Skip to content
2000
image of Microbial-Derived Anti-Cancer Compounds: Advances in Drug Discovery, Bioengineering, and Therapeutic Applications

Abstract

Introduction

Microbial metabolites represent a valuable source of bioactive compounds with promising anticancer properties. However, conventional drug discovery approaches are time-intensive and resource-demanding.

Methods

Recent developments in artificial intelligence (AI), machine learning (ML), molecular docking, and quantitative structure-activity relationship (QSAR) modeling have been examined for their role in the identification and optimization of microbial metabolites.

Results

AI-driven approaches have significantly enhanced compound screening and prediction of therapeutic efficacy. Nanocarrier-based drug delivery systems have improved the bioavailability, specificity, and stability of microbial metabolites while minimizing systemic toxicity. Despite these advancements, challenges remain in clinical translation due to the lack of validation and comprehensive pharmacokinetic data.

Discussion

This review highlights the integration of advanced computational tools and nanotechnology in accelerating the discovery and delivery of microbial-derived anticancer agents.

Conclusion

Future directions should focus on integrating AI with synthetic biology to engineer microbial strains capable of producing enhanced bioactive compounds. Additionally, leveraging nanotechnology could refine targeted delivery mechanisms. A deeper understanding of molecular pathways and drug resistance mechanisms is essential to support the development of combination therapies. Overall, microbial-derived compounds hold substantial potential in advancing precision oncology.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206399680250814104403
2025-09-01
2025-11-09
Loading full text...

Full text loading...

References

  1. Islam F. Dehbia Z. Zehravi M. Das R. Sivakumar M. Krishnan K. Billah A.A.M. Bose B. Ghosh A. Paul S. Nainu F. Ahmad I. Emran T.B. Indole alkaloids from marine resources: Understandings from therapeutic point of view to treat cancers. Chem. Biol. Interact. 2023 383 110682 10.1016/j.cbi.2023.110682 37648047
    [Google Scholar]
  2. Wali A.F. Majid S. Rasool S. Shehada S.B. Abdulkareem S.K. Firdous A. Beigh S. Shakeel S. Mushtaq S. Akbar I. Madhkali H. Rehman M.U. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi Pharm. J. 2019 27 6 767 777 10.1016/j.jsps.2019.04.013 31516319
    [Google Scholar]
  3. Koirala N. Butnariu M. Panthi M. Gurung R. Adhikari S. Subba R.K. Antibiotics in the management of tuberculosis and cancer. Antibiotics - Therapeutic Spectrum and Limitations. United States Academic Press 2023 251 294 10.1016/B978‑0‑323‑95388‑7.00014‑0
    [Google Scholar]
  4. Darvishi F. Jahanafrooz Z. Mokhtarzadeh A. Microbial L-asparaginase as a promising enzyme for treatment of various cancers. Appl. Microbiol. Biotechnol. 2022 106 17 5335 5347 10.1007/s00253‑022‑12086‑8 35871694
    [Google Scholar]
  5. Villegas C. González-Chavarría I. Burgos V. Iturra-Beiza H. Ulrich H. Paz C. Epothilones as natural compounds for novel anticancer drugs development. Int. J. Mol. Sci. 2023 24 7 6063 10.3390/ijms24076063 37047035
    [Google Scholar]
  6. Qi D. Liu Y. Li J. Huang J.H. Hu X. Wu E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med. Res. Rev. 2022 42 3 1037 1063 10.1002/med.21870 34786735
    [Google Scholar]
  7. Gupta A. Meshram V. Gupta M. Goyal S. Qureshi K.A. Jaremko M. Shukla K.K. Fungal endophytes: Microfactories of novel bioactive compounds with therapeutic interventions; A comprehensive review on the biotechnological developments in the field of fungal endophytic biology over the last decade. Biomolecules 2023 13 7 1038 10.3390/biom13071038 37509074
    [Google Scholar]
  8. Ashrafizadeh M. Zarrabi A. Karimi-Maleh H. Taheriazam A. Mirzaei S. Hashemi M. Hushmandi K. Makvandi P. Nazarzadeh Zare E. Sharifi E. Goel A. Wang L. Ren J. Nuri Ertas Y. Kumar A.P. Wang Y. Rabiee N. Sethi G. Ma Z. (Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioeng. Transl. Med. 2023 8 1 10353 10.1002/btm2.10353 36684065
    [Google Scholar]
  9. Cheng F. Zhao J. Zhao Z. Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes. Brief. Bioinform. 2016 17 4 642 656 10.1093/bib/bbv068 26307061
    [Google Scholar]
  10. Kuz’min V. Artemenko A. Ognichenko L. Hromov A. Kosinskaya A. Stelmakh S. Sessions Z.L. Muratov E.N. Simplex representation of molecular structure as universal QSAR/QSPR tool. Struct. Chem. 2021 32 4 1365 1392 10.1007/s11224‑021‑01793‑z 34177203
    [Google Scholar]
  11. Ramírez-Rendon D. Passari A.K. Ruiz-Villafán B. Rodríguez-Sanoja R. Sánchez S. Demain A.L. Impact of novel microbial secondary metabolites on the pharma industry. Appl. Microbiol. Biotechnol. 2022 106 5-6 1855 1878 10.1007/s00253‑022‑11821‑5 35188588
    [Google Scholar]
  12. Shahbaz A. Hussain N. Saba S. Bilal M. Actinomycetes, cyanobacteria, and fungi: A rich source of bioactive molecules. Microbial Biomolecules. United States Academic Press 2023 113 133 10.1016/B978‑0‑323‑99476‑7.00015‑6
    [Google Scholar]
  13. Dhakal D. Lim S.K. Kim D.H. Kim B.G. Yamaguchi T. Sohng J.K. Complete genome sequence of Streptomyces peucetius ATCC 27952, the producer of anticancer anthracyclines and diverse secondary metabolites. J. Biotechnol. 2018 267 50 54 10.1016/j.jbiotec.2017.12.024 29307836
    [Google Scholar]
  14. Skok Ž. Zidar N. Kikelj D. Ilaš J. Dual inhibitors of human DNA topoisomerase II and other cancer-related targets. J. Med. Chem. 2020 63 3 884 904 10.1021/acs.jmedchem.9b00726 31592646
    [Google Scholar]
  15. Bhattacharjee M.K. Antibiotics that inhibit nucleic acid synthesis. Chemistry of Antibiotics and Related Drugs. Cham Springer 2016 10.1007/978‑3‑319‑40746‑3_5
    [Google Scholar]
  16. Chaudhary R. Nawaz A. Fouillaud M. Dufossé L. Haq I. Mukhtar H. Microbial cell factories: Biodiversity, pathway construction, robustness, and industrial applicability. Microbiol. Res. 2024 15 1 247 272 10.3390/microbiolres15010018
    [Google Scholar]
  17. Barbero M. Artuso E. Prandi C. Fungal anticancer metabolites: Synthesis towards drug discovery. Curr. Med. Chem. 2018 25 2 141 185 10.2174/0929867324666170511112815 28494746
    [Google Scholar]
  18. Zhao S. Tang Y. Wang R. Najafi M. Mechanisms of cancer cell death induction by paclitaxel: An updated review. Apoptosis 2022 27 9-10 647 667 10.1007/s10495‑022‑01750‑z 35849264
    [Google Scholar]
  19. Ismaiel A.A. Ahmed A.S. Hassan I.A. El-Sayed E.S.R. Karam El-Din A.Z.A. Production of paclitaxel with anticancer activity by two local fungal endophytes, Aspergillus fumigatus and Alternaria tenuissima. Appl. Microbiol. Biotechnol. 2017 101 14 5831 5846 10.1007/s00253‑017‑8354‑x 28612104
    [Google Scholar]
  20. Kim Y.S. Park S.J. Gliotoxin from the marine fungus Aspergillus fumigatus induces apoptosis in HT1080 fibrosarcoma cells by downregulating NF-κB. Fish. Aquatic Sci. 2016 19 1 35 10.1186/s41240‑016‑0036‑6
    [Google Scholar]
  21. Qamar H. Hussain K. Soni A. Khan A. Hussain T. Chénais B. Cyanobacteria as natural therapeutics and pharmaceutical potential: Role in antitumor activity and as nanovectors. Molecules 2021 26 1 247 10.3390/molecules26010247 33466486
    [Google Scholar]
  22. Kubrak T.P. Kołodziej P. Sawicki J. Mazur A. Koziorowska K. Aebisher D. Some natural photosensitizers and their medicinal properties for use in photodynamic therapy. Molecules 2022 27 4 1192 10.3390/molecules27041192 35208984
    [Google Scholar]
  23. Muttenthaler M. King G.F. Adams D.J. Alewood P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021 20 4 309 325 10.1038/s41573‑020‑00135‑8 33536635
    [Google Scholar]
  24. Pathak M.P. Pathak K. Saikia R. Gogoi U. Ahmad M.Z. Patowary P. Das A. Immunomodulatory effect of mushrooms and their bioactive compounds in cancer: A comprehensive review. Biomed. Pharmacother. 2022 149 112901 10.1016/j.biopha.2022.112901 36068771
    [Google Scholar]
  25. Rawal S.U. Patel B.M. Patel M.M. New drug delivery systems developed for brain targeting. Drugs 2022 82 7 749 792 10.1007/s40265‑022‑01717‑z 35596879
    [Google Scholar]
  26. Aung T. Qu Z. Kortschak R. Adelson D. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int. J. Mol. Sci. 2017 18 3 656 10.3390/ijms18030656 28304343
    [Google Scholar]
  27. Pattnaik S. Imchen M. Kumavath R. Prasad R. Busi S. Bioactive microbial metabolites in cancer therapeutics: Mining, repurposing, and their molecular targets. Curr. Microbiol. 2022 79 10 300 10.1007/s00284‑022‑02990‑7 36002695
    [Google Scholar]
  28. Adhikari A. Mahar K.S. DNA targeted anthraquinone derivatives: An important anticancer agents. Int. J. Pharm. Pharm. Sci. 2016 8 6 17 25
    [Google Scholar]
  29. Karuppiah V. Alagappan K. Sivakumar K. Kannan L. Phenazine-1-carboxylic acid-induced programmed cell death in human prostate cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway. J. Appl. Biomed. 2016 14 3 199 209 10.1016/j.jab.2016.01.003
    [Google Scholar]
  30. Adhikari A. Shen B. Rader C. Challenges and opportunities to develop enediyne natural products as payloads for antibody-drug conjugates. Antib. Ther. 2021 4 1 1 15 10.1093/abt/tbab001 33554043
    [Google Scholar]
  31. Bolton J.L. Dunlap T. Formation and biological targets of quinones: Cytotoxic versus cytoprotective effects. Chem. Res. Toxicol. 2017 30 1 13 37 10.1021/acs.chemrestox.6b00256 27617882
    [Google Scholar]
  32. Chauhan V. Kanwar S.S. Lipopeptide(s) associated with human microbiome as potent cancer drug. Semin. Cancer Biol. 2021 70 128 133 10.1016/j.semcancer.2020.06.012 32574814
    [Google Scholar]
  33. Wu C. van der Donk W.A. Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products. Curr. Opin. Biotechnol. 2021 69 221 231 10.1016/j.copbio.2020.12.022 33556835
    [Google Scholar]
  34. Huang Y. Li G. Hong C. Zheng X. Yu H. Zhang Y. Potential of steroidal alkaloids in cancer: Perspective insight into structure–activity relationships. Front. Oncol. 2021 11 733369 10.3389/fonc.2021.733369 34616681
    [Google Scholar]
  35. Olofinsan K. Abrahamse H. George B.P. Therapeutic role of alkaloids and alkaloid derivatives in cancer management. Molecules 2023 28 14 5578 10.3390/molecules28145578 37513450
    [Google Scholar]
  36. Habli Z. Toumieh G. Fatfat M. Rahal O. Gali-Muhtasib H. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms. Molecules 2017 22 2 250 10.3390/molecules22020250 28208712
    [Google Scholar]
  37. Wang L. Jiang Q. Chen S. Wang S. Lu J. Gao X. Zhang D. Jin X. Natural epidithiodiketopiperazine alkaloids as potential anticancer agents: Recent mechanisms of action, structural modification, and synthetic strategies. Bioorg. Chem. 2023 137 106642 10.1016/j.bioorg.2023.106642 37276722
    [Google Scholar]
  38. Chen Y. Pang X. He Y. Lin X. Zhou X. Liu Y. Yang B. Secondary metabolites from coral-associated fungi: Source, chemistry and bioactivities. J. Fungi 2022 8 10 1043 10.3390/jof8101043 36294608
    [Google Scholar]
  39. Bojarska J. Mieczkowski A. Ziora Z.M. Skwarczynski M. Toth I. Shalash A.O. Parang K. El-Mowafi S.A. Mohammed E.H.M. Elnagdy S. AlKhazindar M. Wolf W.M. Cyclic dipeptides: The biological and structural landscape with special focus on the anti-cancer proline-based scaffold. Biomolecules 2021 11 10 1515 10.3390/biom11101515 34680148
    [Google Scholar]
  40. Han J. Wu Y. Zhou Y. Li S. Engineering Saccharomyces cerevisiae to produce plant benzylisoquinoline alkaloids. aBIOTECH 2021 2 3 264 275 10.1007/s42994‑021‑00055‑0 34377581
    [Google Scholar]
  41. Bruzzoni-Giovanelli H. Alezra V. Wolff N. Dong C.Z. Tuffery P. Rebollo A. Interfering peptides targeting protein–protein interactions: The next generation of drugs? Drug Discov. Today 2018 23 2 272 285 10.1016/j.drudis.2017.10.016 29097277
    [Google Scholar]
  42. Abbas M. Ovais M. Atiq A. Ansari T.M. Xing R. Spruijt E. Yan X. Tailoring supramolecular short peptide nanomaterials for antibacterial applications. Coord. Chem. Rev. 2022 460 214481 10.1016/j.ccr.2022.214481
    [Google Scholar]
  43. Huang K.Y. Tseng Y.J. Kao H.J. Chen C.H. Yang H.H. Weng S.L. Identification of subtypes of anticancer peptides based on sequential features and physicochemical properties. Sci. Rep. 2021 11 1 13594 10.1038/s41598‑021‑93124‑9 34193950
    [Google Scholar]
  44. Biswas S. Naskar J. Applications of peptide in cancer therapy. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Singapore Springer 2022 1 16 10.1007/978‑981‑16‑1247‑3_39‑1
    [Google Scholar]
  45. Tank J.G. Pandya R.V. Anti-proliferative activity of surfactins on human cancer cells and their potential use in therapeutics. Peptides 2022 155 170836 10.1016/j.peptides.2022.170836 35803360
    [Google Scholar]
  46. Zhao H. Shao D. Jiang C. Shi J. Li Q. Huang Q. Rajoka M.S.R. Yang H. Jin M. Biological activity of lipopeptides from Bacillus. Appl. Microbiol. Biotechnol. 2017 101 15 5951 5960 10.1007/s00253‑017‑8396‑0 28685194
    [Google Scholar]
  47. Bahrami Y. Bouk S. Kakaei E. Taheri M. Natural products from actinobacteria as a potential source of new therapies against colorectal cancer: A review. Front. Pharmacol. 2022 13 929161 10.3389/fphar.2022.929161 35899111
    [Google Scholar]
  48. Shahid A. Khurshid M. Aslam B. Muzammil S. Mehwish H.M. Rajoka M.S.R. Hayat H.F. Sarfraz M.H. Razzaq M.K. Nisar M.A. Waseem M. Cyanobacteria derived compounds: Emerging drugs for cancer management. J. Basic Microbiol. 2022 62 9 1125 1142 10.1002/jobm.202100459 34747529
    [Google Scholar]
  49. Swain S. Bej S. Bishoyi A.K. Mandhata C.P. Sahoo C.R. Padhy R.N. Recent progression on phytochemicals and pharmacological properties of the filamentous cyanobacterium Lyngbya sp. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 10 2197 2216 10.1007/s00210‑023‑02488‑4 37103519
    [Google Scholar]
  50. Skrzypczak N. Pyta K. Ruszkowski P. Gdaniec M. Bartl F. Przybylski P. Synthesis, structure and anticancer activity of new geldanamycin amine analogs containing C(17)- or C(20)- Flexible and rigid arms as well as closed or open ansa-bridges. Eur. J. Med. Chem. 2020 202 112624 10.1016/j.ejmech.2020.112624 32663707
    [Google Scholar]
  51. Olano C. Méndez C. Salas J.A. Antitumor compounds from marine actinomycetes. Mar. Drugs 2009 7 2 210 248 10.3390/md7020210 19597582
    [Google Scholar]
  52. Kamata K. Okamoto S. Oka S. Kamata H. Yagisawa H. Hirata H. Cycloprodigiosin hydrocloride suppresses tumor necrosis factor (TNF) α‐induced transcriptional activation by NF‐κB. FEBS Lett. 2001 507 1 74 80 10.1016/S0014‑5793(01)02946‑5 11682062
    [Google Scholar]
  53. Wang K.W. Ding P. New bioactive metabolites from the marine-derived fungi aspergillus. Mini Rev. Med. Chem. 2018 18 13 1072 1094 10.2174/1389557518666180305160856 29512458
    [Google Scholar]
  54. Byun W.S. Kim S. Shin Y.H. Kim W.K. Oh D.C. Lee S.K. Antitumor activity of ohmyungsamycin A through the regulation of the Skp2-p27 axis and MCM4 in human colorectal cancer cells. J. Nat. Prod. 2020 83 1 118 126 10.1021/acs.jnatprod.9b00918 31894983
    [Google Scholar]
  55. Green R. Howell M. Khalil R. Nair R. Yan J. Foran E. Katiri S. Banerjee J. Singh M. Bharadwaj S. Mohapatra S.S. Mohapatra S. Actinomycin D and telmisartan combination targets lung cancer stem cells through the Wnt/Beta catenin pathway. Sci. Rep. 2019 9 1 18177 10.1038/s41598‑019‑54266‑z 31796785
    [Google Scholar]
  56. Karpiński T.M. Adamczak A. Anticancer activity of bacterial proteins and peptides. Pharmaceutics 2018 10 2 54 10.3390/pharmaceutics10020054 29710857
    [Google Scholar]
  57. Tao Y. Lin Y. She Z. Lin M. Chen P. Zhang J. Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi. Anticancer. Agents Med. Chem. 2015 15 2 258 266 10.2174/1871520614666140825112255 25641103
    [Google Scholar]
  58. Tiwari K. Gupta R.K. Bioactive metabolites from rare actinomycetes. Stud Nat. Prod Chem. 2014 41 419 512 10.1016/B978‑0‑444‑63294‑4.00014‑0
    [Google Scholar]
  59. Kawada M. Inoue H. Ohba S.I. Masuda T. Momose I. Ikeda D. Leucinostatin A inhibits prostate cancer growth through reduction of insulin‐like growth factor‐I expression in prostate stromal cells. Int. J. Cancer 2010 126 4 810 818 10.1002/ijc.24915 19795463
    [Google Scholar]
  60. Cao, Xiao-hong Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem. Biol. Interact. 2010 183 3 357 362 10.1016/j.cbi.2009.11.027
    [Google Scholar]
  61. Duarte C. Gudiña E.J. Lima C.F. Rodrigues L.R. Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB Express 2014 4 1 40 10.1186/s13568‑014‑0040‑0 24949273
    [Google Scholar]
  62. Dey G. Bharti R. Sen R. Mandal M. Microbial amphiphiles: A class of promising new-generation anticancer agents. Drug Discov. Today 2015 20 1 136 146 10.1016/j.drudis.2014.09.006 25241656
    [Google Scholar]
  63. Janek T. Krasowska A. Radwańska A. Łukaszewicz M. Lipopeptide biosurfactant pseudofactin II induced apoptosis of melanoma A 375 cells by specific interaction with the plasma membrane. PLoS One 2013 8 3 57991 10.1371/journal.pone.0057991 23483962
    [Google Scholar]
  64. Yamazaki Y. Kunimoto S. Ikeda D. Rakicidin A. Rakicidin A. A hypoxia-selective cytotoxin. Biol. Pharm. Bull. 2007 30 2 261 265 10.1248/bpb.30.261 17268062
    [Google Scholar]
  65. Folmer F. Jaspars M. Dicato M. Diederich M. Photosynthetic marine organisms as a source of anticancer compounds. Phytochem. Rev. 2010 9 4 557 579 10.1007/s11101‑010‑9200‑2
    [Google Scholar]
  66. Robles-Bañuelos B. Durán-Riveroll L.M. Rangel-López E. Pérez-López H.I. González-Maya L. Marine cyanobacteria as sources of lead anticancer compounds: A review of families of metabolites with cytotoxic, antiproliferative, and antineoplastic effects. Molecules 2022 27 15 4814 10.3390/molecules27154814 35956762
    [Google Scholar]
  67. Hussein H.A. Khaphi F.L. Saeed Z.K. Cytotoxicity of bioactive compounds derived from cyanobacteria. INNOSC Theranostics Pharmacol. Sci. 2023 0 0 1388 10.36922/itps.1388
    [Google Scholar]
  68. Michon S. Cavelier F. Salom-Roig X.J. Synthesis and biological activities of cyclodepsipeptides of aurilide family from marine origin. Mar. Drugs 2021 19 2 55 10.3390/md19020055 33498789
    [Google Scholar]
  69. Kumar A. Singh B. Sharma P.R. Bharate S.B. Saxena A.K. Mondhe D.M. A novel microtubule depolymerizing colchicine analogue triggers apoptosis and autophagy in HCT‐116 colon cancer cells. Cell Biochem. Funct. 2016 34 2 69 81 10.1002/cbf.3166 26919061
    [Google Scholar]
  70. Ghareeb M.A. Tammam M.A. El-Demerdash A. Atanasov A.G. Insights about clinically approved and Preclinically investigated marine natural products. Curr. Res. Biotechnol. 2020 2 88 102 10.1016/j.crbiot.2020.09.001
    [Google Scholar]
  71. Baindara P. Mandal S.M. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie 2020 177 164 189 10.1016/j.biochi.2020.07.020 32827604
    [Google Scholar]
  72. Manivasagan P. Venkatesan J. Sivakumar K. Kim S.K. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol. Res. 2014 169 4 262 278 10.1016/j.micres.2013.07.014 23958059
    [Google Scholar]
  73. Kim H. Kim S. Kim M. Lee C. Yang I. Nam S.J. Bioactive natural products from the genus Salinospora: A review. Arch. Pharm. Res. 2020 43 12 1230 1258 10.1007/s12272‑020‑01288‑1 33237436
    [Google Scholar]
  74. Singha P.K. Pandeswara S. Venkatachalam M.A. Saikumar P. Manumycin A inhibits triple-negative breast cancer growth through LC3-mediated cytoplasmic vacuolation death. Cell Death Dis. 2013 4 1 457 10.1038/cddis.2012.192 23328664
    [Google Scholar]
  75. Riaz A. Rasul A. Saadullah M. Pharm Sci, P.J.; Hussain, G.; Rasool, B. Resistomycin, a pentacyclic polyketide, inhibits the growth of triple negative breast cancer cells through induction of apoptosis and mitochondrial dysfunction. Pak. J. Pharm. Sci. 2020 10.36721/PJPS.0000.00.0.SUP.000‑000.1
    [Google Scholar]
  76. Arshad M. Sharif A. Ahmed E. Trioxacarcins as a promising class of anticancer drugs. World J. Pharm. Pharm. Sci. 2019 8 10 81 107 10.20959/wjpps201910‑14672
    [Google Scholar]
  77. Kharwar R.N. Mishra A. Gond S.K. Stierle A. Stierle D. Anticancer compounds derived from fungal endophytes: Their importance and future challenges. Nat. Prod. Rep. 2011 28 7 1208 1228 10.1039/c1np00008j 21455524
    [Google Scholar]
  78. Deshmukh S.K. Gupta M.K. Prakash V. Reddy M.S. Mangrove-associated fungi: A novel source of potential anticancer compounds. J. Fungi 2018 4 3 101 10.3390/jof4030101 30149584
    [Google Scholar]
  79. Mitra S. Rauf A. Sutradhar H. Sadaf S. Hossain M.J. Soma M.A. Potential candidates from marine and terrestrial resources targeting mitochondrial inhibition: Insights from the molecular approach. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023 264 109509 10.1016/j.cbpc.2022.109509
    [Google Scholar]
  80. Costa M. Costa-Rodrigues J. Fernandes M.H. Barros P. Vasconcelos V. Martins R. Marine cyanobacteria compounds with anticancer properties: A review on the implication of apoptosis. Mar. Drugs 2012 10 10 2181 2207 10.3390/md10102181 23170077
    [Google Scholar]
  81. Swain S.S. Padhy R.N. Singh P.K. Anticancer compounds from cyanobacterium Lyngbya species: A review. Antonie van Leeuwenhoek 2015 108 2 223 265 10.1007/s10482‑015‑0487‑2 26026796
    [Google Scholar]
  82. Wijewickrama M. Greene A. Cock I. Therapeutics from cyanobacteria: A review of cyanobacteria-derived compounds as anti-cancer drug leads. Pharmacogn. Rev. 2023 17 34 230 246 10.5530/phrev.2023.17.3
    [Google Scholar]
  83. Singh S. Veeraswamy G. Bhattarai D. Goo J.I. Lee K. Choi Y. Recent advances in the development of pharmacologically active compounds that contain a benzoxazole scaffold. Asian J. Org. Chem. 2015 4 12 1338 1361 10.1002/ajoc.201500235
    [Google Scholar]
  84. Wilson Z.E. Brimble M.A. Molecules derived from the extremes of life: A decade later. Nat. Prod. Rep. 2021 38 1 24 82 10.1039/D0NP00021C 32672280
    [Google Scholar]
  85. Karthikeyan A. Joseph A. Nair B.G. Promising bioactive compounds from the marine environment and their potential effects on various diseases. J. Genet. Eng. Biotechnol. 2022 20 1 14 10.1186/s43141‑021‑00290‑4 35080679
    [Google Scholar]
  86. Pedra N.S. Canuto K.M. de Queiroz Souza A.S. Ribeiro P.R.V. Bona N.P. Ramos-Sobrinho R. de Souza P.O. Spanevello R.M. Braganhol E. Endophytic fungus of achyrocline satureioides: Molecular identification, chemical characterization, and cytotoxic evaluation of its metabolites in human melanoma cell line. Appl. Biochem. Biotechnol. 2023 195 7 4011 4035 10.1007/s12010‑023‑04328‑w 36652091
    [Google Scholar]
  87. Nicoletti R. Fiorentino A. Antitumor Metabolites of Fungi. Curr. Bioact. Compd. 2015 10 4 207 244 10.2174/1573407211666141224204809
    [Google Scholar]
  88. Pham J.V. Yilma M.A. Feliz A. Majid M.T. Maffetone N. Walker J.R. Kim E. Cho H.J. Reynolds J.M. Song M.C. Park S.R. Yoon Y.J. A review of the microbial production of bioactive natural products and biologics. Front. Microbiol. 2019 10 1404 10.3389/fmicb.2019.01404 31281299
    [Google Scholar]
  89. Seo E.J. Khelifi D. Fayez S. Feineis D. Bringmann G. Efferth T. Dawood M. Molecular determinants of the response of cancer cells towards geldanamycin and its derivatives. Chem. Biol. Interact. 2023 383 110677 10.1016/j.cbi.2023.110677 37586545
    [Google Scholar]
  90. Mandal S. Rath J. Anticancer drug development from cyanobacteria. Extremophilic Cyanobacteria for Novel Drug Development. Cham Springer 2015 10.1007/978‑3‑319‑12009‑6_4
    [Google Scholar]
  91. Mondal A. Bose S. Banerjee S. Patra J.K. Malik J. Mandal S.K. Kilpatrick K.L. Das G. Kerry R.G. Fimognari C. Bishayee A. Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs. Mar. Drugs 2020 18 9 476 10.3390/md18090476 32961827
    [Google Scholar]
  92. Martínez C. García-Domínguez P. Álvarez R. de Lera A.R. Bispyrrolidinoindoline Epi(poly)thiodioxopiperazines (BPI-ETPs) and simplified mimetics: Structural characterization, bioactivities, and total synthesis. Molecules 2022 27 21 7585 10.3390/molecules27217585 36364412
    [Google Scholar]
  93. Umer S.M. Solangi M. Khan K.M. Saleem R.S.Z. Indole-containing natural products 2019–2022: Isolations, reappraisals, syntheses, and biological activities. Molecules 2022 27 21 7586 10.3390/molecules27217586 36364413
    [Google Scholar]
  94. Vala A.K. Marine-derived fungi: Potential candidates for anticancer compounds. Marine Niche: Applications in Pharmaceutical Sciences. Singapore Springer 2020 10.1007/978‑981‑15‑5017‑1_8
    [Google Scholar]
  95. Greco G. Turrini E. Catanzaro E. Fimognari C. Marine anthraquinones: Pharmacological and toxicological issues. Mar. Drugs 2021 19 5 272 10.3390/md19050272 34068184
    [Google Scholar]
  96. Hussain A. Bourguet-Kondracki M.L. Majeed M. Ibrahim M. Imran M. Yang X.W. Ahmed I. Altaf A.A. Khalil A.A. Rauf A. Wilairatana P. Hemeg H.A. Ullah R. Green I.R. Ali I. Shah S.T.A. Hussain H. Marine life as a source for breast cancer treatment: A comprehensive review. Biomed. Pharmacother. 2023 159 114165 10.1016/j.biopha.2022.114165 36634590
    [Google Scholar]
  97. Qiu Z. Wu Y. Lan K. Wang S. Yu H. Wang Y. Wang C. Cao S. Cytotoxic compounds from marine actinomycetes: Sources, structures and bioactivity. Acta. Materia Med. 2022 1 4 445 475 10.15212/AMM‑2022‑0028 36588746
    [Google Scholar]
  98. Lankapalli A.R. Kannabiran K. Interaction of marine Streptomyces compounds with selected cancer drug target proteins by in silico molecular docking studies. Interdiscip. Sci. 2013 5 1 37 44 10.1007/s12539‑013‑0146‑0 23605638
    [Google Scholar]
  99. Rutledge P.J. Challis G.L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 2015 13 8 509 523 10.1038/nrmicro3496 26119570
    [Google Scholar]
  100. Zhang M.M. Wong F.T. Wang Y. Luo S. Lim Y.H. Heng E. Yeo W.L. Cobb R.E. Enghiad B. Ang E.L. Zhao H. CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 2017 13 6 607 609 10.1038/nchembio.2341 28398287
    [Google Scholar]
  101. Bai J.A. Rai R.V. Application of CRISPR/Cas9 Editing for production of secondary metabolites in actinomycetes. Natural Products from Actinomycetes, Diversity, Ecology and Drug Discovery. Singapore Springer 2022 302 329 10.1007/978‑981‑16‑6132‑7_12
    [Google Scholar]
  102. Scherlach K. Hertweck C. Mining and unearthing hidden biosynthetic potential. Nat. Commun. 2021 12 1 3864 10.1038/s41467‑021‑24133‑5 34162873
    [Google Scholar]
  103. Hussain M.I. Raziq A. Ahmed A. Iqbal M.W. Tian R. Li J. Liu L. Liu Y. Recent progress in CRISPR-based bioengineering of microbial cell factories for important nutraceuticals synthesis. J. Appl. Microbiol. 2023 134 6 lxad114 10.1093/jambio/lxad114 37279904
    [Google Scholar]
  104. Baliyarsingh B. Metagenomics: The approach and Techniques for Finding New Bioactive Compounds. Boca Raton, Florida CRC Press 2020 10.1201/9780429485794‑12
    [Google Scholar]
  105. Aware C. Jadhava J. Bioprospecting potential of microbes for the therapeutic application. Bioprospecting of Microbial Diversity 223 255 10.1016/B978‑0‑323‑90958‑7.00023‑6
    [Google Scholar]
  106. Sivalingam P. Hong K. Pote J. Prabakar K. Extreme environment Streptomyces: Potential sources for new antibacterial and anticancer drug leads? Int. J. Microbiol. 2019 2019 1 20 10.1155/2019/5283948 31354829
    [Google Scholar]
  107. Patel S. Naik L. Rai A. Palit K. Kumar A. Das M. Nayak D.K. Dandsena P.K. Mishra A. Singh R. Dhiman R. Das S. Diversity of secondary metabolites from marine Streptomyces with potential anti-tubercular activity: A review. Arch. Microbiol. 2025 207 3 64 10.1007/s00203‑024‑04233‑8 39961874
    [Google Scholar]
  108. Unsin C.E.M. Rajski S.R. Shen B. The role of genetic engineering in natural product-based anticancer drug discovery. Natural Products and Cancer Drug Discovery. New York Springer 2013 175 191 10.1007/978‑1‑4614‑4654‑5_7
    [Google Scholar]
  109. Roh C. Kang C. Production of anti-cancer agent using microbial biotransformation. Molecules 2014 19 10 16684 16692 10.3390/molecules191016684 25325153
    [Google Scholar]
  110. Nguyen C.T. Dhakal D. Pham V.T.T. Nguyen H.T. Sohng J.K. Recent advances in strategies for activation and discovery/characterization of cryptic biosynthetic gene clusters in streptomyces. Microorganisms 2020 8 4 616 10.3390/microorganisms8040616 32344564
    [Google Scholar]
  111. Giurini E.F. Godla A. Gupta K.H. Redefining bioactive small molecules from microbial metabolites as revolutionary anticancer agents. Cancer Gene Ther. 2024 31 2 187 206 10.1038/s41417‑023‑00715‑x 38200347
    [Google Scholar]
  112. Farjadian F. Ghasemi A. Gohari O. Roointan A. Karimi M. Hamblin M.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine 2019 14 1 93 126 10.2217/nnm‑2018‑0120 30451076
    [Google Scholar]
  113. Alqahtani M.S. Kazi M. Alsenaidy M.A. Ahmad M.Z. Advances in oral drug delivery. Front. Pharmacol. 2021 12 618411 10.3389/fphar.2021.618411 33679401
    [Google Scholar]
  114. Ezike T.C. Okpala U.S. Onoja U.L. Nwike C.P. Ezeako E.C. Okpara O.J. Okoroafor C.C. Eze S.C. Kalu O.L. Odoh E.C. Nwadike U.G. Ogbodo J.O. Umeh B.U. Ossai E.C. Nwanguma B.C. Advances in drug delivery systems, challenges and future directions. Heliyon 2023 9 6 17488 10.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  115. Glassman P.M. Muzykantov V.R. Pharmacokinetic and pharmacodynamic properties of drug delivery systems. J. Pharmacol. Exp. Ther. 2019 370 3 570 580 10.1124/jpet.119.257113 30837281
    [Google Scholar]
  116. Rommasi F. Esfandiari N. Liposomal nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Res. Lett. 2021 16 1 95 10.1186/s11671‑021‑03553‑8 34032937
    [Google Scholar]
  117. Giordo R. Wehbe Z. Paliogiannis P. Eid A.H. Mangoni A.A. Pintus G. Nano-targeting vascular remodeling in cancer: Recent developments and future directions. Semin. Cancer Biol. 2022 86 Pt 2 784 804 10.1016/j.semcancer.2022.03.001 35257860
    [Google Scholar]
  118. Li L. Wang C. Li Q. Guan Y. Zhang X. Kong F. Feng Z. Lu Y. Wang D. Wang N. Exosomes as a modulator of immune resistance in human cancers. Cytokine Growth Factor Rev. 2023 73 135 149 10.1016/j.cytogfr.2023.07.007 37543438
    [Google Scholar]
  119. Alshawwa S.Z. Kassem A.A. Farid R.M. Mostafa S.K. Labib G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of Artificial Intelligence. Pharmaceutics 2022 14 4 883 10.3390/pharmaceutics14040883 35456717
    [Google Scholar]
  120. Alqosaibi A.I. Nanocarriers for anticancer drugs: Challenges and perspectives. Saudi J. Biol. Sci. 2022 29 6 103298 10.1016/j.sjbs.2022.103298 35645591
    [Google Scholar]
  121. Agrawal M. Kulkarni V. Nanocarriers for brain targeting. Application of Nanocarriers in Brain Delivery of Therapeutics. Cham Springer Nature 2024 371 10.1007/978‑981‑97‑2859‑6_14
    [Google Scholar]
  122. Pingale P.L. Baboota S. Ali J. Nanocarrier Drug Delivery Systems: Therapeutic and Diagnostic Medicine. Berlin, Boston De Gruyter 2024 10.1515/9783111320847
    [Google Scholar]
  123. Li C. Yang Y. Zou G. Dong S. Chen Z. Li Q. Optimization of medium composition to enhance cordycepin synthesis and stress tolerance in engineered Pichia pastoris. Int. J. Recent Adv. Multidiscip. Res. 2024 11 09 10280 10283
    [Google Scholar]
  124. Hosseini E. Tsegay Z.T. Smaoui S. Varzakas T. Lactic acid bacteria in vinegar fermentation: Diversity, functionality and health benefits. Foods 2025 14 4 698 10.3390/foods14040698 40002142
    [Google Scholar]
  125. Dufossé L. Tiwari P. Editorial: Emerging trends and advances in the socioeconomic applications of beneficial microbes. Front. Microbiol. 2024 15 1523569 10.3389/fmicb.2024.1523569 39720473
    [Google Scholar]
  126. Rahman M.M. Sarker M.T. Alam Tumpa M.A. Yamin M. Islam T. Park M.N. Islam M.R. Rauf A. Sharma R. Cavalu S. Kim B. Exploring the recent trends in perturbing the cellular signaling pathways in cancer by natural products. Front. Pharmacol. 2022 13 950109 10.3389/fphar.2022.950109 36160435
    [Google Scholar]
  127. Gao Q. Deng S. Jiang T. Recent developments in the identification and biosynthesis of antitumor drugs derived from microorganisms. Engineering Microbiology 2022 2 4 100047 10.1016/j.engmic.2022.100047 39628704
    [Google Scholar]
  128. Neophytou C.M. Trougakos I.P. Erin N. Papageorgis P. Apoptosis deregulation and the development of cancer multi-drug resistance. Cancers 2021 13 17 4363 10.3390/cancers13174363 34503172
    [Google Scholar]
  129. Fung N.H. Grima C.A. Widodo S.S. Kaye A.H. Whitehead C.A. Stylli S.S. Mantamadiotis T. Understanding and exploiting cell signalling convergence nodes and pathway cross-talk in malignant brain cancer. Cell. Signal. 2019 57 2 9 10.1016/j.cellsig.2019.01.011 30710631
    [Google Scholar]
  130. Mirzaei S. Zarrabi A. Hashemi F. Zabolian A. Saleki H. Ranjbar A. Seyed Saleh S.H. Bagherian M. Sharifzadeh S. Hushmandi K. Liskova A. Kubatka P. Makvandi P. Tergaonkar V. Kumar A.P. Ashrafizadeh M. Sethi G. Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Lett. 2021 509 63 80 10.1016/j.canlet.2021.03.025 33838282
    [Google Scholar]
  131. Roychoudhury S. Kumar A. Bhatkar D. Sharma N.K. Molecular avenues in targeted doxorubicin cancer therapy. Future Oncol. 2020 16 11 687 700 10.2217/fon‑2019‑0458 32253930
    [Google Scholar]
  132. Shrestha B. Pokhrel A.R. Darsandhari S. Parajuli P. Sohng J.K. Pandey R.P. Engineering streptomyces peucetius for doxorubicin and daunorubicin biosynthesis. Pharmaceuticals from Microbes. Cham Springer 2019 10.1007/978‑3‑030‑01881‑8_7
    [Google Scholar]
  133. Al Amin M. Emran T.B. Khan J. Zehravi M. Sharma I. Patil A. Gupta J.K. Jeslin D. Krishnan K. Das R. Nainu F. Ahmad I. Wilairatana P. Research progress of indole alkaloids: Targeting MAP kinase signaling pathways in cancer treatment. Cancers 2023 15 22 5311 10.3390/cancers15225311 38001572
    [Google Scholar]
  134. Elbadawi M. McCoubrey L.E. Gavins F.K.H. Ong J.J. Goyanes A. Gaisford S. Basit A.W. Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv. Drug Deliv. Rev. 2021 175 113805 10.1016/j.addr.2021.05.015 34019957
    [Google Scholar]
  135. Feitelson M.A. Arzumanyan A. Medhat A. Spector I. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev. 2023 42 3 677 698 10.1007/s10555‑023‑10117‑y 37432606
    [Google Scholar]
  136. Tiwari A. Tiwari V. Sharma A. Marrisetti A.L. Kumar M. Rochani A. Kaushik D. Mittal V. Jyothi S. R.; Ali, H.; Hussain, M.S.; Gupta, G. Unlocking the potential: Integrating phytoconstituents and nanotechnology in skin cancer therapy – A comprehensive review. J. Complement. Integr. Med. 2025 22 2 237 257 10.1515/jcim‑2024‑0338 39668578
    [Google Scholar]
  137. Sorkin B.C. Kuszak A.J. Bloss G. Fukagawa N.K. Hoffman F.A. Jafari M. Barrett B. Brown P.N. Bushman F.D. Casper S.J. Chilton F.H. Coffey C.S. Ferruzzi M.G. Hopp D.C. Kiely M. Lakens D. MacMillan J.B. Meltzer D.O. Pahor M. Paul J. Pritchett-Corning K. Quinney S.K. Rehermann B. Setchell K.D.R. Sipes N.S. Stephens J.M. Taylor D.L. Tiriac H. Walters M.A. Xi D. Zappalá G. Pauli G.F. Improving natural product research translation: From source to clinical trial. FASEB J. 2020 34 1 41 65 10.1096/fj.201902143R 31914647
    [Google Scholar]
  138. Saxena R. Exploring approaches for investigating phytochemistry: Methods and techniques. MEDALION J. Med. Res. Nursing 2023 4 2 65 73 10.59733/medalion.v4i2.76
    [Google Scholar]
  139. Romano J.D. Tatonetti N.P. Informatics and computational methods in natural product drug discovery: A review and perspectives. Front. Genet. 2019 10 368 10.3389/fgene.2019.00368 31114606
    [Google Scholar]
  140. Aier I. Varadwaj P.K. Drug repositioning: Principles, resources, and application of structure-based virtual screening for the identification of anticancer agents. Molecular Docking for Computer-Aided Drug Design 313 336 10.1016/B978‑0‑12‑822312‑3.00006‑0
    [Google Scholar]
  141. Ejalonibu M.A. Ogundare S.A. Elrashedy A.A. Ejalonibu M.A. Lawal M.M. Mhlongo N.N. Kumalo H.M. Drug discovery for mycobacterium tuberculosis using structure-based computer-aided drug design approach. Int. J. Mol. Sci. 2021 22 24 13259 10.3390/ijms222413259 34948055
    [Google Scholar]
  142. Gupta D. Khan A.U. Advances in docking-based drug design for microbial and cancer drug targets. Molecular Docking for Computer-Aided Drug Design. Academic Press 2021 407 424 10.1016/B978‑0‑12‑822312‑3.00020‑5
    [Google Scholar]
  143. El Rhabori S. El Aissouq A. Chtita S. Khalil F. Design of novel quinoline derivatives as antibreast cancer using 3D-QSAR, molecular docking and pharmacokinetic investigation. Anticancer Drugs 2022 33 9 789 802 10.1097/CAD.0000000000001318 36136985
    [Google Scholar]
  144. Sun D. Gao W. Hu H. Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 2022 12 7 3049 3062 10.1016/j.apsb.2022.02.002 35865092
    [Google Scholar]
  145. Temml V. Kutil Z. Structure-based molecular modeling in SAR analysis and lead optimization. Comput. Struct. Biotechnol. J. 2021 19 1431 1444 10.1016/j.csbj.2021.02.018 33777339
    [Google Scholar]
  146. Jahangir M.A. Imam S.S. Muheem A. Chettupalli A. Al-Abbasi F.A. Nadeem M.S. Kazmi I. Afzal M. Alshehri S. Nanocrystals: Characterization overview, applications in drug delivery, and their toxicity concerns. J. Pharm. Innov. 2022 17 1 237 248 10.1007/s12247‑020‑09499‑1
    [Google Scholar]
  147. Rudrapal M. Chetia D. Virtual screening, molecular docking and QSAR studies in drug discovery and development programme. J. Drug Deliv. Ther. 2020 10 4 225 233 10.22270/jddt.v10i4.4218
    [Google Scholar]
  148. Verma S. Pathak R.K. Discovery and optimization of lead molecules in drug designing. Bioinformatics. United States Academic Press 2022 253 267 10.1016/B978‑0‑323‑89775‑4.00004‑3
    [Google Scholar]
  149. Zekri A. Harkati D. Kenouche S. Saleh B.A. QSAR modeling, docking, ADME and reactivity of indazole derivatives as antagonizes of estrogen receptor alpha (ER-α) positive in breast cancer. J. Mol. Struct. 2020 1217 128442 10.1016/j.molstruc.2020.128442
    [Google Scholar]
  150. Wang S. Dong G. Sheng C. Structural simplification: An efficient strategy in lead optimization. Acta Pharm. Sin. B 2019 9 5 880 901 10.1016/j.apsb.2019.05.004 31649841
    [Google Scholar]
  151. Er-rajy M. El fadili, M.; Mujwar, S.; Zarougui, S.; Elhallaoui, M. Design of novel anti-cancer drugs targeting TRKs inhibitors based 3D QSAR, molecular docking and molecular dynamics simulation. J. Biomol. Struct. Dyn. 2023 41 21 11657 11670 10.1080/07391102.2023.2170471 36695085
    [Google Scholar]
  152. Gupta Y.D. Bhandary S. Artificial intelligence for understanding mechanisms of antimicrobial resistance and antimicrobial discovery: A new age model for translational research. Hoboken, New Jersey Wiley Online Library 2024 10.1002/9781394234196.ch5
    [Google Scholar]
  153. Arif M. Musleh S. Fida H. Alam T. PLMACPred prediction of anticancer peptides based on protein language model and wavelet denoising transformation. Sci. Rep. 2024 14 1 16992 10.1038/s41598‑024‑67433‑8 39043738
    [Google Scholar]
  154. Patil S.P. Exploring small molecules targeting protein–protein interactions (PPIs): Advancements and future prospects. Pharmaceuticals 2023 16 12 1644 10.3390/ph16121644 38139771
    [Google Scholar]
  155. Pathak P.D. Raut R. Jaramillo-Isaza S. Borkar P. Jhaveri R.H. Computational Approaches in Biotechnology and Bioinformatics. Boca Raton, Florida CRC Press 2024 10.1201/9781003354437
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206399680250814104403
Loading
/content/journals/acamc/10.2174/0118715206399680250814104403
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test