Skip to content
2000
image of A Comprehensive Review of the Anticancer Activity of Farnesiferol C and Umbelliferone

Abstract

ancer remains a growing challenge in modern society, presenting a significant obstacle in both developed and developing countries. Conventional treatments are often costly and limited by issues such as drug resistance and undesirable side effects. Consequently, the exploration of natural compounds has emerged as a promising strategy for developing more effective and tolerable cancer therapies. Among these, plants have gained attention for their potential anticancer components. Notably, two coumarin compounds derived from these plants, farnesiferol C and umbelliferone, have demonstrated substantial anticancer activity, as supported by an increasing number of published studies. This review aims to consolidate existing evidence on the anticancer effects of farnesiferol C and umbelliferone while comparing their efficacy as potential therapeutic agents. To accomplish this, a comprehensive literature search was conducted using the terms “umbelliferone” and “farnesiferol C” paired with “anticancer” across databases such as ISI Web of Knowledge, PubMed, and Google Scholar. Relevant studies up to March 2024 were retrieved, summarized, and incorporated into this analysis. The findings indicate that both compounds exhibit significant anticancer properties, positioning them as viable candidates for future drug development. A comparative analysis of their IC50 values, the concentration required to inhibit 50% of cancer cell growth, reveals that farnesiferol C demonstrates greater cytotoxic potency against various cancer cell lines compared to umbelliferone. However, while these results are encouraging, further research is recommended, particularly studies to evaluate the compounds’ toxicity and therapeutic potential in living organisms.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206380074250829111459
2025-09-02
2025-11-09
Loading full text...

Full text loading...

References

  1. de Visser K.E. Joyce J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023 41 3 374 403 10.1016/j.ccell.2023.02.016 36917948
    [Google Scholar]
  2. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  3. Tonorezos E. Devasia T. Mariotto A.B. Mollica M.A. Gallicchio L. Green P. Doose M. Brick R. Streck B. Reed C. de Moor J.S. Prevalence of cancer survivors in the United States. J. Natl. Cancer Inst. 2024 116 11 1784 1790 10.1093/jnci/djae135 39002121
    [Google Scholar]
  4. Saini A. Kumar M. Bhatt S. Saini V. Malik A. Cancer causes and treatments. Int. J. Pharm. Sci. Res. 2020 11 7 3121 3134
    [Google Scholar]
  5. Junqueira M.Z. Chammas R. Cancer chemotherapy failure: A synthetic view. Rev. Med. 2018 97 2 141 153 10.11606/issn.1679‑9836.v97i2p141‑153
    [Google Scholar]
  6. Samadi P. Saki S. Dermani F.K. Pourjafar M. Saidijam M. Emerging ways to treat breast cancer: Will promises be met? Cell. Oncol. 2018 41 6 605 621 10.1007/s13402‑018‑0409‑1 30259416
    [Google Scholar]
  7. Shoker R.M.H. A review article: The importance of the major groups of plants secondary metabolism phenols, alkaloids, and terpenes. Int. J. Res. Appl. Sci. Biotechnol. 2020 7 5 354 358 10.31033/ijrasb.7.5.47
    [Google Scholar]
  8. HemaIswarya S Doble M Potential synergism of natural products in the treatment of cancer. Phytother. Res. 2006 20 4 239 249 10.1002/ptr.1841
    [Google Scholar]
  9. Wang J. Ding R. Ouyang T. Gao H. Kan H. Li Y. Hu Q. Yang Y. Systematic investigation of the mechanism of herbal medicines for the treatment of prostate cancer. Aging 2023 15 4 1004 1024 10.18632/aging.204516 36795572
    [Google Scholar]
  10. Baharara H. Rahsepar S. Emami S.A. Elyasi S. Mohammadpour A.H. Ghavami V. Rajendram R. Sahebkar A. Arasteh O. The efficacy of medicinal plant preparations in the alleviation of radiodermatitis in patients with breast cancer: A systematic review of clinical trials. Phytother. Res. 2023 37 8 3275 3295 10.1002/ptr.7894 37211432
    [Google Scholar]
  11. Kalachaveedu M. Senthil R. Azhagiyamanavalan S. Ravi R. Meenakshisundaram H. Dharmarajan A. Traditional medicine herbs as natural product matrices in cancer chemoprevention: A trans pharmacological perspective (scoping review). Phytother. Res. 2023 37 4 1539 1573 10.1002/ptr.7747 36788644
    [Google Scholar]
  12. Tewari D. Rawat P. Singh P.K. Adverse drug reactions of anticancer drugs derived from natural sources. Food Chem. Toxicol. 2019 123 522 535 10.1016/j.fct.2018.11.041 30471312
    [Google Scholar]
  13. Lin S.R. Chang C.H. Hsu C.F. Tsai M.J. Cheng H. Leong M.K. Sung P.J. Chen J.C. Weng C.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br. J. Pharmacol. 2020 177 6 1409 1423 10.1111/bph.14816 31368509
    [Google Scholar]
  14. Amiri M.S. Joharchi M.R. Ethnobotanical knowledge of Apiaceae family in Iran: A review. Avicenna J. Phytomed. 2016 6 6 621 635 28078243
    [Google Scholar]
  15. Christensen L.P. Brandt K. Bioactive polyacetylenes in food plants of the Apiaceae family: Occurrence, bioactivity and analysis. J. Pharm. Biomed. Anal. 2006 41 3 683 693 10.1016/j.jpba.2006.01.057 16520011
    [Google Scholar]
  16. Moran J. van Rijswijk B. Traicevski V. Kitajima E.W. Mackenzie A.M. Gibbs A.J. Potyviruses, novel and known, in cultivated and wild species of the family Apiaceae in Australia. Arch. Virol. 2002 147 10 1855 1867 10.1007/s00705‑002‑0865‑8 12376749
    [Google Scholar]
  17. Mandegary A. Sayyah M. Heidari M.R. Antinociceptive and anti-inflammatory activity of the seed and root extracts of Ferula gummosa Boiss in mice and rats. Daru 2004 12 2 58 62
    [Google Scholar]
  18. Bagheri S. Mohamadsadeghi H. Hejazian E. Antinociceptive effect of seed’s essential oil of Ferula assa-foetida in mice. Int. J. Clin. Exp. Physiol. 2017 4 1 34 37 10.4103/ijcep.ijcep_5_17
    [Google Scholar]
  19. Ghasemi Y. Faridi P. Mehregan I. Mohagheghzadeh A. Ferula gummosa fruits: An aromatic antimicrobial agent. Chem. Nat. Compd. 2005 41 3 311 314 10.1007/s10600‑005‑0138‑3
    [Google Scholar]
  20. Sadraei H. Asghari G.R. Hajhashemi V. Kolagar A. Ebrahimi M. Spasmolytic activity of essential oil and various extracts of Boiss. on ileum contractions. Phytomedicine 2001 8 5 370 376 10.1078/0944‑7113‑00052 11695880
    [Google Scholar]
  21. Abu-Zaiton A.S. Anti-diabetic activity of Ferula assafoetida extract in normal and alloxan-induced diabetic rats. Pak. J. Biol. Sci. 2010 13 2 97 100 10.3923/pjbs.2010.97.100 20415145
    [Google Scholar]
  22. Bagheri S.M. Hedesh S.T. Mirjalili A. Dashti-R M.H. Evaluation of anti-inflammatory and some possible mechanisms of antinociceptive effect of Ferula assa foetida oleo gum resin. J. Evid. Based Complementary Altern. Med. 2016 21 4 271 276 10.1177/2156587215605903 26427790
    [Google Scholar]
  23. Soudamini K.K. Unnikrishnan M.C. Sukumaran K. Kuttan R. Mutagenicity and anti-mutagenicity of selected spices. Indian J. Physiol. Pharmacol. 1995 39 4 347 353 8582746
    [Google Scholar]
  24. Lee C.L. Chiang L.C. Cheng L.H. Liaw C.C. Abd El-Razek M.H. Chang F.R. Wu Y.C. Influenza A. H1N1] antiviral and cytotoxic agents from Ferula assa-foetida. J. Nat. Prod. 2009 72 9 1568 1572 10.1021/np900158f 19691312
    [Google Scholar]
  25. Bagheri S.M. Abdian-Asl A. Moghadam M.T. Yadegari M. Mirjalili A. Zare-Mohazabieh F. Momeni H. Antitumor effect of Ferula assa foetida oleo gum resin against breast cancer induced by 4T1 cells in BALB/c mice. J. Ayurveda Integr. Med. 2017 8 3 152 158 10.1016/j.jaim.2017.02.013 28690055
    [Google Scholar]
  26. Bagheri S.M. Hejazian S.H. Bafghi A.F. Antileishmanial activity of Ferula assa-foetida oleo gum resin against Leishmania major: An in vitro study. J. Ayurveda Integr. Med. 2014 5 4 223 226 10.4103/0975‑9476.146567 25624696
    [Google Scholar]
  27. Hejazian S.H. Dashti-R M.H. Bagheri S.M. The relaxant effect of seed fs essential oil and oleo-gum-resin of Ferula assa-foetida on isolated rat’s ileum. Ann. Med. Health Sci. Res. 2014 4 2 238 241 10.4103/2141‑9248.129050 24761245
    [Google Scholar]
  28. Sayed-Ahmad B. Talou T. Saad Z. Hijazi A. Merah O. The Apiaceae: Ethnomedicinal family as source for industrial uses. Ind. Crops Prod. 2017 109 661 671 10.1016/j.indcrop.2017.09.027
    [Google Scholar]
  29. Iranshahi M. Kalategi F. Rezaee R. Shahverdi A. Ito C. Furukawa H. Tokuda H. Itoigawa M. Cancer chemopreventive activity of terpenoid coumarins from Ferula species. Planta Med. 2008 74 2 147 150 10.1055/s‑2008‑1034293 18240102
    [Google Scholar]
  30. Wang J. Zheng Q. Wang H. Shi L. Wang G. Zhao Y. Fan C. Si J. Sesquiterpenes and sesquiterpene derivatives from ferula: Their chemical structures, biosynthetic pathways, and biological properties. Antioxidants 2023 13 1 7 10.3390/antiox13010007 38275627
    [Google Scholar]
  31. Bagheri S.M. Esmailidehaj M. A comprehensive review of the pharmacological effects of genus Ferula on central nervous system disorders. Cent. Nerv. Syst. Agents Med. Chem. 2024 24 2 105 116 10.2174/0118715249256485231031043722
    [Google Scholar]
  32. Mohammadi R. Forouzanfar H. Rahimi H. Mohamadi-Zarch S.M. Jamhiri K. Bagheri S.M. Antiviral effect of ferula plants and their potential for treatment of covid-19: A comprehensive review. Curr. Pharm. Biotechnol. 2024 38967074
    [Google Scholar]
  33. Hasanzadeh D. Mahdavi M. Dehghan G. Charoudeh H.N. Farnesiferol C induces cell cycle arrest and apoptosis mediated by oxidative stress in MCF-7 cell line. Toxicol. Rep. 2017 4 420 426 10.1016/j.toxrep.2017.07.010 28959668
    [Google Scholar]
  34. Jung J.H. Kim M.J. Lee H. Lee J. Kim J. Lee H.J. Shin E.A. Kim Y.H. Kim B. Shim B.S. Kim S.H. Farnesiferol c induces apoptosis via regulation of L11 and c-Myc with combinational potential with anticancer drugs in non-small-cell lung cancers. Sci. Rep. 2016 6 1 26844 10.1038/srep26844 27231235
    [Google Scholar]
  35. Yekta R. Dehghan G. Rashtbari S. Ghadari R. Moosavi-Movahedi A.A. The inhibitory effect of farnesiferol C against catalase; Kinetics, interaction mechanism and molecular docking simulation. Int. J. Biol. Macromol. 2018 113 1258 1265 10.1016/j.ijbiomac.2018.03.053 29550420
    [Google Scholar]
  36. Kasaian J. Mohammadi A. Biological activities of farnesiferol C: A review. J. Asian Nat. Prod. Res. 2018 20 1 27 35 10.1080/10286020.2017.1379997 28948835
    [Google Scholar]
  37. Aslantürk Ö.S. Aşkin Çelik T. Anticancer effect of umbelliferone on MKN-45 and MIA PaCa-2 cell lines. Toxicol. In Vitro 2023 93 105694 10.1016/j.tiv.2023.105694 37704181
    [Google Scholar]
  38. Muthu R. Selvaraj N. Vaiyapuri M. Anti-inflammatory and proapoptotic effects of umbelliferone in colon carcinogenesis. Hum. Exp. Toxicol. 2016 35 10 1041 1054 10.1177/0960327115618245 26655637
    [Google Scholar]
  39. Vijayalakshmi A. Sindhu G. Dose responsive efficacy of umbelliferone on lipid peroxidation, anti-oxidant, and xenobiotic metabolism in DMBA-induced oral carcinogenesis. Biomed. Pharmacother. 2017 88 852 862 10.1016/j.biopha.2017.01.064 28171849
    [Google Scholar]
  40. Lin Z. Cheng X. Zheng H. Umbelliferon: A review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology 2023 31 4 1731 1750 10.1007/s10787‑023‑01256‑3 37308634
    [Google Scholar]
  41. Sim M.O. Lee H.I. Ham J.R. Seo K.I. Kim M.J. Lee M.K. Anti-inflammatory and antioxidant effects of umbelliferone in chronic alcohol-fed rats. Nutr. Res. Pract. 2015 9 4 364 369 10.4162/nrp.2015.9.4.364 26244074
    [Google Scholar]
  42. Sirizi M.A.G. Alizadeh Ghalenoei J. Allahtavakoli M. Forouzanfar H. Bagheri S.M. Anticancer potential of Ferula assa-foetida and its constituents, a powerful plant for cancer therapy. World J. Biol. Chem. 2023 14 2 28 39 10.4331/wjbc.v14.i2.28 37034135
    [Google Scholar]
  43. Ko K.P. Risk factors of gastric cancer and lifestyle modification for prevention. J. Gastric Cancer 2024 24 1 99 107 10.5230/jgc.2024.24.e10 38225769
    [Google Scholar]
  44. Shah D. Bentrem D. Environmental and genetic risk factors for gastric cancer. J. Surg. Oncol. 2022 125 7 1096 1103 10.1002/jso.26869 35481919
    [Google Scholar]
  45. Wong M.C.S. Huang J. Chan P.S.F. Choi P. Lao X.Q. Chan S.M. Teoh A. Liang P. Global incidence and mortality of gastric cancer, 1980-2018. JAMA Netw. Open 2021 4 7 e2118457 e2118457 10.1001/jamanetworkopen.2021.18457 34309666
    [Google Scholar]
  46. Pu K. Feng Y. Tang Q. Yang G. Xu C. Review of dietary patterns and gastric cancer risk: Epidemiology and biological evidence. Front. Oncol. 2024 14 1333623 10.3389/fonc.2024.1333623 38444674
    [Google Scholar]
  47. Davatgaran-Taghipour Y. Masoomzadeh S. Farzaei M.H. Bahramsoltani R. Karimi-Soureh Z. Rahimi R. Abdollahi M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. Int. J. Nanomedicine 2017 12 2689 2702 10.2147/IJN.S131973 28435252
    [Google Scholar]
  48. Aas Z. Babaei E. Feizi M.A.H. Dehghan G. Anti-proliferative and apoptotic effects of dendrosomal farnesiferol C on gastric cancer cells. Asian Pac. J. Cancer Prev. 2015 16 13 5325 5329 10.7314/APJCP.2015.16.13.5325 26225673
    [Google Scholar]
  49. Tonini V. Zanni M. Why is early detection of colon cancer still not possible in 2023? World J. Gastroenterol. 2024 30 3 211 224 10.3748/wjg.v30.i3.211 38314134
    [Google Scholar]
  50. Weledji E.P. The etiology and pathogenesis of colorectal cancer. Clin. Oncol. 2024 9 2046
    [Google Scholar]
  51. Meier J. Murimwa G. Nehrubabu M. Yopp A. DiMartino L. Singal A.G. Defining the role of social vulnerability in treatment and survival in localized colon cancer: A retrospective cohort study. Ann. Surg. 2024 ••• 10 1097 38545790
    [Google Scholar]
  52. Kumar A. Vaiphei K.K. Singh N. Datta Chigurupati S.P. Paliwal S.R. Paliwal R. Gulbake A. Nanomedicine for colon-targeted drug delivery: Strategies focusing on inflammatory bowel disease and colon cancer. Nanomedicin 2024 19 15 1347 1368 10.1080/17435889.2024.2350356 39105753
    [Google Scholar]
  53. Longley D.B. Harkin D.P. Johnston P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003 3 5 330 338 10.1038/nrc1074 12724731
    [Google Scholar]
  54. LaCourse K.D. Zepeda-Rivera M. Kempchinsky A.G. Baryiames A. Minot S.S. Johnston C.D. Bullman S. The cancer chemotherapeutic 5-fluorouracil is a potent Fusobacterium nucleatum inhibitor and its activity is modified by intratumoral microbiota. Cell Rep. 2022 41 7 111625 10.1016/j.celrep.2022.111625 36384132
    [Google Scholar]
  55. Muthu R. Thangavel P. Selvaraj N. Ramalingam R. Vaiyapuri M. Synergistic and individual effects of umbelliferone with 5-flurouracil on the status of lipid peroxidation and antioxidant defense against 1, 2-dimethylhydrazine induced rat colon carcinogenesis. 2013 3 1 74 82 10.1016/j.bionut.2012.10.011
    [Google Scholar]
  56. Homayouni Tabrizi M. Soltani M. Es-haghi A. Preparation and characterization of the farnesiferol C-loaded solid lipid nanoparticles decorated with folic acid-bound chitosan and evaluation of its in vitro anti-cancer and anti-angiogenic activities. J. Mol. Liq. 2023 382 121908 10.1016/j.molliq.2023.121908
    [Google Scholar]
  57. Yang X. Yang C. Zhang S. Geng H. Zhu A.X. Bernards R. Qin W. Fan J. Wang C. Gao Q. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell 2024 42 2 180 197 10.1016/j.ccell.2024.01.007 38350421
    [Google Scholar]
  58. Llovet J.M. Pinyol R. Yarchoan M. Singal A.G. Marron T.U. Schwartz M. Pikarsky E. Kudo M. Finn R.S. Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2024 21 4 294 311 10.1038/s41571‑024‑00868‑0 38424197
    [Google Scholar]
  59. Giri S. Singh A. Epidemiology of hepatocellular carcinoma in India – An updated review for 2024. J. Clin. Exp. Hepatol. 2024 14 6 101447 10.1016/j.jceh.2024.101447 38957612
    [Google Scholar]
  60. Yang H. Liu Y. Zhang N. Tao F. Yin G. Therapeutic advances in hepatocellular carcinoma: An update from the 2024 ASCO annual meeting. Front. Oncol. 2024 14 1453412 10.3389/fonc.2024.1453412 39512765
    [Google Scholar]
  61. Yu S.M. Hu D.H. Zhang J.J. Umbelliferone exhibits anticancer activity via the induction of apoptosis and cell cycle arrest in HepG2 hepatocellular carcinoma cells. Mol. Med. Rep. 2015 12 3 3869 3873 10.3892/mmr.2015.3797 25997538
    [Google Scholar]
  62. Kumar V. Bhatt P. Rahman M. Kaithwas G. Choudhry H. Al-Abbasi F. Anwar F. Verma A. Fabrication, optimization, and characterization of umbelliferone β-D-galactopyranoside-loaded PLGA nanoparticles in treatment of hepatocellular carcinoma: in vitro and in vivo studies. Int. J. Nanomedicine 2017 12 6747 6758 10.2147/IJN.S136629 28932118
    [Google Scholar]
  63. Kumar V. Bhatt P.C. Rahman M. Al-Abbasi F.A. Anwar F. Verma A. Umbelliferon-α-d-glucopyranosyl-(2I→ 1II)-α-Dglucopyranoside ameliorates Diethylnitrosamine induced precancerous lesion development in liver via regulation of inflammation, hyperproliferation and antioxidant at pre-clinical stage. Biomed. Pharmacother. 2017 94 834 842 10.1016/j.biopha.2017.07.047 28802237
    [Google Scholar]
  64. Ramalingam R. Vaiyapuri M. Effects of umbelliferone on lipid peroxidation and antioxidant status in diethylnitrosamine-induced hepatocellular carcinoma. J. Acute Med. 2013 3 3 73 82 10.1016/j.jacme.2013.05.001
    [Google Scholar]
  65. Sowa A. Höing A. Dobrindt U. Knauer S.K. Galstyan A. Voskuhl J. Umbelliferone decorated water‐soluble zinc(ii) phthalocyanines In Vitro phototoxic antimicrobial anti‐cancer agents. Chemistry 2021 27 59 14672 14680 10.1002/chem.202102255 34324228
    [Google Scholar]
  66. Alafnan A. Alamri A. Alanazi J. Hussain T. Farnesiferol C exerts Antiproliferative effects on hepatocellular carcinoma HepG2 cells by instigating ROS-dependent apoptotic pathway. Pharmaceuticals 2022 15 9 1070 10.3390/ph15091070 36145291
    [Google Scholar]
  67. Wang J Wu SG Breast cancer: An overview of current therapeutic strategies, challenge, and perspectives Breast Cancer 2023 15 721 730 Oct 20 10.2147/BCTT.S43252 37881514 PMC10596062
    [Google Scholar]
  68. Marino A. Pavone G. Martorana F. Fisicaro V. Motta L. Spampinato S. Celesia B.M. Cacopardo B. Vigneri P. Nunnari G. Navigating the Nexus: HIV and breast cancer—a critical review. Int. J. Mol. Sci. 2024 25 6 3222 10.3390/ijms25063222 38542195
    [Google Scholar]
  69. Gholami A. Abdouss H. Pourmadadi M. Abdouss M. Rahdar A. Pandey S. A comprehensive perspective of trastuzumab-based delivery systems for breast cancer treatment. J. Drug Deliv. Sci. Technol. 2024 95 105592 10.1016/j.jddst.2024.105592
    [Google Scholar]
  70. Rashmi R. Prakash N. Narayana Swamy H.D. Narayana Swamy M. Rathnamma D. Suguna Rao A. Evaluation of anticancer efficacy of umbelliferone with or without piperine. J. Entomol. Zool. Stud. 2020 8 225 229
    [Google Scholar]
  71. Rashmi R. Prakash N. Swamy H.D.N. Evaluation of oxidative stress induced cytotoxicity of umbelliferone with or without piperine on triple-negative breast cancer. 2019
    [Google Scholar]
  72. Meena V. Mathur R. Gull A. Jain N. Kumar D. Rajput S.K. Madan S. Development and assessment of mitoxantrone and 4-methyl umbelliferone nanoemulsions for chemotherapeutic potential on MCF-7 cell line. J. Res. Pharm. 2022 26 3 469 482
    [Google Scholar]
  73. Ho C.Y. Wei C.Y. Zhao R.W. Ye Y.L. Huang H.C. Lee J.C. Cheng F.J. Huang W.C. Artemisia argyi extracts overcome lapatinib resistance via enhancing TMPRSS2 activation in HER2 ‐positive breast cancer. Environ. Toxicol. 2024 39 6 3389 3399 10.1002/tox.24202 38445457
    [Google Scholar]
  74. Albratty M. Makeen H.A. An umbelliferone-induced caspase-mediated apoptosis in mda-mb-231 breast cancer cells. Indian J. Pharm. Educ. Res. 2024 58 3 890 898 10.5530/ijper.58.3.97
    [Google Scholar]
  75. Tamtürk E. Yalçın S. Ercan F. Tuncbilek A.S. In vivo, in vitro, and in silico studies of umbelliferone and irinotecan on mda-mb-231 breast cancer cell line and drosophila melanogaster larvae. Anticancer. Agents Med. Chem. 2024 39473207
    [Google Scholar]
  76. Emeihe E.V. Nwankwo E.I. Ajegbile M.D. Olaboye J.A. Maha C.C. Revolutionizing drug delivery systems: Nanotechnology- based approaches for targeted therapy. Int. J. Life. Sci. Res. Arch. 2024 7 1 040 058 10.53771/ijlsra.2024.7.1.0060
    [Google Scholar]
  77. Kasaian J. Mosaffa F. Behravan J. Masullo M. Piacente S. Ghandadi M. Iranshahi M. Reversal of P-glycoprotein-mediated multidrug resistance in MCF-7/Adr cancer cells by sesquiterpene coumarins. Fitoterapia 2015 103 149 154 10.1016/j.fitote.2015.03.025 25843566
    [Google Scholar]
  78. Lahiri A. Maji A. Potdar P.D. Singh N. Parikh P. Bisht B. Mukherjee A. Paul M.K. Lung cancer immunotherapy: Progress, pitfalls, and promises. Mol. Cancer 2023 22 1 40 10.1186/s12943‑023‑01740‑y 36810079
    [Google Scholar]
  79. Alduais Y. Zhang H. Fan F. Chen J. Chen B. Non-small cell lung cancer (NSCLC): A review of risk factors, diagnosis, and treatment. Medicine 2023 102 8 e32899 10.1097/MD.0000000000032899 36827002
    [Google Scholar]
  80. Li Y. Yan B. He S. Advances and challenges in the treatment of lung cancer. Biomed. Pharmacother. 2023 169 115891 10.1016/j.biopha.2023.115891 37979378
    [Google Scholar]
  81. Salam S. Velli S.K. Krishnan P. Selvanathan I. Murugan M. Subramaniam N. Anti-cancer efficacy of umbelliferone against benzo [a] pyrene-induced lung carcinogenesis in Swiss albino mice. MJB 2018 5 79 89
    [Google Scholar]
  82. Lee J.H. Choi S. Lee Y. Lee H.J. Kim K.H. Ahn K.S. Bae H. Lee H.J. Lee E.O. Ahn K.S. Ryu S.Y. Lü J. Kim S.H. Herbal compound farnesiferol C exerts antiangiogenic and antitumor activity and targets multiple aspects of VEGFR1 (Flt1) or VEGFR2 (Flk1) signaling cascades. Mol. Cancer Ther. 2010 9 2 389 399 10.1158/1535‑7163.MCT‑09‑0775 20103598
    [Google Scholar]
  83. Mosaddad S.A. Namanloo R.A. Aghili S.S. Maskani P. Alam M. Abbasi K. Nouri F. Tahmasebi E. Yazdanian M. Tebyaniyan H. Photodynamic therapy in oral cancer: A review of clinical studies. Med. Oncol. 2023 40 3 91 10.1007/s12032‑023‑01949‑3 36749489
    [Google Scholar]
  84. Kijowska J. Grzegorczyk J. Gliwa K. Jędras A. Sitarz M. Epidemiology, diagnostics, and therapy of oral cancer—update review. Cancer 2024 16 18 3156 10.3390/cancers16183156 39335128
    [Google Scholar]
  85. Vijayalakshmi A. Sindhu G. Data on efficacy of umbelliferone on glycoconjugates and immunological marker in 7,12-dimethylbenz(a)anthracene induced oral carcinogenesis. Data Brief 2017 15 216 221 10.1016/j.dib.2017.09.035 29022000
    [Google Scholar]
  86. Vijayalakshmi A. Sindhu G. Umbelliferone arrest cell cycle at G0/G1 phase and induces apoptosis in human oral carcinoma (KB) cells possibly via oxidative DNA damage. Biomed. Pharmacother. 2017 92 661 671 10.1016/j.biopha.2017.05.128 28586740
    [Google Scholar]
  87. Peretsman S.J. Emberton M. Fleshner N. Shoji S. Bahler C.D. Miller L.E. High-intensity focused ultrasound with visually directed power adjustment for focal treatment of localized prostate cancer: Systematic review and meta-analysis. World J. Urol. 2024 42 1 175 10.1007/s00345‑024‑04840‑6 38507093
    [Google Scholar]
  88. Kulasegaran T. Oliveira N. Metastatic castration-resistant prostate cancer: Advances in treatment and symptom management. Curr. Treat. Options Oncol. 2024 25 7 914 931 10.1007/s11864‑024‑01215‑2 38913213
    [Google Scholar]
  89. Shen J.Q. Zhang Z.X. Shen C.F. Liao J.Z. Anticarcinogenic effect of Umbelliferone in human prostate carcinoma: An in vitro study. J. Balkan Union Oncol 2017 22 1 94 101 28365941
    [Google Scholar]
  90. Kandil S. Westwell A.D. McGuigan C. 7-Substituted umbelliferone derivatives as androgen receptor antagonists for the potential treatment of prostate and breast cancer. Bioorg. Med. Chem. Lett. 2016 26 8 2000 2004 10.1016/j.bmcl.2016.02.088 26965862
    [Google Scholar]
  91. Yousuf S. Arjmand F. Siddique H.R. Ali M.S. Al-Lohedan H.A. Tabassum S. Biophysical binding profile with ct-DNA and cytotoxic studies of a modulated nanoconjugate of umbelliferone cobalt oxide loaded on graphene oxide (GO) as drug carrier. J. Biomol. Struct. Dyn. 2022 40 10 4558 4569 10.1080/07391102.2020.1860821 33331234
    [Google Scholar]
  92. Kim H.J. Jin B.R. An H.J. Umbelliferone ameliorates benign prostatic hyperplasia by inhibiting cell proliferation and G1/S phase cell cycle progression through regulation of STAT3/E2F1 axis. Int. J. Mol. Sci. 2021 22 16 9019 10.3390/ijms22169019 34445725
    [Google Scholar]
  93. Zheng B.S. Wang S.D. Zhang J.Y. Ge C.G. Incidence, prognostic factors, and survival of patients with renal Cancer: A population-based study. J. Invest. Surg. 2023 36 1 2197506 10.1080/08941939.2023.2197506 37031962
    [Google Scholar]
  94. Wang X. Huang S. Xin X. Ren Y. Weng G. Wang P. The antitumor activity of umbelliferone in human renal cell carcinoma via regulation of the p110γ catalytic subunit of PI3Kγ. Acta Pharm. 2019 69 1 111 119 10.2478/acph‑2019‑0004 31259714
    [Google Scholar]
  95. Anwar F. Al-Abbasi F.A. Bhatt P.C. Ahmad A. Sethi N. Kumar V. Umbelliferone β- d -galactopyranoside inhibits chemically induced renal carcinogenesis via alteration of oxidative stress, hyperproliferation and inflammation: Possible role of NF-κB. Toxicol. Res. 2015 4 5 1308 1323 10.1039/C5TX00146C
    [Google Scholar]
  96. Saika K. Matsuda T. Projection of the number of new laryngeal cancer cases in the world. Jpn. J. Clin. Oncol. 2024 54 9 1057 1058 10.1093/jjco/hyae121 39193643
    [Google Scholar]
  97. Huang J. Chan S.C. Ko S. Lok V. Zhang L. Lin X. Lucero-Prisno D.E. Xu W. Zheng Z.J. Elcarte E. Withers M. Wong M.C. Updated disease distributions, risk factors, and trends of laryngeal cancer: A global analysis of cancer registries. Int. J. Surg. 2024 110 2 810 819 38000050
    [Google Scholar]
  98. Kielbus M. Skalicka-Wozniak K. Grabarska A. Jeleniewicz W. Dmoszynska-Graniczka M. Marston A. Polberg K. Gawda P. Klatka J. Stepulak A. 7-substituted coumarins inhibit proliferation and migration of laryngeal cancer cells in vitro. Anticancer Res. 2013 33 10 4347 4356 24123002
    [Google Scholar]
  99. Helgadottir H. Mikiver R. Schultz K. Nielsen K. Portelli F. Lapins J. Melanoma incidence and mortality trends in Sweden. JAMA Dermatol. 2024 10.1001/jamadermatol.2024.3514 39245436
    [Google Scholar]
  100. Puech C. Chatard M. Felder-Flesch D. Prevot N. Perek N. Umbelliferone decreases intracellular pH and sensitizes melanoma cell line A375 to dacarbazin. Comparison with acetazolamide. Curr. Mol. Pharmacol. 2018 11 2 133 139 10.2174/1874467208666161128152518 27894244
    [Google Scholar]
  101. Calimeri T. Anzalone N. Cangi M.G. Fiore P. Gagliardi F. Miserocchi E. Ponzoni M. Ferreri A.J.M. Molecular diagnosis of primary CNS lymphoma in 2024 using MYD88Leu265Pro and IL-10. Lancet Haematol. 2024 11 7 e540 e549 10.1016/S2352‑3026(24)00104‑2 38937027
    [Google Scholar]
  102. Abeesh P Guruvayoorappan C. Umbelliferone loaded PEGylated liposomes: Preparation, characterization and its mitigatory effects on Dalton’s ascites lymphoma development. 3 Biotech 2023 13 6 216
    [Google Scholar]
  103. Ma W. Shi H. Dong X. Shi Y. Zhang L. Jiang B. Umbelliferone inhibits proliferation and metastasis via modulating cadherin/β-catenin complex-aided cell-cell adhesion in glioblastoma cells. 2025 Available from: https://pubmed.ncbi.nlm.nih.gov/39798130/
  104. Karunarathna I. De Alvis K. Gunasena P. Jayawardana A. Leukemia: Classification, risk factors, and diagnostic challenges. 2024 Available from: https://www. researchgate. net/citation
  105. Jung J.H. Park J.E. Sim D.Y. Im E Park W.Y Lee D Farnesiferol C induces apoptosis in chronic myelogenous leukemia cells as an imatinib sensitizer via caspase activation and HDAC [histone deacetylase] inactivation. Int. J. Mol. Sci. 2019 20 22 5535 Nov 6
    [Google Scholar]
  106. Caruso G Wagar MK Hsu HC Hoegl J Valzacchi GMR A Cervical cancer: A new era. Int. J. Gynecol. Cancer 2024 34 12 1946 1970 Dec 2 10.1136/ijgc‑2024‑005579 39117381
    [Google Scholar]
  107. Webb P.M. Jordan S.J. Global epidemiology of epithelial ovarian cancer. Nat. Rev. Clin. Oncol. 2024 21 5 389 400 10.1038/s41571‑024‑00881‑3 38548868
    [Google Scholar]
  108. Aldaghi L. Rad A. Arab A. Kasaian J. Iranshahi M. Sadr A. Soltani F. In silico and in vitro evaluation of cytotoxic activities of farnesiferol c and microlobin on MCF-7, HeLa and KYSE cell lines. Drug Res. 2016 66 10 532 538 10.1055/s‑0042‑111200 27463028
    [Google Scholar]
  109. Kasaian J. Mosaffa F. Behravan J. Masullo M. Piacente S. Iranshahi M. Modulation of multidrug resistance protein 2 efflux in the cisplatin resistance human ovarian carcinoma cells A2780/RCIS by sesquiterpene coumarins. Phytother. Res. 2016 30 1 84 89 10.1002/ptr.5504 26503061
    [Google Scholar]
  110. National center for biotechnology information. 2025 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Farnesiferol-C
  111. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  112. Tanzadehpanah H. Mahaki H. Samadi P. Karimi J. Moghadam N.H. Salehzadeh S. Dastan D. Saidijam M. Anticancer activity, calf thymus DNA and human serum albumin binding properties of Farnesiferol C from Ferula pseudalliacea. J. Biomol. Struct. Dyn. 2019 37 11 2789 2800 10.1080/07391102.2018.1497543 30052136
    [Google Scholar]
  113. Chu L.L. Pandey R.P. Lim H.N. Jung H.J. Thuan N.H. Kim T.S. Sohng J.K. Synthesis of umbelliferone derivatives in Escherichia coli and their biological activities. J. Biol. Eng. 2017 11 1 15 10.1186/s13036‑017‑0056‑5 28396694
    [Google Scholar]
  114. Cruz L.F. Figueiredo G.F. Pedro L.P. Amorin Y.M. Andrade J.T. Passos T.F. Rodrigues F.F. Souza I.L.A. Gonçalves T.P.R. dos Santos Lima L.A.R. Ferreira J.M.S. Araújo M.G.F. Umbelliferone (7-hydroxycoumarin): A non-toxic antidiarrheal and antiulcerogenic coumarin. Biomed. Pharmacother. 2020 129 110432 10.1016/j.biopha.2020.110432 32768935
    [Google Scholar]
  115. Hassanein E.H.M. Ali F.E.M. Kozman M.R. Abd El-Ghafar O.A.M. Umbelliferone attenuates gentamicin-induced renal toxicity by suppression of TLR-4/NF-κB-p65/NLRP-3 and JAK1/STAT-3 signaling pathways. Environ. Sci. Pollut. Res. Int. 2021 28 9 11558 11571 10.1007/s11356‑020‑11416‑5 33128149
    [Google Scholar]
  116. Mohamed M.R. Emam M.A. Hassan N.S. Mogadem A.I. Umbelliferone and daphnetin ameliorate carbon tetrachloride-induced hepatotoxicity in rats via nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1 expression. Environ. Toxicol. Pharmacol. 2014 38 2 531 541 10.1016/j.etap.2014.08.004 25170823
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206380074250829111459
Loading
/content/journals/acamc/10.2174/0118715206380074250829111459
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: umbelliferone ; farnesiferol C ; anticancer mechanisms ; coumarin ; Cancer ; cytotoxic potency ; Ferula
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test