Skip to content
2000
image of Euxanthone Inhibits Hepatocellular Carcinoma Progression by Targeting the 
miR-199a-5p/E2F3 Regulatory Axis

Abstract

Introduction

Hepatocellular carcinoma (HCC) ranks among the leading causes of cancer-related deaths on a global scale. This study aimed to evaluate the effects of euxanthone on the proliferation of HCC cell lines and elucidate the underlying molecular mechanisms.

Methods

HCC cell lines (HepG2, Huh-7, SNU-398, SK-HEP-1, Hep3B) and the normal liver cell line THLE-2 were cultured and treated with euxanthone at concentrations between 0 and 100 µM. Cell viability was evaluated using the MTT assay, while phase contrast microscopy and cell cycle analysis were performed to evaluate morphological changes and cell cycle distribution. qRT-PCR was utilized to measure miRNA and mRNA expression levels, while a dual luciferase reporter assay validated the interaction between miR-199a-5p and E2F3.

Results

Euxanthone significantly ( < 0.05) inhibited cell proliferation in all HCC cell lines, with IC values between 6.25 and 25 µM. HepG2 cells exhibited pronounced sensitivity, with an IC of 6.25 µM. Euxanthone induced a G1 phase arrest, characterized by decreased expression of Cyclin D1 and E, and increased levels of p21. Additionally, it upregulated miR-199a-5p, which was identified as a mediator of the antiproliferative effects by targeting E2F3. Euxanthone treatment also significantly ( < 0.05) inhibited HepG2 cell migration in a wound healing assay.

Discussion

The findings demonstrate that euxanthone exerts its anticancer activity in HCC cells by modulating the miR-199a-5p/E2F3 axis, leading to G1 arrest and inhibition of migration. These results align with prior studies on natural compounds as modulators of oncogenic signaling pathways and highlight miR-199a-5p as a crucial mediator for anticancer effects of euxanthone. The low toxicity toward normal liver cells further emphasizes its therapeutic potential.

Conclusion

Taken together, euxanthone exerts antiproliferative effects on HCC cells the miR-199a-5p–E2F3 axis and inhibits cell migration. These findings support its potential as a therapeutic agent for HCC, highlighting the need for further investigation into its clinical applications.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206392043250805112033
2025-08-28
2025-12-17
Loading full text...

Full text loading...

References

  1. Rich N.E. Changing epidemiology of hepatocellular carcinoma within the United States and worldwide. Surg. Oncol. Clin. N. Am. 2024 33 1 1 12 10.1016/j.soc.2023.06.004 37945136
    [Google Scholar]
  2. McGlynn K.A. Petrick J.L. Groopman J.D. Liver cancer: Progress and priorities. Cancer Epidemiol. Biomarkers Prev. 2024 33 10 1261 1272 10.1158/1055‑9965.EPI‑24‑0686 39354815
    [Google Scholar]
  3. Prasad Y.R. Anakha J. Pande A.H. Treating liver cancer through arginine depletion. Drug Discov. Today 2024 29 4 103940 10.1016/j.drudis.2024.103940 38452923
    [Google Scholar]
  4. Yang X. Yang C. Zhang S. Geng H. Zhu A.X. Bernards R. Qin W. Fan J. Wang C. Gao Q. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell 2024 42 2 180 197 10.1016/j.ccell.2024.01.007 38350421
    [Google Scholar]
  5. Toh M.R. Wong E.Y.T. Wong S.H. Ng A.W.T. Loo L.H. Chow P.K.H. Ngeow J. Global epidemiology and genetics of hepatocellular carcinoma. Gastroenterology 2023 164 5 766 782 10.1053/j.gastro.2023.01.033 36738977
    [Google Scholar]
  6. Safri F. Nguyen R. Zerehpooshnesfchi S. George J. Qiao L. Heterogeneity of hepatocellular carcinoma: From mechanisms to clinical implications. Cancer Gene Ther. 2024 31 8 1105 1112 10.1038/s41417‑024‑00764‑w 38499648
    [Google Scholar]
  7. Hwang S.Y. Danpanichkul P. Agopian V. Mehta N. Parikh N.D. Abou-Alfa G.K. Singal A.G. Yang J.D. Hepatocellular carcinoma: Updates on epidemiology, surveillance, diagnosis and treatment. Clin. Mol. Hepatol. 2025 31 S228 S254
    [Google Scholar]
  8. Kinsey E. Lee H.M. Management of hepatocellular carcinoma in 2024: The multidisciplinary paradigm in an evolving treatment landscape. Cancers 2024 16 3 666 10.3390/cancers16030666 38339417
    [Google Scholar]
  9. Brown Z.J. Tsilimigras D.I. Ruff S.M. Mohseni A. Kamel I.R. Cloyd J.M. Pawlik T.M. Management of hepatocellular carcinoma: A review. JAMA Surg. 2023 158 4 410 420 10.1001/jamasurg.2022.7989 36790767
    [Google Scholar]
  10. Wang Y. Li J. Xia L. Plant-derived natural products and combination therapy in liver cancer. Front. Oncol. 2023 13 1116532 10.3389/fonc.2023.1116532 36865794
    [Google Scholar]
  11. Trivedi A. Hasan A. Ahmad R. Siddiqui S. Srivastava A. Misra A. Mir S.S. Flavonoid myricetin as potent anticancer agent: A possibility towards development of potential anticancer nutraceuticals. Chin. J. Integr. Med. 2024 30 1 75 84 10.1007/s11655‑023‑3701‑5 37340205
    [Google Scholar]
  12. Ponte L.G.S. Pavan I.C.B. Mancini M.C.S. da Silva L.G.S. Morelli A.P. Severino M.B. Bezerra R.M.N. Simabuco F.M. The hallmarks of flavonoids in cancer. Molecules 2021 26 7 2029 10.3390/molecules26072029 33918290
    [Google Scholar]
  13. Rahmani A. Almatroudi A. Allemailem K. Alwanian W. Alharbi B. Alrumaihi F. Khan A. Almatroodi S. Myricetin: A significant emphasis on its anticancer potential via the modulation of inflammation and signal transduction pathways. Int. J. Mol. Sci. 2023 24 11 9665 10.3390/ijms24119665 37298616
    [Google Scholar]
  14. Krajka-Kuźniak V. Belka M. Papierska K. Targeting STAT3 and NF-κB signaling pathways in cancer prevention and treatment: The role of chalcones. Cancers 2024 16 6 1092 10.3390/cancers16061092 38539427
    [Google Scholar]
  15. Liu T. Tan F. Long X. Pan Y. Mu J. Zhou X. Yi R. Zhao X. Improvement effect of lotus leaf flavonoids on carbon tetrachloride-induced liver injury in mice. Biomedicines 2020 8 2 41 10.3390/biomedicines8020041 32102401
    [Google Scholar]
  16. Baby J. Devan A.R. Kumar A.R. Gorantla J.N. Nair B. Aishwarya T.S. Nath L.R. Cogent role of flavonoids as key orchestrators of chemoprevention of hepatocellular carcinoma: A review. J. Food Biochem. 2021 45 7 e13761 10.1111/jfbc.13761 34028054
    [Google Scholar]
  17. Shen W. Yin Y. Li T. Cao G. Euxanthone inhibits lipopolysaccharide‐induced injury, inflammatory response, and MUC5AC hypersecretion in human airway epithelial cells by the TLR4/MyD88 pathway. J. Appl. Toxicol. 2022 42 4 671 682 10.1002/jat.4249 34655103
    [Google Scholar]
  18. Zhou H. Li S. Wang G. Euxanthone ameliorates sevoflurane-induced neurotoxicity in neonatal mice. J. Mol. Neurosci. 2019 68 2 275 286 10.1007/s12031‑019‑01303‑1 30927203
    [Google Scholar]
  19. Li W. Du H. Zhou G. Song D. Euxanthone represses the proliferation, migration, and invasion of glioblastoma cells by modulating STAT3/SHP-1 signaling. Anat. Rec. 2020 10.1002/ar.24363 31922313
    [Google Scholar]
  20. Xu C. He Z. Shen Z. Euxanthone suppresses the proliferation, migration and invasion of human medulloblastoma cells by inhibiting the RANK/RANKL pathway. Pharmacogn. Mag. 2023 19 1 23 30 10.1177/09731296221138649
    [Google Scholar]
  21. Chidambaranathan-Reghupaty S. Fisher P.B. Sarkar D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv. Cancer Res. 2021 149 1 61 10.1016/bs.acr.2020.10.001 33579421
    [Google Scholar]
  22. Hou Z. Liu J. Jin Z. Qiu G. Xie Q. Mi S. Huang J. Use of chemotherapy to treat hepatocellular carcinoma. Biosci. Trends 2022 16 1 31 45 10.5582/bst.2022.01044 35173139
    [Google Scholar]
  23. Blagosklonny M.V. Selective protection of normal cells from chemotherapy, while killing drug-resistant cancer cells. Oncotarget 2023 14 1 193 206 10.18632/oncotarget.28382 36913303
    [Google Scholar]
  24. Dai X.Y. Zeng X.X. Peng F. Han Y.Y. Lin H.J. Xu Y.Z. Zhou T. Xie G. Deng Y. Mao Y.Q. Yu L.T. Yang L. Zhao Y.L. A novel anticancer agent, SKLB70359, inhibits human hepatic carcinoma cells proliferation via G0/G1 cell cycle arrest and apoptosis induction. Cell. Physiol. Biochem. 2012 29 1-2 281 290 10.1159/000337609 22415097
    [Google Scholar]
  25. Resnitzky D. Reed S.I. Different roles for cyclins D1 and E in regulation of the G1-to-S transition. Mol. Cell. Biol. 1995 15 7 3463 3469 10.1128/MCB.15.7.3463 7791752
    [Google Scholar]
  26. Topacio B.R. Zatulovskiy E. Cristea S. Xie S. Tambo C.S. Rubin S.M. Sage J. Kõivomägi M. Skotheim J.M. Cyclin D-Cdk4,6 drives cell-cycle progression via the retinoblastoma protein’s C-terminal helix. Mol. Cell 2019 74 4 758 770.e4 10.1016/j.molcel.2019.03.020 30982746
    [Google Scholar]
  27. Casini T. Pelicci P.G. A function of p21 during promyelocytic leukemia cell differentiation independent of CDK inhibition and cell cycle arrest. Oncogene 1999 18 21 3235 3243 10.1038/sj.onc.1202630 10359529
    [Google Scholar]
  28. Chen J. Shin V.Y. Siu M.T. Ho J.C.W. Cheuk I. Kwong A. miR-199a-5p confers tumor-suppressive role in triple-negative breast cancer. BMC Cancer 2016 16 1 887 10.1186/s12885‑016‑2916‑7 27842518
    [Google Scholar]
  29. Zhu Q.D. Zhou Q.Q. Dong L. Huang Z. Wu F. Deng X. MiR-199a-5p inhibits the growth and metastasis of colorectal cancer cells by targeting ROCK1. Technol. Cancer Res. Treat. 2018 17 1533034618775509 10.1177/1533034618775509 29807462
    [Google Scholar]
  30. Li Y. Wang D. Li X. Shao Y. He Y. Yu H. Ma Z. MiR-199a-5p suppresses non-small cell lung cancer via targeting MAP3K11. J. Cancer 2019 10 11 2472 2479 10.7150/jca.29426 31258753
    [Google Scholar]
  31. Viridiana C.A.A. Ángel V.F.M. Ruth R.E.G. MicroRNAs: Beyond post-transcriptional regulation of mRNAs. MicroRNA 2021 10 4 229 239 10.2174/2211536611666211228102045 34963441
    [Google Scholar]
  32. Semina E.V. Rysenkova K.D. Troyanovskiy K.E. Shmakova A.A. Rubina K.A. MicroRNAs in cancer: From gene expression regulation to the metastatic niche reprogramming. Biochemistry 2021 86 7 785 799 10.1134/S0006297921070014 34284705
    [Google Scholar]
  33. Zheng Q. Hou W. Regulation of angiogenesis by microRNAs in cancer. Mol. Med. Rep. 2021 24 2 583 10.3892/mmr.2021.12222 34132365
    [Google Scholar]
  34. Hussen B.M. Salihi A. Abdullah S.T. Rasul M.F. Hidayat H.J. Hajiesmaeili M. Ghafouri-Fard S. Signaling pathways modulated by miRNAs in breast cancer angiogenesis and new therapeutics. Pathol. Res. Pract. 2022 230 153764 10.1016/j.prp.2022.153764 35032831
    [Google Scholar]
  35. Rishabh K. Khadilkar S. Kumar A. Kalra I. Kumar A.P. Kunnumakkara A.B. MicroRNAs as modulators of oral tumorigenesis—A focused review. Int. J. Mol. Sci. 2021 22 5 2561 10.3390/ijms22052561 33806361
    [Google Scholar]
  36. Menon A. Abd-Aziz N. Khalid K. Poh C.L. Naidu R. miRNA: A promising therapeutic target in cancer. Int. J. Mol. Sci. 2022 23 19 11502 10.3390/ijms231911502 36232799
    [Google Scholar]
  37. Sharma N. Timmers C. Trikha P. Saavedra H.I. Obery A. Leone G. Control of the p53-p21CIP1 axis by E2f1, E2f2, and E2f3 is essential for G1/S progression and cellular transformation. J. Biol. Chem. 2006 281 47 36124 36131 10.1074/jbc.M604152200 17008321
    [Google Scholar]
  38. Shen Z.G. Liu X.Z. Chen C.X. Lu J.M. Knockdown of E2F3 inhibits proliferation, migration, and invasion and increases apoptosis in glioma cells. Oncol. Res. 2017 25 9 1555 1566 10.3727/096504017X14897158009178 28337965
    [Google Scholar]
  39. Li Z. Wang C. Prendergast G. Pestell R.G. Cyclin D1 functions in cell migration. Cell Cycle 2006 5 21 2440 2442 10.4161/cc.5.21.3428 17106256
    [Google Scholar]
  40. Berglund P. Landberg G. Cyclin e overexpression reduces infiltrative growth in breast cancer: yet another link between proliferation control and tumor invasion. Cell Cycle 2006 5 6 606 609 10.4161/cc.5.6.2569 16582601
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206392043250805112033
Loading
/content/journals/acamc/10.2174/0118715206392043250805112033
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: euxanthone ; E2F3 ; liver cancer ; Hepatocellular carcinoma ; MicroRNA-199a-5p ; cell cycle arrest
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test