Skip to content
2000
image of Unlocking the Potential of Polysaccharides for the Treatment of Lung Cancer

Abstract

Background

Lung cancer remains a leading cause of cancer-related deaths worldwide, with its incidence continuing to rise. Despite advancements in clinical treatments, their effectiveness is often restricted, emphasizing the need for novel therapeutic strategies. Natural products have long been explored for drug development, and among them, polysaccharides have gained significant attention due to their biocompatibility, biodegradability, and multiple biological functions.

Methods

A comprehensive review examined contemporary research on the anticancer properties of natural polysaccharides, focusing specifically on their effects in lung cancer. The analysis included studies investigating their influence on cancer cell growth, immune system modulation, and therapeutic outcomes. Evidence from laboratory (), animal (), and clinical studies was evaluated to provide a comprehensive overview of their potential role in lung cancer management.

Results

Findings from recent studies indicate that polysaccharides can effectively inhibit the proliferation of lung cancer cells, thereby slowing tumor development. These compounds also appear to enhance immune responses by activating various immune cells and regulating cytokine production. Furthermore, polysaccharides have been shown to positively affect the gut microbiota, which may contribute to improved drug efficacy and a reduction in resistance to chemotherapy.

Discussion

The evidence suggests that natural polysaccharides exert multifaceted effects in the context of lung cancer treatment. Their ability to directly suppress tumor growth, modulate the immune system, and interact with the gut microbiome positions them as promising adjuncts to existing therapies. However, the precise molecular mechanisms underlying these effects are not yet fully understood, and variability in study designs warrants cautious interpretation of the results.

Conclusion

Natural polysaccharides represent a promising complementary approach for lung cancer therapy, given their potential to inhibit tumor progression, enhance immune function, and improve the effectiveness of conventional drugs. Continued research is essential to fully elucidate their mechanisms of action and to translate these findings into effective clinical interventions.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206395910250816110857
2025-09-01
2025-11-09
Loading full text...

Full text loading...

References

  1. Padinharayil H. Varghese J. John M.C. Rajanikant G.K. Wilson C.M. Al-Yozbaki M. Renu K. Dewanjee S. Sanyal R. Dey A. Mukherjee A.G. Wanjari U.R. Gopalakrishnan A.V. George A. Non-small cell lung carcinoma (NSCLC): Implications on molecular pathology and advances in early diagnostics and therapeutics. Genes Dis. 2023 10 3 960 989 10.1016/j.gendis.2022.07.023 37396553
    [Google Scholar]
  2. Metintaş S. Epidemiology of lung cancer. In: Airway diseases. Cham Springer 2023 1 45 10.1007/978‑3‑031‑22483‑6_57‑1
    [Google Scholar]
  3. Valerio T.S. Emmerick I.C.M. Sobreira-da-Silva M.J. Factors associated with late-stage diagnosis and overall survival for lung cancer: An analysis of patients treated in a Brazilian hospital and a US-hospital from 2009 to 2019. Cancer Epidemiol. 2023 86 102443 10.1016/j.canep.2023.102443 37611485
    [Google Scholar]
  4. Blandin Knight S. Crosbie P.A. Balata H. Chudziak J. Hussell T. Dive C. Progress and prospects of early detection in lung cancer. Open Biol. 2017 7 9 170070 10.1098/rsob.170070 28878044
    [Google Scholar]
  5. Ponnusami V. Polyelectrolyte complex-based ionically gelled biopolymeric systems for sustained drug release. In: Ionically Gelled Biopolysaccharide-Based Systems in Drug Delivery. Springer 2021 105 120 10.1007/978‑981‑16‑2271‑7_6
    [Google Scholar]
  6. Ringborg U. von Braun J. Celis J. Baumann M. Berns A. Eggermont A. Heard E. Heitor M. Chandy M. Chen C.J. Costa A. De Lorenzo F. De Robertis E.M. Dubee F.C. Ernberg I. Gabriel M. Helland Å. Henrique R. Jönsson B. Kallioniemi O. Korbel J. Krause M. Lowy D.R. Michielin O. Nagy P. Oberst S. Paglia V. Parker M.I. Ryan K. Sawyers C.L. Schüz J. Silkaitis K. Solary E. Thomas D. Turkson P. Weiderpass E. Yang H. Strategies to decrease inequalities in cancer therapeutics, care and prevention: Proceedings on a conference organized by the Pontifical Academy of Sciences and the European Academy of Cancer Sciences, Vatican City, February 23-24, 2023. Mol. Oncol. 2024 18 2 245 279 10.1002/1878‑0261.13575 38135904
    [Google Scholar]
  7. Wang Z. Guo Z. Intelligent Chinese medicine: A new direction approach for integrative medicine in diagnosis and treatment of cardiovascular diseases. Chin. J. Integr. Med. 2023 29 7 634 643 10.1007/s11655‑023‑3639‑7 37222830
    [Google Scholar]
  8. Chopra B. Dhingra A.K. Natural products: A lead for drug discovery and development. Phytother. Res. 2021 35 9 4660 4702 10.1002/ptr.7099 33847440
    [Google Scholar]
  9. Naeem A. Hu P. Yang M. Zhang J. Liu Y. Zhu W. Zheng Q. Natural products as anticancer agents: Current status and future perspectives. Molecules 2022 27 23 8367 10.3390/molecules27238367 36500466
    [Google Scholar]
  10. Barbosa J.R. de Carvalho Junior R.N. Polysaccharides obtained from natural edible sources and their role in modulating the immune system: Biologically active potential that can be exploited against COVID-19. Trends Food Sci. Technol. 2021 108 223 235 10.1016/j.tifs.2020.12.026 33424125
    [Google Scholar]
  11. Torres F.G. Troncoso O.P. Pisani A. Gatto F. Bardi G. Natural polysaccharide nanomaterials: An overview of their immunological properties. Int. J. Mol. Sci. 2019 20 20 5092 10.3390/ijms20205092 31615111
    [Google Scholar]
  12. Hou C. Chen L. Yang L. Ji X. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol. 2020 153 248 255 10.1016/j.ijbiomac.2020.02.315 32114173
    [Google Scholar]
  13. Yang W. Zhao P. Li X. Guo L. Gao W. The potential roles of natural plant polysaccharides in inflammatory bowel disease: A review. Carbohydr. Polym. 2022 277 118821 10.1016/j.carbpol.2021.118821 34893238
    [Google Scholar]
  14. Yang K. Chen J. Chen J. Wang Z. Song B. Li R. Zhong S. Cheong K.L. The effect mechanism of polysaccharides inhibit tumor immune escape: A review. J. Funct. Foods 2023 107 105638 10.1016/j.jff.2023.105638
    [Google Scholar]
  15. Li N. Wang C. Georgiev M.I. Bajpai V.K. Tundis R. Simal-Gandara J. Lu X. Xiao J. Tang X. Qiao X. Advances in dietary polysaccharides as anticancer agents: Structure-activity relationship. Trends Food Sci. Technol. 2021 111 360 377 10.1016/j.tifs.2021.03.008
    [Google Scholar]
  16. Song K.S. Li G. Kim J.S. Jing K. Kim T.D. Kim J.P. Seo S.B. Yoo J.K. Park H.D. Hwang B.D. Lim K. Yoon W.H. Protein-bound polysaccharide from Phellinus linteus inhibits tumor growth, invasion, and angiogenesis and alters Wnt/β-catenin in SW480 human colon cancer cells. BMC Cancer 2011 11 1 307 10.1186/1471‑2407‑11‑307 21781302
    [Google Scholar]
  17. Lee H. Jung Y. Lee N. Lee I. Lee J.H. Nature-derived polysaccharide-based composite hydrogels for promoting wound healing. Int. J. Mol. Sci. 2023 24 23 16714 10.3390/ijms242316714 38069035
    [Google Scholar]
  18. Wang Z.L. Li L.Y. Liu H.J. Fan Y.L. Shen Y.X. Song F. Zhu L.L. Platelet-rich plasma/chitosan/chondroitin sulfate immunomodulatory hydrogel co-networks for diabetic wound repair: Functions and molecular mechanisms. Chem. Eng. J. 2024 491 152138 10.1016/j.cej.2024.152138
    [Google Scholar]
  19. Tan W. Long T. Wan Y. Li B. Xu Z. Zhao L. Mu C. Ge L. Li D. Dual-drug loaded polysaccharide-based self-healing hydrogels with multifunctionality for promoting diabetic wound healing. Carbohydr. Polym. 2023 312 120824 10.1016/j.carbpol.2023.120824 37059551
    [Google Scholar]
  20. Wang R. Chen M. Chu Y. Pan W. Chen F. The design principle of natural polysaccharide hydrogels for promoting wound healing: A prospective review. J. Mater. Chem. B Mater. Biol. Med. 2025 13 16 4722 4738 10.1039/D4TB02576H 40145143
    [Google Scholar]
  21. Zhang S. Liu H. Li W. Liu X. Ma L. Zhao T. Ding Q. Ding C. Liu W. Polysaccharide-based hydrogel promotes skin wound repair and research progress on its repair mechanism. Int. J. Biol. Macromol. 2023 248 125949 10.1016/j.ijbiomac.2023.125949 37494997
    [Google Scholar]
  22. Yu L. Zong Y. Han Y. Zhang X. Zhu Y. Oyom W. Gong D. Prusky D. Bi Y. Both chitosan and chitooligosaccharide treatments accelerate wound healing of pear fruit by activating phenylpropanoid metabolism. Int. J. Biol. Macromol. 2022 205 483 490 10.1016/j.ijbiomac.2022.02.098 35196569
    [Google Scholar]
  23. Bassani B. Baci D. Gallazzi M. Poggi A. Bruno A. Mortara L. Natural killer cells as key players of tumor progression and angiogenesis: Old and novel tools to divert their pro-tumor activities into potent anti-tumor effects. Cancers 2019 11 4 461 10.3390/cancers11040461 30939820
    [Google Scholar]
  24. Toffoli E.C. Sheikhi A. Höppner Y.D. de Kok P. Yazdanpanah-Samani M. Spanholtz J. Verheul H.M.W. van der Vliet H.J. de Gruijl T.D. Natural killer cells and anti-cancer therapies: reciprocal effects on immune function and therapeutic response. Cancers 2021 13 4 711 10.3390/cancers13040711 33572396
    [Google Scholar]
  25. Kim S.H. Lee S.W. Park H.J. Lee S.H. Im, W.K.; Kim, Y.D.; Kim, K.H.; Park, S.J.; Hong, S.; Jeon, S.H. Anti-cancer activity of Angelica gigas by increasing immune response and stimulating natural killer and natural killer T cells. BMC Complement. Altern. Med. 2018 18 1 218 10.1186/s12906‑018‑2277‑7 30021579
    [Google Scholar]
  26. Gan Q. Wang J. Hu J. Lou G. Xiong H. Peng C. Huang Q. Modulation of apoptosis by plant polysaccharides for exerting anti-cancer effects: a review. Front. Pharmacol. 2020 11 792 10.3389/fphar.2020.00792 32536869
    [Google Scholar]
  27. Luo L. Feng F. Zhong A. Guo N. He J. Li C. The advancement of polysaccharides in disease modulation: Multifaceted regulation of programmed cell death. Int. J. Biol. Macromol. 2024 261 Pt 1 129669 10.1016/j.ijbiomac.2024.129669 38272424
    [Google Scholar]
  28. Hanyu X. Lanyue L. Miao D. Wentao F. Cangran C. Hui S. Effect of Ganoderma applanatum polysaccharides on MAPK/ERK pathway affecting autophagy in breast cancer MCF-7 cells. Int. J. Biol. Macromol. 2020 146 353 362 10.1016/j.ijbiomac.2020.01.010 31911173
    [Google Scholar]
  29. Adetunji C.O. Akram M. Michael O.S. Shahzad K. Ayeni A.E. Hasan S. Adetunji J.B. Hasan S.M. Polysaccharides derived from natural sources: A panacea to health and nutritional challenges. In: Polysaccharides: Properties and Applications. Scrivener Publishing LLC 2021 701 738 10.1002/9781119711414.ch32
    [Google Scholar]
  30. Pedrosa L.F. de Vos P. Fabi J.P. Nature’s soothing solution: Harnessing the potential of food-derived polysaccharides to control inflammation. Curr. Res. Struct. Biol. 2023 6 100112 10.1016/j.crstbi.2023.100112
    [Google Scholar]
  31. Wu C.Y. Ke Y. Zeng Y.F. Zhang Y.W. Yu H.J. Anticancer activity of Astragalus polysaccharide in human non-small cell lung cancer cells. Cancer Cell Int. 2017 17 1 115 10.1186/s12935‑017‑0487‑6 29225515
    [Google Scholar]
  32. Yang Y. Zhao X. Li J. Jiang H. Shan X. Wang Y. Ma W. Hao J. Yu G. A β-glucan from Durvillaea Antarctica has immunomodulatory effects on RAW264.7 macrophages via toll-like receptor 4. Carbohydr. Polym. 2018 191 255 265 10.1016/j.carbpol.2018.03.019 29661317
    [Google Scholar]
  33. Zhou Z. Meng M. Ni H. Chemosensitizing effect of Astragalus polysaccharides on nasopharyngeal carcinoma cells by inducing apoptosis and modulating expression of Bax/Bcl-2 ratio and caspases. Med. Sci. Monit. 2017 23 462 469 10.12659/MSM.903170 28124680
    [Google Scholar]
  34. Thomas M. Sadjadian P. Kollmeier J. Lowe J. Mattson P. Trout J.R. Gargano M. Patchen M.L. Walsh R. Beliveau M. Marier J.F. Bose N. Gorden K. Schneller F. A randomized, open-label, multicenter, phase II study evaluating the efficacy and safety of BTH1677 (1,3–1,6 beta glucan; Imprime PGG) in combination with cetuximab and chemotherapy in patients with advanced non-small cell lung cancer. Invest. New Drugs 2017 35 3 345 358 10.1007/s10637‑017‑0450‑3 28303530
    [Google Scholar]
  35. Wang W. Gou X. Xue H. Liu K. Ganoderan (GDN) regulates the growth, motility and apoptosis of non-small cell lung cancer cells through ERK signaling pathway in vitro and in vivo. OncoTargets Ther. 2019 12 8821 8832 10.2147/OTT.S221161 31695437
    [Google Scholar]
  36. Fritz H. Kennedy D.A. Ishii M. Fergusson D. Fernandes R. Cooley K. Seely D. Polysaccharide K and Coriolus versicolor extracts for lung cancer: A systematic review. Integr. Cancer Ther. 2015 14 3 201 211 10.1177/1534735415572883 25784670
    [Google Scholar]
  37. Jin W. He X. Long L. Fang Q. Wei B. Sun J. Zhang W. Wang H. Zhang F. Linhardt R.J. Structural characterization and anti-lung cancer activity of a sulfated glucurono-xylo-rhamnan from Enteromorpha prolifera. Carbohydr. Polym. 2020 237 116143 10.1016/j.carbpol.2020.116143 32241440
    [Google Scholar]
  38. Qu H. Yang W. Li J. Structural characterization of a polysaccharide from the flower buds of Tussilago farfara, and its effect on proliferation and apoptosis of A549 human non-small lung cancer cell line. Int. J. Biol. Macromol. 2018 113 849 858 10.1016/j.ijbiomac.2018.03.005 29505876
    [Google Scholar]
  39. Chen M.F. Huang S.J. Huang C.C. Liu P.S. Lin K.I. Liu C.W. Hsieh W.C. Shiu L.Y. Chen C.H. Saikosaponin d induces cell death through caspase-3-dependent, caspase-3-independent and mitochondrial pathways in mammalian hepatic stellate cells. BMC Cancer 2016 16 1 532 10.1186/s12885‑016‑2599‑0 27461108
    [Google Scholar]
  40. Ngo D.H. Ngo D.N. Kim S.K. Vo T.S. Antiproliferative effect of aminoethyl-chitooligosaccharide on human lung A549 cancer cells. Biomolecules 2019 9 5 195 10.3390/biom9050195 31109093
    [Google Scholar]
  41. Liu X.C. Zhu Z.Y. Liu Y.L. Sun H.Q. Comparisons of the anti-tumor activity of polysaccharides from fermented mycelia and cultivated fruiting bodies of Cordyceps militaris in vitro. Int. J. Biol. Macromol. 2019 130 307 314 10.1016/j.ijbiomac.2019.02.155 30825564
    [Google Scholar]
  42. Liu W.B. Xie F. Sun H.Q. Meng M. Zhu Z.Y. Anti-tumor effect of polysaccharide from Hirsutella sinensis on human non-small cell lung cancer and nude mice through intrinsic mitochondrial pathway. Int. J. Biol. Macromol. 2017 99 258 264 10.1016/j.ijbiomac.2017.02.071 28235606
    [Google Scholar]
  43. Lu M.K. Lin T.Y. Chao C.H. Hu C.H. Hsu H.Y. Molecular mechanism of Antrodia cinnamomea sulfated polysaccharide on the suppression of lung cancer cell growth and migration via induction of transforming growth factor β receptor degradation. Int. J. Biol. Macromol. 2017 95 1144 1152 10.1016/j.ijbiomac.2016.11.004 27818294
    [Google Scholar]
  44. Olech M. Nowacka-Jechalke N. Masłyk M. Martyna A. Pietrzak W. Kubiński K. Załuski D. Nowak R. Polysaccharide-rich fractions from Rosa rugosa Thunb. Composition and chemopreventive potential. Molecules 2019 24 7 1354 10.3390/molecules24071354 30959857
    [Google Scholar]
  45. Kang Y. Wang Z.J. Xie D. Sun X. Yang W. Zhao X. Xu N. Characterization and potential antitumor activity of polysaccharide from Gracilariopsis lemaneiformis. Mar. Drugs 2017 15 4 100 10.3390/md15040100 28353631
    [Google Scholar]
  46. Lu M.K. Lin T.Y. Hu C.H. Chao C.H. Chang C.C. Hsu H.Y. Characterization of a sulfated galactoglucan from Antrodia cinnamomea and its anticancer mechanism via TGFβ/FAK/Slug axis suppression. Carbohydr. Polym. 2017 167 229 239 10.1016/j.carbpol.2017.02.104 28433158
    [Google Scholar]
  47. Han K Jin C Chen H Wang P Yu M Ding K. Structural characterization and anti-A549 lung cancer cells bioactivity of a polysaccharide from Houttuynia cordata. Int. J. Biol. Macromol 2018 120 Part A 288 296 10.1016/j.ijbiomac.2018.08.061
    [Google Scholar]
  48. Ou M. Sun X. Liang J. Liu F. Wang L. Wu X. Tu J. A polysaccharide from Sargassum thunbergii inhibits angiogenesis via downregulating MMP-2 activity and VEGF/HIF-1α signaling. Int. J. Biol. Macromol 2017 94 Pt A 451 458 10.1016/j.ijbiomac.2016.10.046 27765573
    [Google Scholar]
  49. Luo C. Wang X. An C. Hwang C.F. Miao W. Yang L. Xu M. Bai A. Deng S. Molecular inhibition mechanisms of cell migration and invasion by coix polysaccharides in A549 NSCLC cells via targeting S100A4. Mol. Med. Rep. 2017 15 1 309 316 10.3892/mmr.2016.5985 27922683
    [Google Scholar]
  50. Lim W.C. Choi J.W. Song N.E. Cho C.W. Rhee Y.K. Hong H.D. Polysaccharide isolated from persimmon leaves (Diospyros kaki Thunb.) suppresses TGF-β1-induced epithelial-to-mesenchymal transition in A549 cells. Int. J. Biol. Macromol. 2020 164 3835 3845 10.1016/j.ijbiomac.2020.08.155 32835798
    [Google Scholar]
  51. Wang Z. Chen P. Tao N. Zhang H. Li R. Zhan X. Wang F. Shen Y. Anticancer activity of polysaccharides produced from glycerol and crude glycerol by an endophytic fungus Chaetomium globosum CGMCC 6882 on human lung cancer A549 cells. Biomolecules 2018 8 4 171 10.3390/biom8040171 30544990
    [Google Scholar]
  52. Qiu W.L. Hsu W.H. Tsao S.M. Tseng A.J. Lin Z.H. Hua W.J. Yeh H. Lin T.E. Chen C.C. Chen L.S. Lin T.Y. WSG, a glucose-rich polysaccharide from ganoderma lucidum, combined with cisplatin potentiates inhibition of lung cancer in vitro and in vivo. Polymers 2021 13 24 4353 10.3390/polym13244353 34960904
    [Google Scholar]
  53. Sun D. Chen J. Hu H. Lin S. Jin L. Luo L. Yan X. Zhang C. Acanthopanax senticosus polysaccharide suppressing proliferation and metastasis of the human non-small cell lung cancer NCI-H520 cells is associated with Wnt/β-catenin signaling. Neoplasma 2019 66 4 555 563 10.4149/neo_2018_180913N689 30943746
    [Google Scholar]
  54. Chen H. Zhang L. Long X. Li P. Chen S. Kuang W. Guo J. Sargassum fusiforme polysaccharides inhibit VEGF-A-related angiogenesis and proliferation of lung cancer in vitro and in vivo. Biomed. Pharmacother. 2017 85 22 27 10.1016/j.biopha.2016.11.131 27930983
    [Google Scholar]
  55. Li J.Y. Yu J. Du X.S. Zhang H.M. Wang B. Guo H. Bai J. Wang J.H. Liu; Wang, Y.L. Safflower polysaccharide induces NSCLC cell apoptosis by inhibition of the Akt pathway. Oncol. Rep. 2016 36 1 147 154 10.3892/or.2016.4784 27177149
    [Google Scholar]
  56. Xie L. Yang Y. Meng J. Wen T. Liu J. Xu H. Cationic polysaccharide spermine-pullulan drives tumor associated macrophage towards M1 phenotype to inhibit tumor progression. Int. J. Biol. Macromol. 2019 123 1012 1019 10.1016/j.ijbiomac.2018.11.089 30439425
    [Google Scholar]
  57. Sohretoglu D. Zhang C. Luo J. Huang S. ReishiMax inhibits mTORC1/2 by activating AMPK and inhibiting IGFR/PI3K/Rheb in tumor cells. Signal Transduct. Target. Ther. 2019 4 1 21 10.1038/s41392‑019‑0056‑7 31637001
    [Google Scholar]
  58. Wan X. Jin X. Wu X. Yang X. Lin D. Li C. Fu Y. Liu Y. Liu X. Lv J. Gontcharov A.A. Yang H. Wang Q. Li Y. Structural characterisation and antitumor activity against non-small cell lung cancer of polysaccharides from Sanghuangporus vaninii. Carbohydr. Polym. 2022 276 118798 10.1016/j.carbpol.2021.118798 34823804
    [Google Scholar]
  59. Ma W. Zhou Y. Lou W. Wang B. Li B. Liu X. Yang J. Yang B. Liu J. Di D. Mechanism regulating the inhibition of lung cancer A549 cell proliferation and structural analysis of the polysaccharide Lycium barbarum. Food Biosci. 2022 47 101664 10.1016/j.fbio.2022.101664
    [Google Scholar]
  60. Wu J. Gao W. Song Z. Xiong Q. Xu Y. Han Y. Yuan J. Zhang R. Cheng Y. Fang J. Li W. Wang Q. Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549. Int. J. Biol. Macromol. 2018 106 464 472 10.1016/j.ijbiomac.2017.08.033 28797819
    [Google Scholar]
  61. Qiu W.L. Chao C.H. Lu M.K. Anti-inflammatory and anti–lung cancer activities of low-molecular-weight and high-sulfate-content sulfated polysaccharides extracted from the edible fungus Poria cocos. Int. J. Biol. Macromol. 2024 279 Pt 4 135483 10.1016/j.ijbiomac.2024.135483 39260636
    [Google Scholar]
  62. Folkman J. Angiogenesis. Annu. Rev. Med. 2006 57 1 1 8 10.1146/annurev.med.57.121304.131306 16409133
    [Google Scholar]
  63. De Palma M. Biziato D. Petrova T.V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 2017 17 8 457 474 10.1038/nrc.2017.51 28706266
    [Google Scholar]
  64. Wang Z. Jin C. Li X. Ding K. Sulfated polysaccharide JCS1S2 inhibits angiogenesis via targeting VEGFR2/VEGF and blocking VEGFR2/Erk/VEGF signaling. Carbohydr. Polym. 2019 207 502 509 10.1016/j.carbpol.2018.11.091 30600033
    [Google Scholar]
  65. Zhao L. Zhong Y. Liang J. Gao H. Tang N. Effect of Astragalus polysaccharide on the expression of VEGF and EGFR in mice with Lewis transplantable lung cancer. J. Coll. Physicians Surg. Pak. 2019 29 4 392 394 10.29271/jcpsp.2019.04.392 30925971
    [Google Scholar]
  66. Liu G. Kuang S. Wu S. Jin W. Sun C. A novel polysaccharide from Sargassum integerrimum induces apoptosis in A549 cells and prevents angiogensis in vitro and in vivo. Sci. Rep. 2016 6 1 26722 10.1038/srep26722 27216943
    [Google Scholar]
  67. Yu J. Sun R. Zhao Z. Wang Y. Auricularia polytricha polysaccharides induce cell cycle arrest and apoptosis in human lung cancer A549 cells. Int. J. Biol. Macromol. 2014 68 67 71 10.1016/j.ijbiomac.2014.04.018 24755260
    [Google Scholar]
  68. Shi S. Chang M. Liu H. Ding S. Yan Z. Si K. Gong T. The structural characteristics of an acidic water-soluble polysaccharide from bupleurum chinense DC and its in vivo anti-tumor activity on H22 tumor-bearing mice. Polymers 2022 14 6 1119 10.3390/polym14061119 35335457
    [Google Scholar]
  69. Wang H. Zhang X. Li Y. Chen R. Ouyang S. Sun P. Pan L. Ren H. Yang B. Antitumor activity of a polysaccharide from longan seed on lung cancer cell line A549 in vitro and in vivo. Tumour Biol. 2014 35 7 7259 7266 10.1007/s13277‑014‑1927‑8 24777333
    [Google Scholar]
  70. Hung J.J. Jeng W.J. Hsu W.H. Chou T.Y. Huang B.S. Wu Y.C. Predictors of death, local recurrence, and distant metastasis in completely resected pathological stage-I non-small-cell lung cancer. J. Thorac. Oncol. 2012 7 7 1115 1123 10.1097/JTO.0b013e31824cbad8 22592210
    [Google Scholar]
  71. Liao C.H. Yong C.Y. Lai G.M. Chow J.M. Cheng C.F. Fang C.L. Lin P.C. Chang C.L. Zheng Y.M. Chuang S.E. Whang-Peng J. Yao C.J. Astragalus polysaccharide (PG2) suppresses macrophage migration inhibitory factor and aggressiveness of lung adenocarcinoma cells. Am. J. Chin. Med. 2020 48 6 1491 1509 10.1142/S0192415X20500731 32924531
    [Google Scholar]
  72. Lin L. Cheng K. He Z. Lin Q. Huang Y. Chen C. Xie Z. Chen L. Liang Z. A polysaccharide from Hedyotis diffusa interrupts metastatic potential of lung adenocarcinoma A549 cells by inhibiting EMT via EGFR/Akt/ERK signaling pathways. Int. J. Biol. Macromol. 2019 129 706 714 10.1016/j.ijbiomac.2019.02.040 30738900
    [Google Scholar]
  73. Zhong C. Yang J. Lu Y. Xie H. Zhai S. Zhang C. Luo Z. Chen X. Fang X. Jia L. Achyranthes bidentata polysaccharide can safely prevent NSCLC metastasis via targeting EGFR and EMT. Signal Transduct. Target. Ther. 2020 5 1 178 10.1038/s41392‑020‑00289‑2 32868760
    [Google Scholar]
  74. Guo M. Ding G.B. Yang P. Zhang L. Wu H. Li H. Li Z. Migration suppression of small cell lung cancer by polysaccharides from Nostoc commune Vaucher. J. Agric. Food Chem. 2016 64 32 6277 6285 10.1021/acs.jafc.6b01906
    [Google Scholar]
  75. Lin T.Y. Lu M.K. Chang C.C. Structural identification of a fucose-containing 1,3-β-mannoglucan from Poria cocos and its anti-lung cancer CL1-5 cells migration via inhibition of TGFβR-mediated signaling. Int. J. Biol. Macromol. 2020 157 311 318 10.1016/j.ijbiomac.2020.04.014 32302633
    [Google Scholar]
  76. Liu G. Pei F. Yang F. Li L. Amin A. Liu S. Buchan J. Cho W. Role of autophagy and apoptosis in non-small-cell lung cancer. Int. J. Mol. Sci. 2017 18 2 367 10.3390/ijms18020367 28208579
    [Google Scholar]
  77. Zhou Z. Shao T. Qin M. Miao X. Chang Y. Sheng W. Wu F. Yu Y. The effects of autophagy on vascular endothelial cells induced by airborne PM2.5. J. Environ. Sci. (China) 2018 66 182 187 10.1016/j.jes.2017.05.019 29628085
    [Google Scholar]
  78. Onorati A.V. Dyczynski M. Ojha R. Amaravadi R.K. Targeting autophagy in cancer. Cancer 2018 124 16 3307 3318 10.1002/cncr.31335 29671878
    [Google Scholar]
  79. Bu H. Tan S. Yuan B. Huang X. Jiang J. Wu Y. Jiang J. Li R. Therapeutic potential of IBP as an autophagy inducer for treating lung cancer via blocking PAK1/Akt/mTOR signaling. Mol. Ther. Oncolytics 2021 20 82 93 10.1016/j.omto.2020.10.014 33575473
    [Google Scholar]
  80. Yoshii S.R. Mizushima N. Monitoring and measuring autophagy. Int. J. Mol. Sci. 2017 18 9 1865 10.3390/ijms18091865 28846632
    [Google Scholar]
  81. Shi X. Wei W. Wang N. Tremella polysaccharides inhibit cellular apoptosis and autophagy induced by Pseudomonasï¿1/2aeruginosa lipopolysaccharide in A549 cells through sirtuin 1 activation. Oncol. Lett. 2018 15 6 9609 9616 10.3892/ol.2018.8554 29805682
    [Google Scholar]
  82. Tian W. Huang J. Zhang W. Wang Y. Jin R. Guo H. Tang Y. Wang Y. Lai H. Leung E.L.H. Harnessing natural product polysaccharides against lung cancer and revisit its novel mechanism. Pharmacol. Res. 2024 199 107034 10.1016/j.phrs.2023.107034 38070793
    [Google Scholar]
  83. Mishra V. Tripathi V. Yadav P. Singh M.P. Beta glucan as an immune stimulant in tumor microenvironment — Insight into lessons and promises from past decade. Int. J. Biol. Macromol. 2023 234 123617 10.1016/j.ijbiomac.2023.123617 36758755
    [Google Scholar]
  84. Hermans L. De Pelsmaeker S. Denaeghel S. Cox E. Favoreel H.W. Devriendt B. β-glucan-induced IL-10 secretion by monocytes triggers porcine NK cell cytotoxicity. Front. Immunol. 2021 12 634402 10.3389/fimmu.2021.634402 33679785
    [Google Scholar]
  85. Wynn T.A. Vannella K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016 44 3 450 462 10.1016/j.immuni.2016.02.015 26982353
    [Google Scholar]
  86. Bamodu O.A. Kuo K.T. Wang C.H. Huang W.C. Wu A.T.H. Tsai J.T. Lee K.Y. Yeh C.T. Wang L.S. Astragalus polysaccharides (PG2) enhances the M1 polarization of macrophages, functional maturation of dendritic cells, and T cell-mediated anticancer immune responses in patients with lung cancer. Nutrients 2019 11 10 2264 10.3390/nu11102264 31547048
    [Google Scholar]
  87. Long T. Liu Z. Shang J. Zhou X. Yu S. Tian H. Bao Y. Polygonatum sibiricum polysaccharides play anti-cancer effect through TLR4-MAPK/NF-κB signaling pathways. Int. J. Biol. Macromol. 2018 111 813 821 10.1016/j.ijbiomac.2018.01.070 29343453
    [Google Scholar]
  88. Mantovani A. Marchesi F. Malesci A. Laghi L. Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017 14 7 399 416 10.1038/nrclinonc.2016.217 28117416
    [Google Scholar]
  89. Wang Z. Dong B. Feng Z. Yu S. Bao Y. A study on immunomodulatory mechanism of Polysaccharopeptide mediated by TLR4 signaling pathway. BMC Immunol. 2015 16 1 34 10.1186/s12865‑015‑0100‑5 26032186
    [Google Scholar]
  90. Kwak B.S. Hwang D. Lee S.J. Choi H.J. Park H.Y. Shin K.S. Rhamnogalacturonan-I-type polysaccharide purified from broccoli exerts anti-metastatic activities via innate immune cell activation. J. Med. Food 2019 22 5 451 459 10.1089/jmf.2018.4286 30897013
    [Google Scholar]
  91. Shin M.S. Hwang S.H. Yoon T.J. Kim S.H. Shin K.S. Polysaccharides from ginseng leaves inhibit tumor metastasis via macrophage and NK cell activation. Int. J. Biol. Macromol. 2017 103 1327 1333 10.1016/j.ijbiomac.2017.05.055 28522391
    [Google Scholar]
  92. Park H.B. Hwang J. Zhang W. Go S. Kim J. Choi I. You S. Jin J.O. Polysaccharide from Codium fragile induces anti-cancer immunity by activating natural killer cells. Mar. Drugs 2020 18 12 626 10.3390/md18120626 33302530
    [Google Scholar]
  93. Yang W. Zhang H. Ji M. Pei F. Wang Y. Antitumor effect of a polysaccharide isolated from Phellinus pullus as an immunostimulant. Biomed. Rep. 2016 4 3 361 364 10.3892/br.2016.587 26998276
    [Google Scholar]
  94. Ferrara R. Roz L. Eating away T cell responses in lung cancer. J. Exp. Med. 2022 219 12 e20221449 10.1084/jem.20221449 36214813
    [Google Scholar]
  95. Cheroutre H. Husain M.M. CD4 CTL: Living up to the challenge. Semin. Immunol. 2013 25 4 273 281 10.1016/j.smim.2013.10.022 24246226
    [Google Scholar]
  96. Weng X. Zhao B. Li R. Li Q. Zhang A. Cultivated Artemisia rupestris L. polysaccharide CARP2 as an adjuvant for influenza vaccines to prolong immune responses. Int. J. Biol. Macromol. 2023 224 713 724 10.1016/j.ijbiomac.2022.10.159 36280174
    [Google Scholar]
  97. Choi E.H. Son S.U. Shin K.S. Tumor inhibitory effect via immunostimulating activities of a rhamnogalacturonan‐I‐rich polysaccharide isolated from turmeric (Curcuma longa L.). J. Food Biochem. 2022 46 10 e14362 10.1111/jfbc.14362 35933698
    [Google Scholar]
  98. Wang D. Cui Q. Yang Y.J. Liu A.Q. Zhang G. Yu J.C. Application of dendritic cells in tumor immunotherapy and progress in the mechanism of anti-tumor effect of Astragalus polysaccharide (APS) modulating dendritic cells: A review. Biomed. Pharmacother. 2022 155 113541 10.1016/j.biopha.2022.113541 36127221
    [Google Scholar]
  99. Wang Y. Fan X. Wu X. Ganoderma lucidum polysaccharide (GLP) enhances antitumor immune response by regulating differentiation and inhibition of MDSCs via a CARD9-NF-κB-IDO pathway. Biosci. Rep. 2020 40 6 BSR20201170 10.1042/BSR20201170 32530032
    [Google Scholar]
  100. Leung E.L.H. Li R.Z. Fan X.X. Wang L.Y. Wang Y. Jiang Z. Huang J. Pan H.D. Fan Y. Xu H. Wang F. Rui H. Wong P. Sumatoh H. Fehlings M. Nardin A. Gavine P. Zhou L. Cao Y. Liu L. Longitudinal high-dimensional analysis identifies immune features associating with response to anti-PD-1 immunotherapy. Nat. Commun. 2023 14 1 5115 10.1038/s41467‑023‑40631‑0 37607911
    [Google Scholar]
  101. Olivera I. Sanz-Pamplona R. Bolaños E. Rodriguez I. Etxeberria I. Cirella A. Egea J. Garasa S. Migueliz I. Eguren-Santamaria I. Sanmamed M.F. Glez-Vaz J. Azpilikueta A. Alvarez M. Ochoa M.C. Malacrida B. Propper D. de Andrea C.E. Berraondo P. Balkwill F.R. Teijeira Á. Melero I. A therapeutically actionable protumoral axis of cytokines involving IL-8, TNFα, and IL-1β. Cancer Discov. 2022 12 9 2140 2157 10.1158/2159‑8290.CD‑21‑1115 35771565
    [Google Scholar]
  102. Ding H.M. Chen X.J. Chen H.M. Wang C.S. Qian G.Y. Effect of Sargassum fusiforme polysaccharide on apoptosis and its possible mechanism in human erythroleukemia cells. Chin. J. Nat. Med. 2020 18 10 749 759 10.1016/S1875‑5364(20)60015‑2 33039054
    [Google Scholar]
  103. Tian H. Liu Z. Pu Y. Bao Y. Immunomodulatory effects exerted by Poria Cocos polysaccharides via TLR4/TRAF6/NF-κB signaling in vitro and in vivo. Biomed. Pharmacother. 2019 112 108709 10.1016/j.biopha.2019.108709 30970514
    [Google Scholar]
  104. Han S. Huang K. Gu Z. Wu J. Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy. Nanoscale 2020 12 2 413 436 10.1039/C9NR08086D 31829394
    [Google Scholar]
  105. Xia X. Wu W.K.K. Wong S.H. Liu D. Kwong T.N.Y. Nakatsu G. Yan P.S. Chuang Y.M. Chan M.W.Y. Coker O.O. Chen Z. Yeoh Y.K. Zhao L. Wang X. Cheng W.Y. Chan M.T.V. Chan P.K.S. Sung J.J.Y. Wang M.H. Yu J. Bacteria pathogens drive host colonic epithelial cell promoter hypermethylation of tumor suppressor genes in colorectal cancer. Microbiome 2020 8 1 108 10.1186/s40168‑020‑00847‑4 32678024
    [Google Scholar]
  106. Furusawa Y. Kondo T. DNA damage induced by ultrasound and cellular responses. Mol. Biol. 2017 6 2
    [Google Scholar]
  107. Huang P. Yan R. Zhang X. Wang L. Ke X. Qu Y. Activating Wnt/β-catenin signaling pathway for disease therapy: Challenges and opportunities. Pharmacol. Ther. 2019 196 79 90 10.1016/j.pharmthera.2018.11.008 30468742
    [Google Scholar]
  108. Pashirzad M. Khorasanian R. Fard M.M. Arjmand M.H. Langari H. Khazaei M. Soleimanpour S. Rezayi M. Ferns G.A. Hassanian S.M. Avan A. The therapeutic potential of MAPK/ERK inhibitors in the treatment of colorectal cancer. Curr. Cancer Drug Targets 2021 21 11 932 943 10.2174/1568009621666211103113339 34732116
    [Google Scholar]
  109. Hezaveh K. Shinde R.S. Klötgen A. Halaby M.J. Lamorte S. Ciudad M.T. Quevedo R. Neufeld L. Liu Z.Q. Jin R. Grünwald B.T. Foerster E.G. Chaharlangi D. Guo M. Makhijani P. Zhang X. Pugh T.J. Pinto D.M. Co I.L. McGuigan A.P. Jang G.H. Khokha R. Ohashi P.S. O’Kane G.M. Gallinger S. Navarre W.W. Maughan H. Philpott D.J. Brooks D.G. McGaha T.L. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity 2022 55 2 324 340.e8 10.1016/j.immuni.2022.01.006 35139353
    [Google Scholar]
  110. Gur C. Ibrahim Y. Isaacson B. Yamin R. Abed J. Gamliel M. Enk J. Bar-On Y. Stanietsky-Kaynan N. Coppenhagen-Glazer S. Shussman N. Almogy G. Cuapio A. Hofer E. Mevorach D. Tabib A. Ortenberg R. Markel G. Miklić K. Jonjic S. Brennan C.A. Garrett W.S. Bachrach G. Mandelboim O. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015 42 2 344 355 10.1016/j.immuni.2015.01.010 25680274
    [Google Scholar]
  111. Fernandes M.R. Aggarwal P. Costa R.G.F. Cole A.M. Trinchieri G. Targeting the gut microbiota for cancer therapy. Nat. Rev. Cancer 2022 22 12 703 722 10.1038/s41568‑022‑00513‑x 36253536
    [Google Scholar]
  112. Cai J. Sun L. Gonzalez F.J. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe 2022 30 3 289 300 10.1016/j.chom.2022.02.004 35271802
    [Google Scholar]
  113. Sharma P.C. Sharma D. Sharma A. Bhagat M. Ola M. Thakur V.K. Bhardwaj J.K. Goyal R.K. Recent advances in microbial toxin-related strategies to combat cancer. Semin. Cancer Biol. 2022 86 Pt 3 753 768 10.1016/j.semcancer.2021.07.007 34271147
    [Google Scholar]
  114. Mohamed M.F. Wood S.J. Roy R. Reiser J. Kuzel T.M. Shafikhani S.H. Pseudomonas aeruginosa ExoT induces G1 cell cycle arrest in melanoma cells. Cell. Microbiol. 2021 23 8 e13339 10.1111/cmi.13339 33821556
    [Google Scholar]
  115. Shrestha A. Uzal F.A. McClane B.A. The interaction of Clostridium perfringens enterotoxin with receptor claudins. Anaerobe 2016 41 18 26 10.1016/j.anaerobe.2016.04.011 27090847
    [Google Scholar]
  116. Gao X. Homayoonfal M. Exploring the anti-cancer potential of Ganoderma lucidum polysaccharides (GLPs) and their versatile role in enhancing drug delivery systems: A multifaceted approach to combat cancer. Cancer Cell Int. 2023 23 1 324 10.1186/s12935‑023‑03146‑8 38104078
    [Google Scholar]
  117. Gong H. Li W. Sun J. Jia L. Guan Q. Guo Y. Wang Y. A review on plant polysaccharide based on drug delivery system for construction and application, with emphasis on traditional Chinese medicine polysaccharide. Int. J. Biol. Macromol. 2022 211 711 728 10.1016/j.ijbiomac.2022.05.087 35588976
    [Google Scholar]
  118. Siddiqi K.S. ur Rahman, A.; Tajuddin; Husen, A. Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res. Lett. 2016 11 1 498 10.1186/s11671‑016‑1714‑0 27837567
    [Google Scholar]
  119. Bilal M. Gul I. Basharat A. Qamar S.A. Polysaccharides-based bio-nanostructures and their potential food applications. Int. J. Biol. Macromol. 2021 176 540 557 10.1016/j.ijbiomac.2021.02.107 33607134
    [Google Scholar]
  120. Rezazadeh M. Emami J. Hasanzadeh F. Sadeghi H. Minaiyan M. Mostafavi A. Rostami M. Lavasanifar A. In vivo pharmacokinetics, biodistribution and anti-tumor effect of paclitaxel-loaded targeted chitosan-based polymeric micelle. Drug Deliv. 2014 23 5 1 11 10.3109/10717544.2014.954281 25188785
    [Google Scholar]
  121. Safdar M.H. Hussain Z. Abourehab M.A.S. Hasan H. Afzal S. Thu H.E. New developments and clinical transition of hyaluronic acid-based nanotherapeutics for treatment of cancer: Reversing multidrug resistance, tumour-specific targetability and improved anticancer efficacy. Artif. Cells Nanomed. Biotechnol. 2017 46 8 1 14 10.1080/21691401.2017.1397001 29082766
    [Google Scholar]
  122. Min S.H. Lei W. Jun C.J. Yan Z.S. Guang Y.X. Tong Z. Yong Z.P. Hui L.Z. Xing H. Design strategy and research progress of multifunctional nanoparticles in lung cancer therapy. Expert Opin. Investig. Drugs 2023 32 8 723 739 10.1080/13543784.2023.2254683 37668152
    [Google Scholar]
  123. Serini S. Trombino S. Curcio F. Sole R. Cassano R. Calviello G. Hyaluronic acid-mediated phenolic compound nanodelivery for cancer therapy. Pharmaceutics 2023 15 6 1751 10.3390/pharmaceutics15061751 37376199
    [Google Scholar]
  124. Markeb A.A. El-Maali N.A. Sayed D.M. Osama A. Abdel-Malek M.A.Y. Zaki A.H. Elwanis M.E.A. Driscoll J.J. Synthesis, structural characterization, and preclinical efficacy of a novel paclitaxel-loaded alginate nanoparticle for breast cancer treatment. Int. J. Breast Cancer 2016 2016 1 1 8 10.1155/2016/7549372 27660726
    [Google Scholar]
  125. Abdelaziz H.M. Gaber M. Abd-Elwakil M.M. Mabrouk M.T. Elgohary M.M. Kamel N.M. Kabary D.M. Freag M.S. Samaha M.W. Mortada S.M. Elkhodairy K.A. Fang J.Y. Elzoghby A.O. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J. Control. Release 2018 269 374 392 10.1016/j.jconrel.2017.11.036 29180168
    [Google Scholar]
  126. Yang W. Zhang Y. Wang J. Li H. Yang H. Glycyrrhetinic acid-cyclodextrin grafted pullulan nanoparticles loaded doxorubicin as a liver targeted delivery carrier. Int. J. Biol. Macromol. 2022 216 789 798 10.1016/j.ijbiomac.2022.07.182 35914549
    [Google Scholar]
  127. Colaço M. Roquito T. Costa J.P. Cruz M.T. Borges O. The effect of curcumin-loaded glucan nanoparticles on immune cells: size as a critical quality attribute. Pharmaceutics 2023 15 2 623 10.3390/pharmaceutics15020623 36839945
    [Google Scholar]
  128. Chishti N. Jagwani S. Dhamecha D. Jalalpure S. Dehghan M.H. Preparation, optimization, and in vivo evaluation of nanoparticle-based formulation for pulmonary delivery of anticancer drug. Medicina (Kaunas) 2019 55 6 294 10.3390/medicina55060294 31226865
    [Google Scholar]
  129. Li T. Yang J. Liu R. Yi Y. Huang M. Wu Y. Tu H. Zhang L. Efficient fabrication of reversible pH-induced carboxymethyl chitosan nanoparticles for antitumor drug delivery under weakly acidic microenvironment. Int. J. Biol. Macromol. 2019 126 68 73 10.1016/j.ijbiomac.2018.12.178 30579898
    [Google Scholar]
  130. Seo H.S. Han J.H. Lim J. Bae G.H. Byun M.J. Wang C.P. Han J. Park J. Park H.H. Shin M. Park T.E. Enhanced postsurgical cancer treatment using methacrylated glycol chitosan hydrogel for sustained DNA/doxorubicin delivery and immunotherapy. Biomater Res. 2024 28 0008 10.34133/bmr.0008 38532906
    [Google Scholar]
  131. Xu B.W. Li S.S. Ding W.L. Zhang C. Rehman M.U. Tareen M.F. Wang L. Huang S.C. From structure to function: A comprehensive overview of polysaccharide roles and applications. Food Front. 2025 6 1 15 39 10.1002/fft2.490
    [Google Scholar]
  132. Barbosa J.R. Carvalho Junior R.N. Occurrence and possible roles of polysaccharides in fungi and their influence on the development of new technologies. Carbohydr. Polym. 2020 246 116613 10.1016/j.carbpol.2020.116613 32747253
    [Google Scholar]
  133. Barbosa A.I. Coutinho A.J. Costa Lima S.A. Reis S. Marine polysaccharides in pharmaceutical applications: Fucoidan and chitosan as key players in the drug delivery match field. Mar. Drugs 2019 17 12 654 10.3390/md17120654 31766498
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206395910250816110857
Loading
/content/journals/acamc/10.2174/0118715206395910250816110857
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test