cell Biol. 2018 19 9 547 562 10.1038/s41580‑018‑0015‑0 29858604
    [Google Scholar]
  14. Rose P.W. Prlić A. Altunkaya A. Bi C. Bradley A.R. Christie C.H. Costanzo L.D. Duarte J.M. Dutta S. Feng Z. The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2017 45 D1 D271 D281 10.1093/nar/gkw1000 27794042
    [Google Scholar]
  15. Kathman S.G. Span I. Smith A.T. Xu Z. Zhan J. Rosenzweig A.C. Statsyuk A.V. A small molecule that switches a ubiquitin ligase from a processive to a distributive enzymatic mechanism. J. Am. Chem. Soc. 2015 137 39 12442 12445 10.1021/jacs.5b06839 26371805
    [Google Scholar]
  16. Scholz C. Knorr S. Hamacher K. Schmidt B. DOCKTITE-a highly versatile step-by-step workflow for covalent docking and virtual screening in the molecular operating environment. J. Chem. Inf. Model. 2015 55 2 398 406 10.1021/ci500681r 25541749
    [Google Scholar]
  17. Vu T.Y. Le T.T.H. Pham T.L. Vo N.H.H. Pham T.N.M. Pham M.Q. Phung H.T.T. Estimation of the binding affinities of glycogen phosphorylase inhibitors by molecular docking to support the treatment of type 2 diabetes. Phys. Chem. Res. 2024 12 3 821 835 10.22036/pcr.2024.422780.2440
    [Google Scholar]
  18. Deeth R.J. Fey N. Williams-Hubbard B. DommiMOE: An implementation of ligand field molecular mechanics in the molecular operating environment. J. Comput. Chem. 2005 26 2 123 130 10.1002/jcc.20137 15584081
    [Google Scholar]
  19. Jereva D. Pencheva T. Tsakovska I. Alov P. Pajeva I. Exploring applicability of the InterCriteria analysis to evaluate the performance of MOE and GOLD scoring functions. 13th Annual Meeting of the Bulgarian Section of SIAM Sofia, Bulgaria 04 April 2021 198 208 10.1007/978‑3‑030‑71616‑5_18
    [Google Scholar]
  20. Ullah A. Waqas M. Halim S.A. Daud M. Jan A. Khan A. Al-Harrasi A. Sirtuin 1 inhibition: A promising avenue to suppress cancer progression through small inhibitors design. J. Biomol. Struct. Dyn. 2023 42 19 9825 9841 10.1080/07391102.2023.2252898 37661778
    [Google Scholar]
  21. Da C. Kireev D. Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: method and benchmark study. J. Chem. Inf. Model. 2014 54 9 2555 2561 10.1021/ci500319f 25116840
    [Google Scholar]
  22. Cheng F. Li W. Zhou Y. Shen J. Wu Z. Liu G. Lee P.W. Tang Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model. 2012 52 11 3099 3105 10.1021/ci300367a 23092397
    [Google Scholar]
  23. Pires D.E.V. Blundell T.L. Ascher D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015 58 9 4066 4072 10.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  24. Norinder U. Bergström C.A.S. Prediction of ADMET Properties. ChemMedChem 2006 1 9 920 937 10.1002/cmdc.200600155 16952133
    [Google Scholar]
  25. Banerjee P. Eckert A.O. Schrey A.K. Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018 46 W1 W257 W263 10.1093/nar/gky318 29718510
    [Google Scholar]
  26. Ullah A. Ullah S. Halim S.A. Waqas M. Ali B. Ataya F.S. El-Sabbagh N.M. Batiha G.E.S. Avula S.K. Csuk R. Khan A. Al-Harrasi A. Identification of new pharmacophore against SARS-CoV-2 spike protein by multi-fold computational and biochemical techniques. Sci. Rep. 2024 14 1 3590 10.1038/s41598‑024‑53911‑6 38351259
    [Google Scholar]
  27. Villaró-Cos S. Lafarga T. Online tools to support teaching and training activities in chemical engineering: Enzymatic proteolysis. Front Educ. 2023 8 1290287 10.3389/feduc.2023.1290287
    [Google Scholar]
  28. Vaziri H. Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 1998 8 5 279 282 10.1016/S0960‑9822(98)70109‑5 9501072
    [Google Scholar]
  29. Morales C.P. Holt S.E. Ouellette M. Kaur K.J. Yan Y. Wilson K.S. White M.A. Wright W.E. Shay J.W. Absence of cancer–associated changes in human fibroblasts immortalized with telomerase. Nat. Genet. 1999 21 1 115 118 10.1038/5063 9916803
    [Google Scholar]
  30. Kim N.W. Piatyszek M.A. Prowse K.R. Harley C.B. West M.D. Ho P.L.C. Coviello G.M. Wright W.E. Weinrich S.L. Shay J.W. Specific association of human telomerase activity with immortal cells and cancer. Science 1994 266 5193 2011 2015 10.1126/science.7605428 7605428
    [Google Scholar]
  31. Van Meerloo J. Kaspers G.J. Cloos J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011 731 237 245 10.1007/978‑1‑61779‑080‑5_20 21516412
    [Google Scholar]
  32. Han M. Li J. Tan Q. Sun Y. Wang Y. Limitations of the use of MTT assay for screening in drug discovery. J. Chin. Pharm. Sci. 2010 19 3 195 200 10.5246/jcps.2010.03.027
    [Google Scholar]
  33. Vordermark D. Brown J.M. Evaluation of hypoxia-inducible factor-1alpha (HIF-1alpha) as an intrinsic marker of tumor hypoxia in U87 MG human glioblastoma: In vitro and xenograft studies. Int. J. Radiat. Oncol. Biol. Phys. 2003 56 4 1184 1193 10.1016/s0360‑3016(03)00289‑x 12829158
    [Google Scholar]
  34. Li R. Li G. Deng L. Liu Q. Dai J. Shen J. Zhang J. IL-6 augments the invasiveness of U87MG human glioblastoma multiforme cells via up-regulation of MMP-2 and fascin-1. Oncol. Rep. 2010 23 6 1553 1559 10.3892/or_00000795 20428809
    [Google Scholar]
  35. Kumar P. Nagarajan A. Uchil P.D. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc. 2018 2018 6 10.1101/pdb.prot095505 29858338
    [Google Scholar]
  36. Sansal I. Sellers W.R. The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol. 2004 22 14 2954 2963 10.1200/JCO.2004.02.141 15254063
    [Google Scholar]
  37. Song M.S. Salmena L. Pandolfi P.P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 2012 13 5 283 296 10.1038/nrm3330 22473468
    [Google Scholar]
  38. Huu N-S.N. Characterisation of the expression and function of an E3 ubiquitin ligase, WWP1 in breast cancer Thesis, University of Manchester 2008
    [Google Scholar]
  39. Pulido R. PTEN inhibition in human disease therapy. Molecules 2018 23 2 285 10.3390/molecules23020285 29385737
    [Google Scholar]
  40. Yao Y. Zhou Y. Liu L. Xu Y. Chen Q. Wang Y. Wu S. Deng Y. Zhang J. Shao A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020 7 193 10.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  41. La Barbera L. Mauri E. D’Amelio M. Gori M. Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer’s disease: Current trends and future perspectives. Front. Neurosci. 2022 16 939855 10.3389/fnins.2022.939855 35992936
    [Google Scholar]
  42. Islam M. Khan A. Shehzad M.T. Khiat M. Halim S.A. Hameed A. Shah S.R. Basri R. Anwar M.U. Hussain J. Csuk R. Al-Harrasi A. Shafiq Z. Therapeutic potential of N-substituted thiosemicarbazones as new urease inhibitors: Biochemical and in silico approach. Bioorg. Chem. 2021 109 104691 10.1016/j.bioorg.2021.104691 33601138
    [Google Scholar]
  43. Khan I. Ibrar A. Zaib S. Ahmad S. Furtmann N. Hameed S. Simpson J. Bajorath J. Iqbal J. Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: Synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis. Bioorg. Med. Chem. 2014 22 21 6163 6173 10.1016/j.bmc.2014.08.026 25257911
    [Google Scholar]
  44. Rehman N.U. Hussain H. Khiat M. Khan H.Y. Abbas G. Green I.R. Al-Harrasi A. Bioactive chemical constituents from the resin of Aloe vera. Z. Naturforsch. B. J. Chem. Sci. 2017 72 12 955 958 10.1515/znb‑2017‑0117
    [Google Scholar]
  45. Rehman N.U. Hussain H. Khiat M. Al-Riyami S.A. Csuk R. Khan H.Y. Abbas G. Al-Thani G.S. Green I.R. Al-Harrasi A. Aloeverasides A and B: Two bioactive c‐glucosyl chromones from Aloe vera resin. Helv. Chim. Acta 2016 99 9 687 690 10.1002/hlca.201600126
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206387854250811103423
Loading
/content/journals/acamc/10.2174/0118715206387854250811103423
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: U87 cell line ; WWPI ; glioblastoma ; PTEN tumor ; pharmacokinetics ; virtual screening by docking
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test