Skip to content
2000
image of Luteolin Enhances Anticancer Effects of PX-478 during Hypoxic Response in Metastatic Breast Cancer Cells

Abstract

Introduction

The presence of severe hypoxic stress can drive tumor growth, angiogenesis, and metastatic characteristics up-regulated hypoxia-inducible factor 1-alpha (HIF-1a). Hence, targeting HIF-1α is considered a promising strategy, as increased HIF-1α activity is a key factor in the aggressive phenotype of malignancies. In this study, we aimed to investigate the anti-cancer effects of several flavonoids, both single and in combination with PX-478, in breast cancer cell lines.

Methods

We tested the effects of luteolin and PX-478, both alone and in combination, on HIF-1a level in breast cancer cells under hypoxia using the cell viability assay. To determine the rationale for the cell growth inhibition induced by the luteolin+PX-478 combination, we conducted experiments to assess cell survival, apoptosis, cell cycle, invasion, and migration under both normoxic and hypoxic conditions. Furthermore, we evaluated the effect of this combination on DNA damage response under hypoxic stress Comet assay and immunofluorescence staining.

Results

Our findings revealed that the luteolin+PX-478 combination significantly suppressed the growth of MDA-MB-231 cells. In addition, we assessed time-dependent expression of HIF1a in MDA-MB-231 cells and observed that the combination of luteolin and PX-478 down-regulated the HIF-1a level. Finally, we found that the luteolin+PX-478 combination induced apoptosis and G cell cycle arrest and enhanced DNA damage response. This combination also sensitized breast cancer cells to ionizing radiation in hypoxic stress.

Discussion

The findings suggested that targeting HIF-1α with a combination of luteolin and PX-478 may provide a synergistic approach to suppressing tumor growth and enhancing therapeutic response under hypoxic conditions. The observed effects on apoptosis, cell cycle arrest, and DNA damage response indicated that this combination could be a promising strategy for overcoming hypoxia-induced resistance in breast cancer therapy.

Conclusion

Collectively, our results suggested the combination of luteolin and PX-478 to enhance the anti-cancer effects of PX-478 in breast carcinoma cells by impeding the cell growth and inducing DNA damage response under hypoxia.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206384227250901064037
2025-09-03
2025-11-09
Loading full text...

Full text loading...

References

  1. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  2. Eccles S.A. Welch D.R. Metastasis: Recent discoveries and novel treatment strategies. Lancet 2007 369 9574 1742 1757 10.1016/S0140‑6736(07)60781‑8 17512859
    [Google Scholar]
  3. Chaudary N. Hill R.P. Hypoxia and metastasis in breast cancer. Breast Dis. 2007 26 1 55 64 10.3233/BD‑2007‑26105 17473365
    [Google Scholar]
  4. Kallinowski F. Zander R. Hoeckel M. Vaupel P. Tumor tissue oxygenation as evaluated by computerized-po2-histography. Int. J. Radiat. Oncol. Biol. Phys. 1990 19 4 953 961 10.1016/0360‑3016(90)90018‑F 2211264
    [Google Scholar]
  5. Vaupel P. Mayer A. Briest S. Höckel M. Hypoxia in breast cancer: Role of blood flow, oxygen diffusion distances, and anemia in the development of oxygen depletion. Adv. Exp. Med. Biol. 2005 566 333 342 10.1007/0‑387‑26206‑7_44 16594170
    [Google Scholar]
  6. Hohenberger P. Felgner C. Haensch W. Schlag P.M. Tumor oxygenation correlates with molecular growth determinants in breast cancer. Breast Cancer Res. Treat. 1998 48 2 97 106 10.1023/A:1005921513083 9596481
    [Google Scholar]
  7. Schito L. Rey S. Tafani M. Zhang H. Wong C.C. Russo A. Russo MA Semenza G.L. Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proc. Natl. Acad. Sci. U.S.A 2012 109 40 2707 2716
    [Google Scholar]
  8. Graham K. Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int. J. Nanomedicine 2018 13 6049 6058 10.2147/IJN.S140462 30323592
    [Google Scholar]
  9. Dengler V.L. Galbraith M.D. Espinosa J.M. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol. 2014 49 1 1 15 10.3109/10409238.2013.838205 24099156
    [Google Scholar]
  10. Wang G.L. Semenza G.L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 1995 270 3 1230 1237 10.1074/jbc.270.3.1230 7836384
    [Google Scholar]
  11. Bhattarai D. Xu X. Lee K. Hypoxia‐inducible factor‐1 (HIF‐1) inhibitors from the last decade (2007 to 2016): A “structure–activity relationship” perspective. Med. Res. Rev. 2018 38 4 1404 1442 10.1002/med.21477 29278273
    [Google Scholar]
  12. Parczyk J. Ruhnau J. Pelz C. Schilling M. Wu H. Piaskowski N.N. Eickholt B. Kühn H. Danker K. Klein A. Dichloroacetate and PX-478 exhibit strong synergistic effects in a various number of cancer cell lines. BMC Cancer 2021 21 1 481 10.1186/s12885‑021‑08186‑9 33931028
    [Google Scholar]
  13. Palayoor S.T. Mitchell J.B. Cerna D. DeGraff W. John-Aryankalayil M. Coleman C.N. PX‐478, an inhibitor of hypoxia‐inducible factor‐1α, enhances radiosensitivity of prostate carcinoma cells. Int. J. Cancer 2008 123 10 2430 2437 10.1002/ijc.23807 18729192
    [Google Scholar]
  14. Zhu Y. Zang Y. Zhao F. Li Z. Zhang J. Fang L. Li M. Xing L. Xu Z. Yu J. Inhibition of HIF-1α by PX-478 suppresses tumor growth of esophageal squamous cell cancer in vitro and in vivo. Am. J. Cancer Res. 2017 7 5 1198 1212
    [Google Scholar]
  15. Kopustinskiene D.M. Jakstas V. Savickas A. Bernatoniene J. Flavonoids as anticancer agents. Nutrients 2020 12 2 457 10.3390/nu12020457 32059369
    [Google Scholar]
  16. Fotsis T. Pepper M.S. Aktas E. Breit S. Rasku S. Adlercreutz H. Wähälä K. Montesano R. Schweigerer L. Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res. 1997 57 14 2916 2921 9230201
    [Google Scholar]
  17. Abotaleb M. Samuel S. Varghese E. Varghese S. Kubatka P. Liskova A. Büsselberg D. Flavonoids in cancer and apoptosis. Cancers 2018 11 1 28 10.3390/cancers11010028 30597838
    [Google Scholar]
  18. Dükel M. Tavsan Z. Kayali H.A. Flavonoids regulate cell death-related cellular signaling via ROS in human colon cancer cells. Process Biochem. 2021 101 11 25 10.1016/j.procbio.2020.10.002
    [Google Scholar]
  19. Liskova A. Koklesova L. Samec M. Smejkal K. Samuel S.M. Varghese E. Abotaleb M. Biringer K. Kudela E. Danko J. Shakibaei M. Kwon T.K. Büsselberg D. Kubatka P. Flavonoids in cancer metastasis. Cancers 2020 12 6 1498 10.3390/cancers12061498 32521759
    [Google Scholar]
  20. Singh R. Agarwal R. Natural flavonoids targeting deregulated cell cycle progression in cancer cells. Curr. Drug Targets 2006 7 3 345 354 10.2174/138945006776055004 16515531
    [Google Scholar]
  21. Gao K. Henning S. Niu Y. Youssefian A. Seeram N. Xu A. Heber D. The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J. Nutr. Biochem. 2006 17 2 89 95 10.1016/j.jnutbio.2005.05.009 16111881
    [Google Scholar]
  22. Procházková D. Boušová I. Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011 82 4 513 523 10.1016/j.fitote.2011.01.018 21277359
    [Google Scholar]
  23. Samec M. Liskova A. Koklesova L. Mersakova S. Strnadel J. Kajo K. Pec M. Zhai K. Smejkal K. Mirzaei S. Hushmandi K. Ashrafizadeh M. Saso L. Brockmueller A. Shakibaei M. Büsselberg D. Kubatka P. Flavonoids targeting HIF-1: Implications on cancer metabolism. Cancers 2021 13 1 130 10.3390/cancers13010130 33401572
    [Google Scholar]
  24. Gürler S.B. Kiraz Y. Baran Y. Chapter 21 Flavonoids in cancer therapy: Current and future trendsBiodiversity and Biomedicine. Academic Press 2020 403 440
    [Google Scholar]
  25. Kikuchi H. Yuan B. Hu X. Okazaki M. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am. J. Cancer Res. 2019 9 8 1517 1535 31497340
    [Google Scholar]
  26. Chou T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010 70 2 440 446 10.1158/0008‑5472.CAN‑09‑1947 20068163
    [Google Scholar]
  27. Dukel M. Combination of naringenin and epicatechin sensitizes colon carcinoma cells to anoikis via regulation of the epithelial–mesenchymal transition (EMT). Mol. Cell. Toxicol. 2023 19 1 187 203 10.1007/s13273‑022‑00317‑y
    [Google Scholar]
  28. Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods 2001 25 4 402 408 10.1006/meth.2001.1262 11846609
    [Google Scholar]
  29. Dukel M. Fiskin K. Combination of PAKs inhibitors IPA-3 and PF-3758309 effectively suppresses colon carcinoma cell growth by perturbing DNA damage response. Int. J. Radiat. Biol. 2023 99 2 340 354 10.1080/09553002.2022.2110326 35939342
    [Google Scholar]
  30. Park M.Y. Kim Y. Ha S.E. Kim H.H. Bhosale P.B. Abusaliya A. Jeong S.H. Kim G.S. Function and application of flavonoids in the breast cancer. Int. J. Mol. Sci. 2022 23 14 7732 10.3390/ijms23147732 35887080
    [Google Scholar]
  31. Salehi B. Fokou P.V.T. Sharifi-Rad M. Zucca P. Pezzani R. Martins N. Sharifi-Rad J. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals 2019 12 1 11 10.3390/ph12010011 30634637
    [Google Scholar]
  32. Vetrivel P. Kim S.M. Saralamma V.V.G. Ha S.E. Kim E.H. Min T.S. Kim G.S. Function of flavonoids on different types of programmed cell death and its mechanism: A review. J. Biomed. Res. 2019 33 6 363 10.7555/JBR.33.20180126
    [Google Scholar]
  33. Dükel M. Streitfeld W.S. Tang T.C.C. Backman L.R.F. Ai L. May W.S. Brown K.D. The breast cancer tumor suppressor TRIM29 is expressed via ATM-dependent signaling in response to hypoxia. J. Biol. Chem. 2016 291 41 21541 21552 10.1074/jbc.M116.730960 27535224
    [Google Scholar]
  34. Jing X. Yang F. Shao C. Wei K. Xie M. Shen H. Shu Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 2019 18 1 157 10.1186/s12943‑019‑1089‑9 31711497
    [Google Scholar]
  35. McAleese C.E. Choudhury C. Butcher N.J. Minchin R.F. Hypoxia-mediated drug resistance in breast cancers. Cancer Lett. 2021 502 189 199 10.1016/j.canlet.2020.11.045 33278499
    [Google Scholar]
  36. Yong L. Tang S. Yu H. Zhang H. Zhang Y. Wan Y. Cai F. The role of hypoxia-inducible factor-1 alpha in multidrug-resistant breast cancer. Front. Oncol. 2022 12 964934 10.3389/fonc.2022.964934 36003773
    [Google Scholar]
  37. Tang W. Zhao G. Small molecules targeting HIF-1α pathway for cancer therapy in recent years. Bioorg. Med. Chem. 2020 28 2 115235 10.1016/j.bmc.2019.115235 31843464
    [Google Scholar]
  38. Mooring S.R. Wang B. HIF-1 inhibitors as anti-cancer therapy. Sci. China Chem. 2011 54 1 24 30 10.1007/s11426‑010‑4187‑5
    [Google Scholar]
  39. Jordan B.F. Black K. Robey I.F. Runquist M. Powis G. Gillies R.J. Metabolite changes in HT-29 xenograft tumors following HIF-1α inhibition with PX-478 as studied by MR spectroscopyin vivo andex vivo. NMR Biomed. 2005 18 7 430 439 10.1002/nbm.977 16206237
    [Google Scholar]
  40. Avni R. Cohen B. Neeman M. Hypoxic stress and cancer: Imaging the axis of evil in tumor metastasis. NMR Biomed. 2011 24 6 569 581 10.1002/nbm.1632 21793071
    [Google Scholar]
  41. Carcereri de Prati A. Butturini E. Rigo A. Oppici E. Rossin M. Boriero D. Mariotto S. Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia. J. Cell. Biochem. 2017 118 10 3237 3248 10.1002/jcb.25972 28262977
    [Google Scholar]
  42. Dai Y. Bae K. Siemann D.W. Impact of hypoxia on the metastatic potential of human prostate cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 2011 81 521 528 10.1016/j.ijrobp.2011.04.027
    [Google Scholar]
  43. Campbell K. Casanova J. A common framework for EMT and collective cell migration. Development 2016 143 23 4291 4300 10.1242/dev.139071 27899506
    [Google Scholar]
  44. Yilmaz M. Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009 28 1-2 15 33 10.1007/s10555‑008‑9169‑0 19169796
    [Google Scholar]
  45. Pires I.M. Olcina M.M. Anbalagan S. Pollard J.R. Reaper P.M. Charlton P.A. McKenna W.G. Hammond E.M. Targeting radiation-resistant hypoxic tumour cells through ATR inhibition. Br. J. Cancer 2012 107 2 291 299 10.1038/bjc.2012.265 22713662
    [Google Scholar]
  46. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  47. Muz B. de la Puente P. Azab F. Kareem Azab A. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 2015 3 83 92 10.2147/HP.S93413
    [Google Scholar]
  48. Infantino V. Santarsiero A. Convertini P. Todisco S. Iacobazzi V. Cancer cell metabolism in hypoxia: Role of HIF-1 as key regulator and therapeutic target. Int. J. Mol. Sci. 2021 22 11 5703 10.3390/ijms22115703 34071836
    [Google Scholar]
  49. Rashid M. Zadeh L.R. Baradaran B. Molavi O. Ghesmati Z. Sabzichi M. Ramezani F. Up-down regulation of HIF-1α in cancer progression. Gene 2021 798 145796 10.1016/j.gene.2021.145796 34175393
    [Google Scholar]
  50. Bui B.P. Nguyen P.L. Lee K. Cho J. Hypoxia-inducible factor-1: A novel therapeutic target for the management of cancer, drug resistance, and cancer-related pain. Cancers 2022 14 24 6054 10.3390/cancers14246054 36551540
    [Google Scholar]
  51. Tibes R. Falchook G.S. Von Hoff D.D. Weiss G.J. Iyengar T. Kurzrock R. Results from a phase I, dose-escalation study of PX-478, an orally available inhibitor of HIF-1α. J. Clin. Oncol. 2024 28 15 3076 [Suppl.
    [Google Scholar]
  52. Zhang Y. Li H. Zhang J. Zhao C. Lu S. Qiao J. Han M. The combinatory effects of natural products and chemotherapy drugs and their mechanisms in breast cancer treatment. Phytochem. Rev. 2020 19 5 1179 1197 10.1007/s11101‑019‑09628‑w
    [Google Scholar]
  53. Jeon Y.W. Suh Y.J. Synergistic apoptotic effect of celecoxib and luteolin on breast cancer cells. Oncol. Rep. 2013 29 2 819 825 10.3892/or.2012.2158 23229294
    [Google Scholar]
  54. Yang M.Y. Wang C.J. Chen N.F. Ho W.H. Lu F.J. Tseng T.H. Luteolin enhances paclitaxel-induced apoptosis in human breast cancer MDA-MB-231 cells by blocking STAT3. Chem. Biol. Interact. 2014 213 60 68 10.1016/j.cbi.2014.02.002 24525192
    [Google Scholar]
  55. Zhang L. Liu Q. Huang L. Yang F. Liu A. Zhang J. Combination of lapatinib and luteolin enhances the therapeutic efficacy of lapatinib on human breast cancer through the FOXO3a/NQO1 pathway. Biochem. Biophys. Res. Commun. 2020 531 3 364 371 10.1016/j.bbrc.2020.07.049 32800546
    [Google Scholar]
  56. Zhao T. Ren H. Jia L. Chen J. Xin W. Yan F. Li J. Wang X. Gao S. Qian D. Huang C. Hao J. Inhibition of HIF-1α by PX-478 enhances the anti-tumor effect of gemcitabine by inducing immunogenic cell death in pancreatic ductal adenocarcinoma. Oncotarget 2015 6 4 2250 2262 10.18632/oncotarget.2948 25544770
    [Google Scholar]
  57. Muz B. Wasden K. Alhallak K. Jeske A. Azab F. Sun J. King J. Kohnen D.R. Vij R. Azab A.K. Inhibition of HIF-1a By PX-478 normalizes blood vessels, improves drug delivery and suppresses progression and dissemination in multiple myeloma. Blood 2020 136 3.(Suppl. 1) 10.1182/blood‑2020‑142154
    [Google Scholar]
  58. Panahi Meymandi A.R. Akbari B. Soltantoyeh T. Shahosseini Z. Hosseini M. Hadjati J. Mirzaei H.R. PX-478, an HIF-1α inhibitor, impairs mesoCAR T cell antitumor function in cervical cancer. Front. Oncol. 2024 14 1357801 10.3389/fonc.2024.1357801 38425341
    [Google Scholar]
  59. Xia Y. Jiang L. Zhong T. The role of HIF-1α in chemo-/radioresistant tumors. OncoTargets Ther. 2018 11 3003 3011 10.2147/OTT.S158206 29872312
    [Google Scholar]
  60. Lang M. Wang X. Wang H. Dong J. Lan C. Hao J. Huang C. Li X. Yu M. Yang Y. Yang S. Ren H. Arsenic trioxide plus PX-478 achieves effective treatment in pancreatic ductal adenocarcinoma. Cancer Lett. 2016 378 2 87 96 10.1016/j.canlet.2016.05.016 27212442
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206384227250901064037
Loading
/content/journals/acamc/10.2174/0118715206384227250901064037
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: hypoxia ; PX-478 ; HIF-1α ; angiogenesis ; breast cancer ; Luteolin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test