Skip to content
2000
image of Nanosomal-Mediated Lipid Suspension Delivery of Docetaxel as a Promising Landscape to Enhance the Therapeutic Potential in Triple-Negative Breast Cancer

Abstract

The challenging subtype of breast cancer known as Triple-Negative Breast Cancer (TNBC) is characterized by the absence of HER2 expression, progesterone receptors, and estrogen receptors. TNBC is linked to a harsh treatment trajectory, elevated rates of recurrence, and restricted therapeutic alternatives. The mainstay of treatment for TNBC has historically been conventional chemotherapy, especially taxanes like Docetaxel. However, the effectiveness of these drugs is frequently compromised by systemic toxicity and resistance mechanisms. The development of Nanosomal Docetaxel Lipid Suspension (NDLS) offers a promising alternative, designed to enhance Docetaxel's therapeutic index by improving solubility, reducing side effects, and optimizing tumor-targeted drug delivery. NDLS has potential as a delivery system for additional chemotherapy drugs or combination treatments. This study addresses the cellular and molecular causes of TNBC, emphasizes the drawbacks of traditional treatments, and offers a thorough examination of NDLS in preclinical and clinical settings. This review provides a thorough analysis of NDLS in TNBC, laying the groundwork for further studies and therapeutic applications.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206366378250519105734
2025-09-18
2025-11-09
Loading full text...

Full text loading...

/deliver/fulltext/acamc/10.2174/0118715206366378250519105734/BMS-ACAMC-2024-457.html?itemId=/content/journals/acamc/10.2174/0118715206366378250519105734&mimeType=html&fmt=ahah

References

  1. Ghoncheh M. Pournamdar Z. Salehiniya H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J. Cancer Prev, 2016 17 sup3 43 46 10.7314/APJCP.2016.17.S3.43 27165206
    [Google Scholar]
  2. Foulkes W.D. Smith I.E. Reis-Filho J.S. Triple-negative breast cancer. N. Engl. J. Med. 2010 363 20 1938 1948 10.1056/NEJMra1001389 21067385
    [Google Scholar]
  3. Hammond M.E.H. Hayes D.F. Dowsett M. Allred D.C. Hagerty K.L. Badve S. Fitzgibbons P.L. Francis G. Goldstein N.S. Hayes M. Hicks D.G. Lester S. Love R. Mangu P.B. McShane L. Miller K. Osborne C.K. Paik S. Perlmutter J. Rhodes A. Sasano H. Schwartz J.N. Sweep F.C.G. Taube S. Torlakovic E.E. Valenstein P. Viale G. Visscher D. Wheeler T. Williams R.B. Wittliff J.L. Wolff A.C. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch. Pathol. Lab. Med. 2010 134 7 e48 e72 10.5858/134.7.e48 20586616
    [Google Scholar]
  4. Hammond M.E.H. Hayes D.F. Dowsett M. Allred D.C. Hagerty K.L. Badve S. Fitzgibbons P.L. Francis G. Goldstein N.S. Hayes M. Hicks D.G. Lester S. Love R. Mangu P.B. McShane L. Miller K. Osborne C.K. Paik S. Perlmutter J. Rhodes A. Sasano H. Schwartz J.N. Sweep F.C.G. Taube S. Torlakovic E.E. Valenstein P. Viale G. Visscher D. Wheeler T. Williams R.B. Wittliff J.L. Wolff A.C. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 2010 28 16 2784 2795 10.1200/JCO.2009.25.6529 20404251
    [Google Scholar]
  5. Wolff A.C. Hammond M.E.H. Hicks D.G. Dowsett M. McShane L.M. Allison K.H. Allred D.C. Bartlett J.M.S. Bilous M. Fitzgibbons P. Hanna W. Jenkins R.B. Mangu P.B. Paik S. Perez E.A. Press M.F. Spears P.A. Vance G.H. Viale G. Hayes D.F. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 2013 31 31 3997 4013 10.1200/JCO.2013.50.9984 24101045
    [Google Scholar]
  6. Deepak K.G.K. Vempati R. Nagaraju G.P. Dasari V.R. S, N.; Rao, D.N.; Malla, R.R. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol. Res. 2020 153 104683 10.1016/j.phrs.2020.104683 32050092
    [Google Scholar]
  7. Demeule M. Charfi C. Currie J.C. Larocque A. Zgheib A. Kozelko S. Béliveau R. Marsolais C. Annabi B. TH1902, a new docetaxel‐peptide conjugate for the treatment of sortilin‐positive triple‐negative breast cancer. Cancer Sci. 2021 112 10 4317 4334 10.1111/cas.15086 34314556
    [Google Scholar]
  8. Crown J. O’Leary M. Ooi W.S. Docetaxel and paclitaxel in the treatment of breast cancer: A review of clinical experience. Oncologist 2004 9 S2 24 32 10.1634/theoncologist.9‑suppl_2‑24 15161988
    [Google Scholar]
  9. Montero A. Fossella F. Hortobagyi G. Valero V. Docetaxel for treatment of solid tumours: A systematic review of clinical data. Lancet Oncol. 2005 6 4 229 239 10.1016/S1470‑2045(05)70094‑2 15811618
    [Google Scholar]
  10. Barbuti A. Chen Z.S. Paclitaxel through the ages of anticancer therapy: Exploring its role in chemoresistance and radiation therapy. Cancers 2015 7 4 2360 2371 10.3390/cancers7040897 26633515
    [Google Scholar]
  11. Lyseng-Williamson K.A. Fenton C. Docetaxel. Drugs 2005 65 17 2513 2531 10.2165/00003495‑200565170‑00007 16296875
    [Google Scholar]
  12. Beer T.M. El-Geneidi M. Eilers K.M. Docetaxel (Taxotere®) in the treatment of prostate cancer. Expert Rev. Anticancer Ther. 2003 3 3 261 268 10.1586/14737140.3.3.261 12820771
    [Google Scholar]
  13. Valero V. Holmes F.A. Walters R.S. Theriault R.L. Esparza L. Fraschini G. Fonseca G.A. Bellet R.E. Buzdar A.U. Hortobagyi G.N. Phase I.I. Phase II trial of docetaxel: A new, highly effective antineoplastic agent in the management of patients with anthracycline-resistant metastatic breast cancer. J. Clin. Oncol. 1995 13 12 2886 2894 10.1200/JCO.1995.13.12.2886 8523051
    [Google Scholar]
  14. Ten Tije A.J. Verweij J. Loos W.J. Sparreboom A. Pharmacological effects of formulation vehicles: Implications for cancer chemotherapy. Clin. Pharmacokinet. 2003 42 7 665 685 10.2165/00003088‑200342070‑00005 12844327
    [Google Scholar]
  15. Ahmad A. Sheikh S. Taran R. Srivastav S.P. Prasad K. Rajappa S.J. Kumar V. Gopichand M. Paithankar M. Sharma M. Rane R.C. Ahmad I. Therapeutic efficacy of a novel nanosomal docetaxel lipid suspension compared with taxotere in locally advanced or metastatic breast cancer patients. Clin. Breast Cancer 2014 14 3 177 181 10.1016/j.clbc.2013.09.011 24287370
    [Google Scholar]
  16. Saifuddin Sheikh A.A. Development of aqueous based formulation of docetaxel: safety and pharmacokinetics in patients with advanced solid tumors. J. Nanomed. Nanotechnol. 2015 6 3 10.4172/2157‑7439.1000295
    [Google Scholar]
  17. Ahmad A. Sheikh S. Taran R. Srivastav S.P. Prasad K. Rajappa S.J. Kumar V.M.G. Paithankar M. Sharma M. Rane R.C. Ahmad I. Effect of nanosomal docetaxel lipid suspension (NDLS) on response rate compared to docetaxel: A randomized phase II study in patients with locally advanced or metastatic breast cancer. J. Clin. Oncol. 2013 31 15 Suppl. 577 577 10.1200/jco.2013.31.15_suppl.577
    [Google Scholar]
  18. Breast cancer facts & stats. 2025 Available from: https://www.nationalbreastcancer.org/breast-cancer-facts/#:~:text=In%202024%2C%20an%20estimated%20310%2C720,diagnosed%20with%20invasive%20breast%20cancer
  19. Rodgers K.M. Udesky J.O. Rudel R.A. Brody J.G. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. Environ. Res. 2018 160 152 182 10.1016/j.envres.2017.08.045 28987728
    [Google Scholar]
  20. Piccart-Gebhart M.J. Procter M. Leyland-Jones B. Goldhirsch A. Untch M. Smith I. Gianni L. Baselga J. Bell R. Jackisch C. Cameron D. Dowsett M. Barrios C.H. Steger G. Huang C.S. Andersson M. Inbar M. Lichinitser M. Láng I. Nitz U. Iwata H. Thomssen C. Lohrisch C. Suter T.M. Rüschoff J. Sütő T. Greatorex V. Ward C. Straehle C. McFadden E. Dolci M.S. Gelber R.D. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 2005 353 16 1659 1672 10.1056/NEJMoa052306 16236737
    [Google Scholar]
  21. Loman N. Johannsson O. Bendahl P.O. Borg A. Fernö M. Olsson H. Steroid receptors in hereditary breast carcinomas associated with BRCA1 or BRCA2 mutations or unknown susceptibility genes. Cancer 1998 83 2 310 319 10.1002/(SICI)1097‑0142(19980715)83:2<310:AID‑CNCR15>3.0.CO;2‑W 9669814
    [Google Scholar]
  22. Ruscito I. Gasparri M.L. De Marco M.P. Costanzi F. Besharat A.R. Papadia A. Kuehn T. Gentilini O.D. Bellati F. Caserta D. The clinical and pathological profile of BRCA1 gene methylated breast cancer women: A meta-analysis. Cancers 2021 13 6 1391 10.3390/cancers13061391 33808555
    [Google Scholar]
  23. Sheikh A. Hussain S.A. Ghori Q. Naeem N. Fazil A. Giri S. Sathian B. Mainali P. Al Tamimi D.M. The spectrum of genetic mutations in breast cancer. Asian Pac. J. Cancer Prev. 2015 16 6 2177 2185 10.7314/apjcp.2015.16.6.2177 25824734
    [Google Scholar]
  24. Dorling L. Carvalho S. Allen J. González-Neira A. Luccarini C. Wahlström C. Pooley K.A. Parsons M.T. Fortuno C. Wang Q. Bolla M.K. Dennis J. Keeman R. Alonso M.R. Álvarez N. Herraez B. Fernandez V. Núñez-Torres R. Osorio A. Valcich J. Li M. Törngren T. Harrington P.A. Baynes C. Conroy D.M. Decker B. Fachal L. Mavaddat N. Ahearn T. Aittomäki K. Antonenkova N.N. Arnold N. Arveux P. Ausems M.G.E.M. Auvinen P. Becher H. Beckmann M.W. Behrens S. Bermisheva M. Białkowska K. Blomqvist C. Bogdanova N.V. Bogdanova-Markov N. Bojesen S.E. Bonanni B. Børresen-Dale A.L. Brauch H. Bremer M. Briceno I. Brüning T. Burwinkel B. Cameron D.A. Camp N.J. Campbell A. Carracedo A. Castelao J.E. Cessna M.H. Chanock S.J. Christiansen H. Collée J.M. Cordina-Duverger E. Cornelissen S. Czene K. Dörk T. Ekici A.B. Engel C. Eriksson M. Fasching P.A. Figueroa J. Flyger H. Försti A. Gabrielson M. Gago-Dominguez M. Georgoulias V. Gil F. Giles G.G. Glendon G. Garcia E.B.G. Alnæs G.I.G. Guénel P. Hadjisavvas A. Haeberle L. Hahnen E. Hall P. Hamann U. Harkness E.F. Hartikainen J.M. Hartman M. He W. Heemskerk-Gerritsen B.A.M. Hillemanns P. Hogervorst F.B.L. Hollestelle A. Ho W.K. Hooning M.J. Howell A. Humphreys K. Idris F. Jakubowska A. Jung A. Kapoor P.M. Kerin M.J. Khusnutdinova E. Kim S.W. Ko Y.D. Kosma V.M. Kristensen V.N. Kyriacou K. Lakeman I.M.M. Lee J.W. Lee M.H. Li J. Lindblom A. Lo W.Y. Loizidou M.A. Lophatananon A. Lubiński J. MacInnis R.J. Madsen M.J. Mannermaa A. Manoochehri M. Manoukian S. Margolin S. Martinez M.E. Maurer T. Mavroudis D. McLean C. Meindl A. Mensenkamp A.R. Michailidou K. Miller N. Mohd Taib N.A. Muir K. Mulligan A.M. Nevanlinna H. Newman W.G. Nordestgaard B.G. Ng P.S. Oosterwijk J.C. Park S.K. Park-Simon T.W. Perez J.I.A. Peterlongo P. Porteous D.J. Prajzendanc K. Prokofyeva D. Radice P. Rashid M.U. Rhenius V. Rookus M.A. Rüdiger T. Saloustros E. Sawyer E.J. Schmutzler R.K. Schneeweiss A. Schürmann P. Shah M. Sohn C. Southey M.C. Surowy H. Suvanto M. Thanasitthichai S. Tomlinson I. Torres D. Truong T. Tzardi M. Valova Y. van Asperen C.J. Van Dam R.M. van den Ouweland A.M.W. van der Kolk L.E. van Veen E.M. Wendt C. Williams J.A. Yang X.R. Yoon S.Y. Zamora M.P. Evans D.G. de la Hoya M. Simard J. Antoniou A.C. Borg Å. Andrulis I.L. Chang-Claude J. García-Closas M. Chenevix-Trench G. Milne R.L. Pharoah P.D.P. Schmidt M.K. Spurdle A.B. Vreeswijk M.P.G. Benitez J. Dunning A.M. Kvist A. Teo S.H. Devilee P. Easton D.F. Breast cancer risk genes — Association analysis in more than 113,000 women. N. Engl. J. Med. 2021 384 5 428 439 10.1056/NEJMoa1913948 33471991
    [Google Scholar]
  25. Hu C. Hart S.N. Gnanaolivu R. Huang H. Lee K.Y. Na J. Gao C. Lilyquist J. Yadav S. Boddicker N.J. Samara R. Klebba J. Ambrosone C.B. Anton-Culver H. Auer P. Bandera E.V. Bernstein L. Bertrand K.A. Burnside E.S. Carter B.D. Eliassen H. Gapstur S.M. Gaudet M. Haiman C. Hodge J.M. Hunter D.J. Jacobs E.J. John E.M. Kooperberg C. Kurian A.W. Le Marchand L. Lindstroem S. Lindstrom T. Ma H. Neuhausen S. Newcomb P.A. O’Brien K.M. Olson J.E. Ong I.M. Pal T. Palmer J.R. Patel A.V. Reid S. Rosenberg L. Sandler D.P. Scott C. Tamimi R. Taylor J.A. Trentham-Dietz A. Vachon C.M. Weinberg C. Yao S. Ziogas A. Weitzel J.N. Goldgar D.E. Domchek S.M. Nathanson K.L. Kraft P. Polley E.C. Couch F.J. A population-based study of genes previously implicated in breast cancer. N. Engl. J. Med. 2021 384 5 440 451 10.1056/NEJMoa2005936 33471974
    [Google Scholar]
  26. El Tannouri R. Albuisson E. Jonveaux P. Luporsi E. Is there a genetic anticipation in breast and/or ovarian cancer families with the germline c.3481_3491del11 mutation? Fam. Cancer 2018 17 1 5 14 10.1007/s10689‑017‑9999‑4 28493033
    [Google Scholar]
  27. Roulois D. Loo Yau H. Singhania R. Wang Y. Danesh A. Shen S.Y. Han H. Liang G. Jones P.A. Pugh T.J. O’Brien C. De Carvalho D.D. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 2015 162 5 961 973 10.1016/j.cell.2015.07.056 26317465
    [Google Scholar]
  28. Deblois G. Tonekaboni S.A.M. Grillo G. Martinez C. Kao Y.I. Tai F. Ettayebi I. Fortier A.M. Savage P. Fedor A.N. Liu X. Guilhamon P. Lima-Fernandes E. Murison A. Kuasne H. Ba-alawi W. Cescon D.W. Arrowsmith C.H. De Carvalho D.D. Haibe-Kains B. Locasale J.W. Park M. Lupien M. Epigenetic switch–induced viral mimicry evasion in chemotherapy-resistant breast cancer. Cancer Discov. 2020 10 9 1312 1329 10.1158/2159‑8290.CD‑19‑1493 32546577
    [Google Scholar]
  29. Holliday R. Epigenetics: An overview. Dev. Genet. 1994 15 6 453 457 10.1002/dvg.1020150602 7834903
    [Google Scholar]
  30. Berdasco M. Esteller M. Clinical epigenetics: Seizing opportunities for translation. Nat. Rev. Genet. 2019 20 2 109 127 10.1038/s41576‑018‑0074‑2 30479381
    [Google Scholar]
  31. Phase I.I. Phase II anti-PD1 epigenetic therapy study in NSCLC. (NA_00084192); NCT01928576. 2024 Available from: https://clinicaltrials.gov/study/NCT01928576
    [Google Scholar]
  32. Atezolizumab + guadecitabine in patients with checkpoint inhibitor refractory or resistant urothelial carcinoma. 2021 Available from: https://clinicaltrials.gov/study/NCT03179943
  33. A trial of epigenetic priming in patients with newly diagnosed acute myeloid leukemia. 2025 Available from: https://clinicaltrials.gov/study/NCT03164057?tab=table#recruitment-information
  34. Pembrolizumab and tamoxifen with or without vorinostat for the treatment of estrogen receptor positive breast cancer. 2023 Available from: https://clinicaltrials.gov/study/NCT04190056
  35. Study of the effect of the addition of SNDX-275 (Entinostat) to continued aromatase inhibitor (AI) therapy in postmenopausal women with ER+ breast cancer whose disease is progressing. 2022 Available from: https://clinicaltrials.gov/study/NCT00828854
  36. Study to evaluate exemestane with and without entinostat (SNDX- 275) in treatment of postmenopausal women with advanced breast cancer (ENCORE301). 2022 Available from: https://clinicaltrials.gov/study/NCT00676663
  37. A study to evaluate the efficacy and safety of nanosomal docetaxel lipid suspension in triple negative breast cancer patients. 2025 Available from: https://clinicaltrials.gov/study/NCT03671044
  38. Nolan E. Kang Y. Malanchi I. Mechanisms of organ-specific metastasis of breast cancer. Cold Spring Harb. Perspect. Med. 2023 13 11 a041326 10.1101/cshperspect.a041326 36987584
    [Google Scholar]
  39. Wu Q. Li J. Zhu S. Wu J. Chen C. Liu Q. Wei W. Zhang Y. Sun S. Breast cancer subtypes predict the preferential site of distant metastases: A SEER based study. Oncotarget 2017 8 17 27990 27996 10.18632/oncotarget.15856 28427196
    [Google Scholar]
  40. Buonomo O.C. Caredda E. Portarena I. Vanni G. Orlandi A. Bagni C. Petrella G. Palombi L. Orsaria P. New insights into the metastatic behavior after breast cancer surgery, according to well-established clinicopathological variables and molecular subtypes. PLoS One 2017 12 9 e0184680 10.1371/journal.pone.0184680 28922402
    [Google Scholar]
  41. Valastyan S. Weinberg R.A. Tumor metastasis: Molecular insights and evolving paradigms. Cell 2011 147 2 275 292 10.1016/j.cell.2011.09.024 22000009
    [Google Scholar]
  42. Brenton J.D. Carey L.A. Ahmed A.A. Caldas C. Molecular classification and molecular forecasting of breast cancer: Ready for clinical application? J. Clin. Oncol. 2005 23 29 7350 7360 10.1200/JCO.2005.03.3845 16145060
    [Google Scholar]
  43. Reis-Filho J.S. Pusztai L. Gene expression profiling in breast cancer: Classification, prognostication, and prediction. Lancet 2011 378 9805 1812 1823 10.1016/S0140‑6736(11)61539‑0 22098854
    [Google Scholar]
  44. Boyle P. Triple-negative breast cancer: Epidemiological considerations and recommendations. Ann Oncol. 2012 23 vi7-vi12 (Suppl. 6) 10.1093/annonc/mds187 23012306
    [Google Scholar]
  45. Dent R. Trudeau M. Pritchard K.I. Hanna W.M. Kahn H.K. Sawka C.A. Lickley L.A. Rawlinson E. Sun P. Narod S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007 13 15 4429 4434 10.1158/1078‑0432.CCR‑06‑3045 17671126
    [Google Scholar]
  46. Lehmann B.D. Bauer J.A. Chen X. Sanders M.E. Chakravarthy A.B. Shyr Y. Pietenpol J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 2011 121 7 2750 2767 10.1172/JCI45014 21633166
    [Google Scholar]
  47. Abramson V.G. Lehmann B.D. Ballinger T.J. Pietenpol J.A. Subtyping of triple‐negative breast cancer: Implications for therapy. Cancer 2015 121 1 8 16 10.1002/cncr.28914 25043972
    [Google Scholar]
  48. Dréan A. Williamson C.T. Brough R. Brandsma I. Menon M. Konde A. Garcia-Murillas I. Pemberton H.N. Frankum J. Rafiq R. Badham N. Campbell J. Gulati A. Turner N.C. Pettitt S.J. Ashworth A. Lord C.J. Modeling therapy resistance in BRCA1/2-mutant cancers. Mol. Cancer Ther. 2017 16 9 2022 2034 10.1158/1535‑7163.MCT‑17‑0098 28619759
    [Google Scholar]
  49. Hill B.S. Sarnella A. Capasso D. Comegna D. Del Gatto A. Gramanzini M. Albanese S. Saviano M. Zaccaro L. Zannetti A. Therapeutic potential of a novel αvβ3 antagonist to hamper the aggressiveness of mesenchymal triple negative breast cancer sub-type. Cancers 2019 11 2 139 10.3390/cancers11020139 30682838
    [Google Scholar]
  50. Jézéquel P. Lasla H. Gouraud W. Basseville A. Michel B. Frenel J.S. Juin P.P. Ben Azzouz F. Campone M. Mesenchymal-like immune-altered is the fourth robust triple-negative breast cancer molecular subtype. Breast Cancer 2024 31 5 825 840 10.1007/s12282‑024‑01597‑z 38777987
    [Google Scholar]
  51. Garrido-Castro A.C. Lin N.U. Polyak K. Insights into molecular classifications of triple-negative breast cancer: Improving patient selection for treatment. Cancer Discov. 2019 9 2 176 198 10.1158/2159‑8290.CD‑18‑1177 30679171
    [Google Scholar]
  52. Ge J.Y. Shu S. Kwon M. Jovanović B. Murphy K. Gulvady A. Fassl A. Trinh A. Kuang Y. Heavey G.A. Luoma A. Paweletz C. Thorner A.R. Wucherpfennig K.W. Qi J. Brown M. Sicinski P. McDonald T.O. Pellman D. Michor F. Polyak K. Acquired resistance to combined BET and CDK4/6 inhibition in triple-negative breast cancer. Nat. Commun. 2020 11 1 2350 10.1038/s41467‑020‑16170‑3 32393766
    [Google Scholar]
  53. Wen W. Marcinkowski E. Luyimbazi D. Luu T. Xing Q. Yan J. Wang Y. Wu J. Guo Y. Tully D. Han E.S. Yost S.E. Yuan Y. Yim J.H. Eribulin synergistically increases anti-tumor activity of an mTOR inhibitor by inhibiting pAKT/pS6K/pS6 in triple negative breast cancer. Cells 2019 8 9 1010 10.3390/cells8091010 31480338
    [Google Scholar]
  54. Adams J. Carder P.J. Downey S. Forbes M.A. MacLennan K. Allgar V. Kaufman S. Hallam S. Bicknell R. Walker J.J. Cairnduff F. Selby P.J. Perren T.J. Lansdown M. Banks R.E. Vascular endothelial growth factor (VEGF) in breast cancer: Comparison of plasma, serum, and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Res. 2000 60 11 2898 2905 10850435
    [Google Scholar]
  55. Tae K. El-Naggar A.K. Yoo E. Feng L. Lee J.J. Hong W.K. Hittelman W.N. Shin D.M. Expression of vascular endothelial growth factor and microvessel density in head and neck tumorigenesis. Clin. Cancer Res. 2000 6 7 2821 2828 10914730
    [Google Scholar]
  56. Qu Z. Van Ginkel S. Roy A.M. Westbrook L. Nasrin M. Maxuitenko Y. Frost A.R. Carey D. Wang W. Li R. Grizzle W.E. Thottassery J.V. Kern F.G. Vascular endothelial growth factor reduces tamoxifen efficacy and promotes metastatic colonization and desmoplasia in breast tumors. Cancer Res. 2008 68 15 6232 6240 10.1158/0008‑5472.CAN‑07‑5654 18676847
    [Google Scholar]
  57. Haibe Y. Kreidieh M. El Hajj H. Khalifeh I. Mukherji D. Temraz S. Shamseddine A. Resistance mechanisms to anti-angiogenic therapies in cancer. Front. Oncol. 2020 10 221 10.3389/fonc.2020.00221 32175278
    [Google Scholar]
  58. Sulpher J. Dent R. Dent S. Neoadjuvant chemotherapy in breast cancer. Curr. Opin. Support. Palliat. Care 2014 8 1 59 63 10.1097/SPC.0000000000000033 24407017
    [Google Scholar]
  59. Ryan D.P. Grossbard M.L. Pancreatic cancer: Local success and distant failure. Oncologist 1998 3 3 178 188 10.1634/theoncologist.3‑3‑178 10388102
    [Google Scholar]
  60. Anderson G. Ebadi M. Vo K. Novak J. Govindarajan A. Amini A. An updated review on head and neck cancer treatment with radiation therapy. Cancers 2021 13 19 4912 10.3390/cancers13194912 34638398
    [Google Scholar]
  61. Hodge J.W. Garnett C.T. Farsaci B. Palena C. Tsang K.Y. Ferrone S. Gameiro S.R. Chemotherapy‐induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int. J. Cancer 2013 133 3 624 636 10.1002/ijc.28070 23364915
    [Google Scholar]
  62. Ramakrishnan R. Assudani D. Nagaraj S. Hunter T. Cho H.I. Antonia S. Altiok S. Celis E. Gabrilovich D.I. Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J. Clin. Invest. 2010 120 4 1111 1124 10.1172/JCI40269 20234093
    [Google Scholar]
  63. Ramakrishnan R. Huang C. Cho H.I. Lloyd M. Johnson J. Ren X. Altiok S. Sullivan D. Weber J. Celis E. Gabrilovich D.I. Autophagy induced by conventional chemotherapy mediates tumor cell sensitivity to immunotherapy. Cancer Res. 2012 72 21 5483 5493 10.1158/0008‑5472.CAN‑12‑2236 22942258
    [Google Scholar]
  64. Demaria S. Volm M.D. Shapiro R.L. Yee H.T. Oratz R. Formenti S.C. Muggia F. Symmans W.F. Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clin. Cancer Res. 2001 7 10 3025 3030 11595690
    [Google Scholar]
  65. Kodumudi K.N. Woan K. Gilvary D.L. Sahakian E. Wei S. Djeu J.Y. A novel chemoimmunomodulating property of docetaxel: Suppression of myeloid-derived suppressor cells in tumor bearers. Clin. Cancer Res. 2010 16 18 4583 4594 10.1158/1078‑0432.CCR‑10‑0733 20702612
    [Google Scholar]
  66. Jure-Kunkel M. Masters G. Girit E. Dito G. Lee F. Hunt J.T. Humphrey R. Synergy between chemotherapeutic agents and CTLA-4 blockade in preclinical tumor models. Cancer Immunol. Immunother. 2013 62 9 1533 1545 10.1007/s00262‑013‑1451‑5 23873089
    [Google Scholar]
  67. Peng J. Hamanishi J. Matsumura N. Abiko K. Murat K. Baba T. Yamaguchi K. Horikawa N. Hosoe Y. Murphy S.K. Konishi I. Mandai M. Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-κB to foster an immunosuppressive tumor microenvironment in ovarian cancer. Cancer Res. 2015 75 23 5034 5045 10.1158/0008‑5472.CAN‑14‑3098 26573793
    [Google Scholar]
  68. Drummond D.C. Noble C.O. Guo Z. Hong K. Park J.W. Kirpotin D.B. Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res. 2006 66 6 3271 3277 10.1158/0008‑5472.CAN‑05‑4007 16540680
    [Google Scholar]
  69. Kalra A.V. Kim J. Klinz S.G. Paz N. Cain J. Drummond D.C. Nielsen U.B. Fitzgerald J.B. Preclinical activity of nanoliposomal irinotecan is governed by tumor deposition and intratumor prodrug conversion. Cancer Res. 2014 74 23 7003 7013 10.1158/0008‑5472.CAN‑14‑0572 25273092
    [Google Scholar]
  70. Drummond D.C. Noble C.O. Hayes M.E. Park J.W. Kirpotin D.B. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J. Pharm. Sci. 2008 97 11 4696 4740 10.1002/jps.21358 18351638
    [Google Scholar]
  71. Zhang N. Zhang N. How nanotechnology can enhance docetaxel therapy. Int. J. Nanomedicine 2013 8 2927 2941 10.2147/IJN.S46921 23950643
    [Google Scholar]
  72. McKeage K. Nanosomal docetaxel lipid suspension: A guide to its use in cancer. Clin. Drug Investig. 2017 37 4 405 410 10.1007/s40261‑017‑0510‑7 28255844
    [Google Scholar]
  73. Badiginchala R. Dattatreya P.S. Suresh A.V.S. Nirni S.S. Andra V.V. Bunger D. Chaturvedi A. Efficacy and safety of nanosomal docetaxel lipid suspension (NDLS) versus conventional docetaxel as neoadjuvant and adjuvant therapy for primary operable breast cancer. OncoTargets Ther. 2023 16 215 225 10.2147/OTT.S400824 37033671
    [Google Scholar]
  74. Jose W.M. Taxanes – The backbone of medical oncology. Indian J. Med. Paediatr. Oncol. 2020 41 2 221 234 10.4103/ijmpo.ijmpo_1_20
    [Google Scholar]
  75. Feng L. Mumper R.J. A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett. 2013 334 2 157 175 10.1016/j.canlet.2012.07.006 22796606
    [Google Scholar]
  76. Rajappa S. Joshi A. Doval D. Batra U. Rajendranath R. Deo A. Biswas G. Bajpai P. Tilak T. Kane S. Kumar K. Kumar M. Talele A. Devde P. Gupta A. Joshi N. Sejpal J. Bunger D. Khan M. Novel formulations of docetaxel, paclitaxel and doxorubicin in the management of metastatic breast cancer. Oncol. Lett. 2018 16 3 3757 3769 10.3892/ol.2018.9057 30127986
    [Google Scholar]
  77. Wang F. Porter M. Konstantopoulos A. Zhang P. Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J. Control. Release 2017 267 100 118 10.1016/j.jconrel.2017.09.026 28958854
    [Google Scholar]
  78. Pernaut C. Lopez F. Ciruelos E. Standard neoadjuvant treatment in early/locally advanced breast cancer. Breast Care 2018 13 4 244 249 10.1159/000491759 30319326
    [Google Scholar]
  79. Buzdar A.U. Singletary S.E. Theriault R.L. Booser D.J. Valero V. Ibrahim N. Smith T.L. Asmar L. Frye D. Manuel N. Kau S.W. McNeese M. Strom E. Hunt K. Ames F. Hortobagyi G.N. Prospective evaluation of paclitaxel versus combination chemotherapy with fluorouracil, doxorubicin, and cyclophosphamide as neoadjuvant therapy in patients with operable breast cancer. J. Clin. Oncol. 1999 17 11 3412 3417 10.1200/JCO.1999.17.11.3412 10550135
    [Google Scholar]
  80. Miller K.D. McCaskill-Stevens W. Sisk J. Loesch D.M. Monaco F. Seshadri R. Sledge G.W. Combination versus sequential doxorubicin and docetaxel as primary chemotherapy for breast cancer: A randomized pilot trial of the Hoosier Oncology Group. J. Clin. Oncol. 1999 17 10 3033 3037 10.1200/JCO.1999.17.10.3033 10506597
    [Google Scholar]
  81. Gradishar W.J. Docetaxel as neoadjuvant chemotherapy in patients with stage III breast cancer. Oncology 1997 11 8 15 18 9364536
    [Google Scholar]
  82. Amat S. Bougnoux P. Penault-Llorca F. Fétissof F. Curé H. Kwiatkowski F. Achard J-L. Body G. Dauplat J. Chollet P. Neoadjuvant docetaxel for operable breast cancer induces a high pathological response and breast-conservation rate. Br. J. Cancer 2003 88 9 1339 1345 10.1038/sj.bjc.6600916 12778058
    [Google Scholar]
  83. Tan Q. Liu X. Fu X. Li Q. Dou J. Zhai G. Current development in nanoformulations of docetaxel. Expert Opin. Drug Deliv. 2012 9 8 975 990 10.1517/17425247.2012.696606 22703284
    [Google Scholar]
  84. Chevallier B. Fumoleau P. Kerbrat P. Dieras V. Roche H. Krakowski I. Azli N. Bayssas M. Lentz M.A. Van Glabbeke M. Docetaxel is a major cytotoxic drug for the treatment of advanced breast cancer: A phase II trial of the clinical screening cooperative group of the European organization for research and treatment of cancer. J. Clin. Oncol. 1995 13 2 314 322 10.1200/JCO.1995.13.2.314 7844592
    [Google Scholar]
  85. Fossella F.V. Lee J.S. Shin D.M. Calayag M. Huber M. Perez-Soler R. Murphy W.K. Lippman S. Benner S. Glisson B. Phase I.I. Phase II study of docetaxel for advanced or metastatic platinum-refractory non-small-cell lung cancer. J. Clin. Oncol. 1995 13 3 645 651 10.1200/JCO.1995.13.3.645 7884425
    [Google Scholar]
  86. Kaye S.B. Piccart M. Aapro M. Francis P. Kavanagh J. Phase I.I. Phase II trials of docetaxel (taxotere®) in advanced ovarian cancer—an updated overview. Eur. J. Cancer 1997 33 13 2167 2170 10.1016/S0959‑8049(97)00363‑8 9470802
    [Google Scholar]
  87. Mavroudis D. Kourousis C. Androulakis N. Kalbakis K. Agelaki S. Kakolyris S. Souglakos J. Sarra E. Vardakis N. Hatzidaki D. Sarmonis G. Georgoulias V. Frontline treatment of advanced gastric cancer with docetaxel and granulocyte colony-stimulating factor (G-CSF): A phase II trial. Am. J. Clin. Oncol. 2000 23 4 341 344 10.1097/00000421‑200008000‑00005 10955859
    [Google Scholar]
  88. Friedland D. Cohen J. Miller R. Voloshin M. Gluckman R. Lembersky B. Zidar B. Keating M. Reilly N. Dimitt B. A phase II trial of docetaxel (Taxotere) in hormone-refractory prostate cancer: Correlation of antitumor effect to phosphorylation of Bcl-2. Semin. Oncol. 1999 26 5 19 23 10604264
    [Google Scholar]
  89. FDA Drug Safety Communication FDA warns that cancer drug docetaxel may cause symptoms of alcohol intoxication after treatment. 2016 Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-cancer-drug-docetaxel-may-cause-symptoms-alcohol
    [Google Scholar]
  90. Piccart M.J. Klijn J. Paridaens R. Nooij M. Mauriac L. Coleman R. Bontenbal M. Awada A. Selleslags J. Van Vreckem A. Van Glabbeke M. Corticosteroids significantly delay the onset of docetaxel-induced fluid retention: Final results of a randomized study of the European Organization for Research and Treatment of Cancer Investigational Drug Branch for Breast Cancer. J. Clin. Oncol. 1997 15 9 3149 3155 10.1200/JCO.1997.15.9.3149 9294478
    [Google Scholar]
  91. Kelly C. Alken, Benefit risk assessment and update on the use of docetaxel in the management of breast cancer. Cancer Manag. Res. 2013 357 357 10.2147/CMAR.S49321
    [Google Scholar]
  92. Haley B. Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. 2008 26 1 57 64 10.1016/j.urolonc.2007.03.015 18190833
    [Google Scholar]
  93. Chaudhari K.R. Ukawala M. Manjappa A.S. Kumar A. Mundada P.K. Mishra A.K. Mathur R. Mönkkönen J. Murthy R.S.R. Opsonization, biodistribution, cellular uptake and apoptosis study of PEGylated PBCA nanoparticle as potential drug delivery carrier. Pharm. Res. 2012 29 1 53 68 10.1007/s11095‑011‑0510‑x 21744174
    [Google Scholar]
  94. Porter C.J.H. Pouton C.W. Cuine J.F. Charman W.N. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv. Drug Deliv. Rev. 2008 60 6 673 691 10.1016/j.addr.2007.10.014 18155801
    [Google Scholar]
  95. Beg S. Swain S. Rizwan M. Irfanuddin M. Shobha Malini D. Bioavailability enhancement strategies: Basics, formulation approaches and regulatory considerations. Curr. Drug Deliv. 2011 8 6 691 702 10.2174/156720111797635504 21864253
    [Google Scholar]
  96. Subramanian S. Majumdar S. Biswas G. Joshi N. Bunger D. Khan M. Ahmad I. Efficacy and safety of nanosomal docetaxel lipid suspension based chemotherapy in gastric and gastroesophageal junction adenocarcinoma. Mol. Clin. Oncol. 2020 13 3 14 10.3892/mco.2020.2084 32754328
    [Google Scholar]
  97. Senthilkumar M. Mishra P. Jain N.K. Long circulating PEGylated poly(d, l -lactide- co -glycolide) nanoparticulate delivery of Docetaxel to solid tumors. J. Drug Target. 2008 16 5 424 435 10.1080/10611860802088598 18569287
    [Google Scholar]
  98. Xu Z. Chen L. Gu W. Gao Y. Lin L. Zhang Z. Xi Y. Li Y. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials 2009 30 2 226 232 10.1016/j.biomaterials.2008.09.014 18851881
    [Google Scholar]
  99. Wang L. Liu Z. Liu D. Liu C. Juan Z. Zhang N. Docetaxel-loaded-lipid-based-nanosuspensions (DTX-LNS): Preparation, pharmacokinetics, tissue distribution and antitumor activity. Int. J. Pharm. 2011 413 1-2 194 201 10.1016/j.ijpharm.2011.04.023 21540085
    [Google Scholar]
  100. Lim S.B. Banerjee A. Önyüksel H. Improvement of drug safety by the use of lipid-based nanocarriers. J. Control. Release 2012 163 1 34 45 10.1016/j.jconrel.2012.06.002 22698939
    [Google Scholar]
  101. Liu Y. Xie P. Zhang D. Zhang Q. A mini review of nanosuspensions development. J. Drug Target. 2012 20 3 209 223 10.3109/1061186X.2011.645161 22192053
    [Google Scholar]
  102. Ramaswamy R. Joshi N. Khan M.A. Siddhara S. Nanosomal docetaxel lipid suspension based chemotherapy in a pregnant MBC patient – A case report. OncoTargets Ther. 2019 12 5679 5685 10.2147/OTT.S206573 31406465
    [Google Scholar]
  103. Tiwari S. Bisaria A. Kaur H. Joshi N. Sejpal J. Khan M.A. Biweekly DoceAqualip in mCRPC patients beyond 20 cycles: A case series. J. Oncol. Pharm. Pract. 2021 27 8 2030 2034 10.1177/10781552211008223 33853469
    [Google Scholar]
  104. Narayanan P. Dattatreya P.S. Prasanna R. Subramanian S. Jain K. Somanath N.S. Joshi N. Bunger D. Khan M.A. Chaturvedi A. Ahmad I. Efficacy and safety of nanosomal docetaxel lipid suspension-based chemotherapy in sarcoma: A multicenter, retrospective study. Sarcoma 2019 2019 1 7 10.1155/2019/3158590 31827370
    [Google Scholar]
  105. Naik R. Khan M.A. Doceaqualip in a patient with prostate cancer who had an allergic reaction to conventional docetaxel: A case report. Mol. Clin. Oncol. 2017 6 3 341 343 10.3892/mco.2017.1147 28451410
    [Google Scholar]
  106. Prasanna R. Bunger D. Khan M. Efficacy and safety of DoceAqualip in a patient with locally advanced cervical cancer: A case report. Mol. Clin. Oncol. 2017 10.3892/mco.2017.1519 29435291
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206366378250519105734
Loading
/content/journals/acamc/10.2174/0118715206366378250519105734
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test