Skip to content
2000
image of Evaluation of Anticancer Potential in Human Colorectal Carcinoma HCT-116 Cells by Fungal-Mediated Zinc Oxide Nanoparticles

Abstract

Introduction

Chemotherapy faces limitations such as toxicity and resistance, necessitating novel cancer treatments. Green-synthesized zinc oxide nanoparticles (ZnO-NPs) have attracted attention for their safety, biocompatibility, and therapeutic potential. This study investigates the anticancer efficacy of ZnO-NPs synthesized using the extracellular matrix of against colorectal cancer cell lines ().

Methods

ZnO-NPs were synthesized extracellularly using fungal extract. The nanoparticles were characterized through UV-Vis spectrophotometry, showing an absorbance peak at 375 nm, and scanning electron microscopy (SEM), which determined their morphology and size. The anticancer activity was evaluated using cells. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were assessed to understand the mechanism of cytotoxicity. studies were proposed for further validation.

Results

The synthesized ZnO-NPs appeared pale white and exhibited a characteristic absorbance at 375 nm. SEM revealed spherical particles ranging from 35–150 nm. The ZnO-NPs showed strong anticancer activity with an IC value of 40.6 µg/mL. ROS levels increased significantly in treated cells, while the MMP decreased to 77.25% compared to 100% in controls.

Discussion

ZnO-NPs exerted cytotoxic effects ROS generation and mitochondrial dysfunction. These results underscore the nanoparticles’ ability to induce apoptosis in cancer cells through oxidative stress pathways.

Conclusion

Biogenically synthesized ZnO-NPs from show promise as eco-friendly anticancer agents. Further studies are recommended to confirm their therapeutic potential.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206395334250707063019
2025-08-27
2025-09-03
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Morgan E. Arnold M. Gini A. Lorenzoni V. Cabasag C.J. Laversanne M. Vignat J. Ferlay J. Murphy N. Bray F. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 2023 72 2 338 344 10.1136/gutjnl‑2022‑327736 36604116
    [Google Scholar]
  3. Roshandel G. Ghasemi-Kebria F. Malekzadeh R. Colorectal cancer: epidemiology, risk factors, and prevention. Cancers 2024 16 8 1530 10.3390/cancers16081530 38672612
    [Google Scholar]
  4. Ashique S. Bhowmick M. Pal R. Khatoon H. Kumar P. Sharma H. Garg A. Kumar S. Das U. Multi drug resistance in Colorectal Cancer- approaches to overcome, advancements and future success. Adv. Cancer Biol. Metastasis 2024 10 100114 10.1016/j.adcanc.2024.100114
    [Google Scholar]
  5. Bhardwaj U. Mukherjee S. Ali S. Siddiqui A.J. Iqbal D. Almalki S.G. Alsagaby S.A. Jahan S. Ansari U.A. 19 Novel Phytochemicals Targeting the Signaling Pathways of Anticancer Stem Cell. FL, USA CRC Press Boca Raton 2023
    [Google Scholar]
  6. Lv C. Huang Y. Wang Q. Wang C. Hu H. Zhang H. Lu D. Jiang H. Shen R. Zhang W. Ainsliadimer A induces ROS-mediated apoptosis in colorectal cancer cells via directly targeting peroxiredoxin 1 and 2. Cell Chem. Biol. 2023 30 3 295 307 10.1016/j.chembiol.2023.02.003
    [Google Scholar]
  7. Wang G.Y. Zhang, L.; Geng, Y.D.; Wang, B.; Feng, X.J.; Chen, Z.L.; Wei, W.; Jiang, L. β-Elemene induces apoptosis and autophagy in colorectal cancer cells through regulating the ROS/AMPK/mTOR pathway. Chin. J. Nat. Med. 2022 20 1 9 21 10.1016/S1875‑5364(21)60118‑8 35101253
    [Google Scholar]
  8. Li G. Fang S. Shao X. Li Y. Tong Q. Kong B. Chen L. Wang Y. Yang J. Yu H. Xie X. Zhang J. Curcumin reverses NNMT-induced 5-fluorouracil resistance via increasing ROS and cell cycle arrest in colorectal cancer cells. Biomolecules 2021 11 9 1295 10.3390/biom11091295 34572508
    [Google Scholar]
  9. Khayat M.T. Zarka M.A. El-Telbany D.F.A. El-Halawany A.M. Kutbi H.I. Elkhatib W.F. Noreddin A.M. Khayyat A.N. El-Telbany R.F.A. Hammad S.F. Abdel-Naim A.B. Alolayan E.M. Al-Sawahli M.M. Intensification of resveratrol cytotoxicity, pro-apoptosis, oxidant potentials in human colorectal carcinoma HCT-116 cells using zein nanoparticles. Sci. Rep. 2022 12 1 15235 10.1038/s41598‑022‑18557‑2 36075939
    [Google Scholar]
  10. Maddah A. Ziamajidi N. Khosravi H. Danesh H. Abbasalipourkabir R. Gold nanoparticles induce apoptosis in HCT-116 colon cancer cell line. Mol. Biol. Rep. 2022 49 8 7863 7871 10.1007/s11033‑022‑07616‑6 35729479
    [Google Scholar]
  11. Shamsaei S. Getso M. Ahmadikia K. Yarahmadi M. Farahani H.E. Aslani R. Mohammadzade A.S. Raissi V. Soleimani A. Arghavan B. Karami S. Mohseni M. Mohseni M.S. Raiesi O. Recent findings on the role of fungal products in the treatment of cancer. Clin. Transl. Oncol. 2021 23 2 197 204 10.1007/s12094‑020‑02428‑1 32557335
    [Google Scholar]
  12. Ayon N.J. Earp C.E. Gupta R. Butun F.A. Clements A.E. Lee A.G. Dainko D. Robey M.T. Khin M. Mardiana L. Longcake A. Rangel-Grimaldo M. Hall M.J. Probert M.R. Burdette J.E. Keller N.P. Raja H.A. Oberlies N.H. Kelleher N.L. Caesar L.K. Bioactivity-driven fungal metabologenomics identifies antiproliferative stemphone analogs and their biosynthetic gene cluster. Metabolomics 2024 20 5 90 10.1007/s11306‑024‑02153‑8 39095664
    [Google Scholar]
  13. Baghani M. Habibollahi H. Es-haghi A. Stabilization and enhanced anticancer activity of zinc oxide nanoparticles functionalized with chitosan and terephthalic acid. J. Sol-Gel Sci. Technol. 2025 1 17 10.1007/s10971‑025‑06741‑5
    [Google Scholar]
  14. Sadighian S. Metal and metal oxide–based nanostructures for drug delivery. In:Medical Nanobiotechnology. Elsevier 2025 127 145 10.1016/B978‑0‑443‑21507‑0.00012‑X
    [Google Scholar]
  15. Majeed S. Danish M. Ismail M.H.B. Ansari M.T. Ibrahim M.N.M. Anticancer and apoptotic activity of biologically synthesized zinc oxide nanoparticles against human colon cancer HCT-116 cell line- in vitro study. Sustain. Chem. Pharm. 2019 14 100179 10.1016/j.scp.2019.100179
    [Google Scholar]
  16. Fatima F. Pathak N. Srivastava D. Verma S.R. Molecular detection and exploration of diversity among fungal consortium involved in phosphate solubilization. Geomicrobiol. J. 2021 38 1 29 35 10.1080/01490451.2020.1807657
    [Google Scholar]
  17. Pavani K. Balakrishna K. Cheemarla N. Biosynthesis of zinc nanoparticles by Aspergillus species. Int. J. Nanotechnol. Appl. 2011 5 1 27 36
    [Google Scholar]
  18. Raghavendra V.B. Shankar S. Govindappa M. Pugazhendhi A. Sharma M. Nayaka S.C. Green synthesis of zinc oxide nanoparticles (ZnO NPs) for effective degradation of dye, polyethylene and antibacterial performance in waste water treatment. J. Inorg. Organomet. Polym. Mater. 2022 32 2 614 630 10.1007/s10904‑021‑02142‑7
    [Google Scholar]
  19. Sumanth B. Lakshmeesha T.R. Ansari M.A. Alzohairy M.A. Udayashankar A.C. Shobha B. Niranjana S.R. Srinivas C. Almatroudi A. Mycogenic synthesis of extracellular zinc oxide nanoparticles from Xylaria acuta and its nanoantibiotic potential. Int. J. Nanomedicine 2020 15 8519 8536 10.2147/IJN.S271743 33173290
    [Google Scholar]
  20. Mohan A.C. Renjanadevi B. Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Procedia Technol. 2016 24 761 766 10.1016/j.protcy.2016.05.078
    [Google Scholar]
  21. Fatima F. Bajpai P. Pathak N. Singh S. Priya S. Verma S.R. Antimicrobial and immunomodulatory efficacy of extracellularly synthesized silver and gold nanoparticles by a novel phosphate solubilizing fungus Bipolaris tetramera. BMC Microbiol. 2015 15 1 52 10.1186/s12866‑015‑0391‑y 25881309
    [Google Scholar]
  22. Sivandzade F. Bhalerao A. Cucullo L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protoc. 2019 9 1 e3128 e3128 10.21769/BioProtoc.3128 30687773
    [Google Scholar]
  23. Acharya D. Satapathy S. Somu P. Parida U.K. Mishra G. Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae Chaetomorpha linum extract against human colon cancer cell HCT-116. Biol. Trace Elem. Res. 2021 199 5 1812 1822 10.1007/s12011‑020‑02304‑7 32743762
    [Google Scholar]
  24. Seth R. Meena A. Enzymes-based nanomaterial synthesis: an eco-friendly and green synthesis approach. Clean Technol. Environ. Policy 2024 1 24 10.1007/s10098‑024‑02854‑7
    [Google Scholar]
  25. Sun B. Luo C. Bills G.F. Li J. Huang P. Wang L. Jiang X. Chen A.J. Four new species of Aspergillus subgenus Nidulantes from China. J. Fungi (Basel) 2022 8 11 1205 10.3390/jof8111205 36422028
    [Google Scholar]
  26. Fouda A. Awad M.A. AL-Faifi, Z.E.; Gad, M.E.; Al-Khalaf, A.A.; Yahya, R.; Hamza, M.F. Aspergillus flavus-mediated green synthesis of silver nanoparticles and evaluation of their antibacterial, anti-candida, acaricides, and photocatalytic activities. Catalysts 2022 12 5 462 10.3390/catal12050462
    [Google Scholar]
  27. Achilonu C.C. Kumar P. Swart H. Roos W. Marais G.J. Zinc Oxide: Gold Nanoparticles (ZnO: Au NPs) Exhibited Antifungal Efficacy Against Aspergillus niger and Aspergillus candidus. Bionanoscience 2024 1 15
    [Google Scholar]
  28. Ramzy G.M. Koessler T. Ducrey E. McKee T. Ris F. Buchs N. Rubbia-Brandt L. Dietrich P.Y. Nowak-Sliwinska P. Patient-derived in vitro models for drug discovery in colorectal carcinoma. Cancers 2020 12 6 1423 10.3390/cancers12061423 32486365
    [Google Scholar]
  29. Ahlam A.A. Shaniba V.S. Jayasree P.R. Manish K.P.R. Spondias pinnata (lf) Kurz leaf extract derived zinc oxide nanoparticles induce dual modes of apoptotic-necrotic death in HCT 116 and K562 cells. Biol. Trace Elem. Res. 2021 199 5 1778 1801 10.1007/s12011‑020‑02303‑8 32761516
    [Google Scholar]
  30. Zhang C. Yang H.Y. Gao L. Bai M.Z. Fu W.K. Huang C.F. Mi N.N. Ma H.D. Lu Y.W. Jiang N.Z. Tian L. Cai T. Lin Y.Y. Zheng X.X. Gao K. Chen J.J. Meng W.B. Lanatoside C decelerates proliferation and induces apoptosis through inhibition of STAT3 and ROS-mediated mitochondrial membrane potential transformation in cholangiocarcinoma. Front. Pharmacol. 2023 14 1098915 10.3389/fphar.2023.1098915 37397486
    [Google Scholar]
  31. Anjum S. Hashim M. Malik S.A. Khan M. Lorenzo J.M. Abbasi B.H. Hano C. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers (Basel) 2021 13 18 4570 10.3390/cancers13184570 34572797
    [Google Scholar]
  32. Shanmugam K. Sellappan S. Alahmadi T.A. Almoallim H.S. Natarajan N. Veeraraghavan V.P. Green synthesized zinc oxide nanoparticles from Cinnamomum verum bark extract inhibited cell growth and induced caspase-mediated apoptosis in oral cancer KB cells. J. Drug Deliv. Sci. Technol. 2022 74 103577 10.1016/j.jddst.2022.103577
    [Google Scholar]
  33. Khan M.J. Ahmad A. Khan M.A. Siddiqui S. Zinc oxide nanoparticle induces apoptosis in human epidermoid carcinoma cells through reactive oxygen species and DNA degradation. Biol. Trace Elem. Res. 2021 199 6 2172 2181 10.1007/s12011‑020‑02323‑4 32840725
    [Google Scholar]
  34. Ahmadi Shadmehri A. Namvar F. A review on green synthesis, cytotoxicity mechanism and antibacterial activity of Zno-NPs. J. Res. Appl. Basic Med. Sci. 2020 6 1 23 31
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206395334250707063019
Loading
/content/journals/acamc/10.2174/0118715206395334250707063019
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: ROS ; tumour ; Anticancer ; Zinc-oxide nanoparticles ; Aspergillus biplanus ; MMP
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test