Skip to content
2000
image of Timosaponin A-III Induces ROS-mediated Apoptosis and Triggers Protective Autophagy via the AMPK/mTOR Pathway in Prostate Cancer

Abstract

Introduction

Timosaponin A-III (TAIII) is an effective anti-tumor ingredient extracted from the rhizomes of . However, the effect of TAIII on prostate cancer cells (PCa) and its underlying mechanisms is rarely investigated. The current study aimed to investigate the anti-tumor effect and potential mechanisms of TAIII in PCa cells.

Methods

The effect of TAIII on the cell proliferation of PCa was evaluated by CCK-8 assay, colony formation assay, and EDU assay. Cell apoptosis and reactive oxygen species (ROS) production were evaluated by flow cytometry. The puncta of LC3 were detected by immunofluorescence analysis. The protein levels of apoptosis, autophagy, and AMPK/mTOR pathway were assessed by western blot. Finally, a PC3 xenograft nude mouse model was constructed to determine the effect of TAIII combined with chloroquine (CQ) .

Results

Our data showed that TAIII inhibited the proliferation of PCa cells and induced ROS-dependent apoptosis. TAIII treatment dramatically promoted the formation of LC3-positive puncta, and increased the expression of LC3B-II and P62 protein. Moreover, the combination of TAIII with CQ significantly enhanced the pro-apoptosis effect of TAIII in PCa cells and the PC3 xenograft model. In addition, the activation of the AMPK/mTOR pathway and the induction of autophagy induced by TAIII were reversed by Compound C. Suppressing AMPK with Compound C enhanced the apoptosis induced by TAIII in PCa cells.

Discussion

This study establishes TAIII as a potent anti-prostate-cancer agent that kills tumor cells ROS-driven apoptosis while simultaneously triggering cytoprotective autophagy through the AMPK–mTOR axis. However, TAIII’s clinical potential awaits pharmacokinetic, bioavailability, and toxicity evaluation.

Conclusion

TAIII induced ROS-mediated cell apoptosis and promoted cytoprotective autophagy the AMPK/mTOR pathway in PCa. These findings may provide a new strategy for combining TAIII with CQ together for PCa treatment.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206389520250805135535
2025-08-12
2025-12-18
Loading full text...

Full text loading...

/deliver/fulltext/acamc/10.2174/0118715206389520250805135535/BMS-ACAMC-2025-54.html?itemId=/content/journals/acamc/10.2174/0118715206389520250805135535&mimeType=html&fmt=ahah

References

  1. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  2. Zhang M. Dai X. Chen G. Jin X. Zhao Y. Mei K. Wu Z. Huang H. Analysis of the distribution characteristics of prostate cancer and its environmental factors in China. Environ. Sci. Pollut. Res. Int. 2022 30 11 29349 29368 10.1007/s11356‑022‑24266‑0 36417068
    [Google Scholar]
  3. Farolfi A. Fendler W. Iravani A. Haberkorn U. Hicks R. Herrmann K. Walz J. Fanti S. Theranostics for advanced prostate cancer: Current indications and future developments. Eur. Urol. Oncol. 2019 2 2 152 162 10.1016/j.euo.2019.01.001 31017091
    [Google Scholar]
  4. Newman D.J. Cragg G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016 79 3 629 661 10.1021/acs.jnatprod.5b01055 26852623
    [Google Scholar]
  5. Chien H.J. Liu C.J. Ying T.H. Wu P.J. Wang J.W. Ting Y.H. Hsieh Y.H. Wang S.C. Timosaponin AIII inhibits migration and invasion abilities in human cervical cancer cells through inactivation of p38 MAPK-mediated uPA expression in vitro and in vivo. Cancers (Basel) 2022 15 1 37 10.3390/cancers15010037 36612038
    [Google Scholar]
  6. Hsieh Y.H. Hsu W.H. Yang S.F. Liu C.J. Lu K.H. Wang P.H. Lin R.C. Potential antimetastatic effect of timosaponin AIII against human osteosarcoma cells through regulating the integrin/FAK/Cofilin axis. Pharmaceuticals 2021 14 3 260 10.3390/ph14030260 33799345
    [Google Scholar]
  7. Wang H. Dong R. Fan W.W. Zheng X.C. Li A.M. Wang W.D. Timosaponin A III induces autophagy of T cell acute lymphoblastic leukemia Jurkat cells via inhibition of the PI3K/Akt/mTOR pathway. Oncol. Rep. 2019 41 5 2937 2944 10.3892/or.2019.7072 30896824
    [Google Scholar]
  8. Sarmiento-Salinas F.L. Perez-Gonzalez A. Acosta-Casique A. Ix-Ballote A. Diaz A. Treviño S. Rosas-Murrieta N.H. Millán-Perez-Peña L. Maycotte P. Reactive oxygen species: Role in carcinogenesis, cancer cell signaling and tumor progression. Life Sci. 2021 284 119942 10.1016/j.lfs.2021.119942 34506835
    [Google Scholar]
  9. Zhang Y. Tang Y. Tang X. Wang Y. Zhang Z. Yang H. Paclitaxel induces the apoptosis of prostate cancer cells via ROS-mediated HIF-1α expression. Molecules 2022 27 21 7183 10.3390/molecules27217183 36364008
    [Google Scholar]
  10. Tuli H.S. Kaur J. Vashishth K. Sak K. Sharma U. Choudhary R. Behl T. Singh T. Sharma S. Saini A.K. Dhama K. Varol M. Sethi G. Molecular mechanisms behind ROS regulation in cancer: A balancing act between augmented tumorigenesis and cell apoptosis. Arch. Toxicol. 2023 97 1 103 120 10.1007/s00204‑022‑03421‑z 36443493
    [Google Scholar]
  11. Cheng B. Chu X. Liu R. Ma X. Wang M. Zhang J. Jiao P. Gao Q. Ma W. Zhang Y. Zhao C. Zhou D. Xiao S. Synthesis of novel pentacyclic triterpenoid derivatives that induce apoptosis in cancer cells through a ROS-dependent, mitochondrial-mediated pathway. Mol. Pharm. 2023 20 1 701 710 10.1021/acs.molpharmaceut.2c00885 36458832
    [Google Scholar]
  12. Chen Y.C. Yang C.W. Chan T.F. Farooqi A.A. Chang H.S. Yen C.H. Huang M.Y. Chang H.W. Cryptocaryone promotes ROS-dependent antiproliferation and apoptosis in ovarian cancer cells. Cells 2022 11 4 641 10.3390/cells11040641 35203294
    [Google Scholar]
  13. Chen J.L. Liu S.T. Huang S.M. Wu Z.F. Apoptosis, proliferation, and autophagy are involved in local anesthetic-induced cytotoxicity of human breast cancer cells. Int. J. Mol. Sci. 2022 23 24 15455 10.3390/ijms232415455 36555096
    [Google Scholar]
  14. Levy J.M.M. Towers C.G. Thorburn A. Targeting autophagy in cancer. Nat. Rev. Cancer 2017 17 9 528 542 10.1038/nrc.2017.53 28751651
    [Google Scholar]
  15. Jia J. Bissa B. Brecht L. Allers L. Choi S.W. Gu Y. Zbinden M. Burge M.R. Timmins G. Hallows K. Behrends C. Deretic V. AMPK, a regulator of metabolism and autophagy, is activated by lysosomal damage via a novel galectin-directed ubiquitin signal transduction system. Mol. Cell 2020 77 5 951 969.e9 10.1016/j.molcel.2019.12.028 31995728
    [Google Scholar]
  16. Wang L. Han H. Feng Y. Ma J. Han Z. Li R. Zhu W. Li S. Tian J. Zhang L. Capilliposide B inhibits the migration of prostate cancer by inducing autophagy through the ROS/AMPK/mTOR pathway. Phytother. Res. 2023 37 7 2902 2914 10.1002/ptr.7785 36867511
    [Google Scholar]
  17. Lin J. Wang W. Hu T. Zhu G. Li L. Zhang C. Xu Z. Yu H. Wu H. Zhu J. FOXM1 contributes to docetaxel resistance in castration-resistant prostate cancer by inducing AMPK/mTOR-mediated autophagy. Cancer Lett. 2020 469 481 489 10.1016/j.canlet.2019.11.014 31738958
    [Google Scholar]
  18. Perillo B. Di Donato M. Pezone A. Di Zazzo E. Giovannelli P. Galasso G. Castoria G. Migliaccio A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020 52 2 192 203 10.1038/s12276‑020‑0384‑2 32060354
    [Google Scholar]
  19. Yao J. Ma C. Feng K. Tan G. Wen Q. Focusing on the role of natural products in overcoming cancer drug resistance: An autophagy-based perspective. Biomolecules 2022 12 11 1565 10.3390/biom12111565 36358919
    [Google Scholar]
  20. Mottet N. Bellmunt J. Bolla M. Briers E. Cumberbatch M.G. De Santis M. Fossati N. Gross T. Henry A.M. Joniau S. Lam T.B. Mason M.D. Matveev V.B. Moldovan P.C. van den Bergh R.C.N. Van den Broeck T. van der Poel H.G. van der Kwast T.H. Rouvière O. Schoots I.G. Wiegel T. Cornford P. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur. Urol. 2017 71 4 618 629 10.1016/j.eururo.2016.08.003 27568654
    [Google Scholar]
  21. Slika H. Mansour H. Wehbe N. Nasser S.A. Iratni R. Nasrallah G. Shaito A. Ghaddar T. Kobeissy F. Eid A.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharmacother. 2022 146 112442 10.1016/j.biopha.2021.112442 35062053
    [Google Scholar]
  22. Srinivas U.S. Tan B.W.Q. Vellayappan B.A. Jeyasekharan A.D. ROS and the DNA damage response in cancer. Redox Biol. 2019 25 101084 10.1016/j.redox.2018.101084 30612957
    [Google Scholar]
  23. Wu J. Wang D. Zhou J. Li J. Xie R. Li Y. Huang J. Liu B. Qiu J. Gambogenic acid induces apoptosis and autophagy through ROS ‐mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells. Phytother. Res. 2023 37 1 310 328 10.1002/ptr.7614 36086867
    [Google Scholar]
  24. Wahab S. Alsayari A. Muhsinah A.B. Ahmad I. Hussain M.S. Mallick J. Cirsilineol inhibits the proliferation of human prostate cancer cells by inducing reactive oxygen species (ROS)-mediated apoptosis. Evid. Based Complement. Alternat. Med. 2022 2022 1 7 10.1155/2022/7975664 35855832
    [Google Scholar]
  25. Araya L.E. Soni I.V. Hardy J.A. Julien O. Deorphanizing caspase-3 and caspase-9 substrates in and out of apoptosis with deep substrate profiling. ACS Chem. Biol. 2021 16 11 2280 2296 10.1021/acschembio.1c00456 34553588
    [Google Scholar]
  26. Zhang B. Liu L. Autophagy is a double edged sword in the therapy of colorectal cancer (Review). Oncol. Lett. 2021 21 5 378 10.3892/ol.2021.12639 33777202
    [Google Scholar]
  27. Feng J. Xi Z. Jiang X. Li Y. Nik Nabil W.N. Liu M. Song Z. Chen X. Zhou H. Dong Q. Xu H. Saikosaponin A enhances Docetaxel efficacy by selectively inducing death of dormant prostate cancer cells through excessive autophagy. Cancer Lett. 2023 554 216011 10.1016/j.canlet.2022.216011 36442771
    [Google Scholar]
  28. Mariño G. Niso-Santano M. Baehrecke E.H. Kroemer G. Self-consumption: The interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 2014 15 2 81 94 10.1038/nrm3735 24401948
    [Google Scholar]
  29. Sy L.K. Yan S.C. Lok C.N. Man R.Y.K. Che C.M. Timosaponin A-III induces autophagy preceding mitochondria-mediated apoptosis in HeLa cancer cells. Cancer Res. 2008 68 24 10229 10237 10.1158/0008‑5472.CAN‑08‑1983 19074891
    [Google Scholar]
  30. Lee C.C. Tsai J.P. Lee H.L. Chen Y.J. Chen Y.S. Hsieh Y.H. Chen J.C. Blockage of autophagy increases timosaponin AIII-induced apoptosis of glioma cells in vitro and in vivo. Cells 2022 12 1 168 10.3390/cells12010168 36611961
    [Google Scholar]
  31. Villanueva-Paz M. Cotán D. Garrido-Maraver J. Oropesa-Ávila M. de la Mata M. Delgado-Pavón A. de Lavera I. Alcocer-Gómez E. Álvarez-Córdoba M. Sánchez-Alcázar J.A. AMPK regulation of cell growth, apoptosis, autophagy, and bioenergetics. EXS 2016 107 45 71 (Suppl. 107) 10.1007/978‑3‑319‑43589‑3_3 27812976
    [Google Scholar]
  32. Ni X. Shang F.S. Wang T.F. Wu D.J. Chen D.G. Zhuang B. Ellagic acid induces apoptosis and autophagy in colon cancer through the AMPK/mTOR pathway. Tissue Cell 2023 81 102032 10.1016/j.tice.2023.102032 36701898
    [Google Scholar]
  33. Zhang H. Wang Y. Zhang Y. Zheng B. Wang X. Chen J. Chen B. Xie G. Yang L. Periplocin induces apoptosis of pancreatic cancer cells through autophagy via the AMPK/mTOR pathway. J. Oncol. 2022 2022 1 13 10.1155/2022/8055004 35847371
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206389520250805135535
Loading
/content/journals/acamc/10.2174/0118715206389520250805135535
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: apoptosis ; timosaponin A-III ; reactive oxygen species ; AMPK/mTOR ; Prostate cancer ; autophagy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test