Skip to content
2000
image of A Review of the Anticancer Properties of Cedrol and its Molecular Mechanisms

Abstract

Despite decades of research on promising new therapies, cancer remains a leading cause of morbidity and mortality. Over the years, extensive research has been conducted on the potential anticancer effects of various medicinal plants. One extremely promising agent or adjuvant that may be utilized for the prevention/treatment of several malignancies is cedrol, a naturally occurring sesquiterpene. Cedrol modulates multiple molecular pathways involved in the protracted carcinogenesis process, including the generation of reactive oxygen species, activation of pro-death autophagy, inhibition of survival signals, promotion of apoptosis, and inhibition of minichromosome maintenance proteins. This review suggests that cedrol might be a unique medication for the treatment of glioblastoma, lung cancer, and colorectal cancers. Further in-depth investigations of cedrol's anticancer mechanisms are needed.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206389915250911110114
2025-09-24
2025-11-07
Loading full text...

Full text loading...

References

  1. Gurunathan S. Thangaraj P. Wang L. Cao Q. Kim J.H. Nanovaccines: An effective therapeutic approach for cancer therapy. Biomed. Pharmacother. 2024 170 115992 10.1016/j.biopha.2023.115992 38070247
    [Google Scholar]
  2. Mizanur Rahaman M. Wilairatana P. Hasan Bappi M. Islam T. Nayem Mia M. Douglas Melo Coutinho H. Siyadatpanah A. Torequl Islam M. Anticancer effect of herbal and marine products: A systematic review. J. King Saud Univ. Sci. 2023 35 8 102919 10.1016/j.jksus.2023.102919
    [Google Scholar]
  3. Saburi E. Saburi A. Ghanei M. Promising role for Gc-MAF in cancer immunotherapy: From bench to bedside. Caspian J. Intern. Med. 2017 8 4 228 238 29201312
    [Google Scholar]
  4. Ali M. Wani S.U.D. Salahuddin M. SN, M.; KM.; Dey, T.; Zargar, M.I.; Singh, J. Recent advance of herbal medicines in cancer- a molecular approach. Heliyon 2023 9 2 13684 10.1016/j.heliyon.2023.e13684 36865478
    [Google Scholar]
  5. Forouzanfar F. Barreto G. Majeed M. Sahebkar A. Modulatory effects of curcumin on heat shock proteins in cancer: A promising therapeutic approach. Biofactors 2019 45 5 631 640 10.1002/biof.1522 31136038
    [Google Scholar]
  6. Yin S-Y. Wei W-C. Jian F-Y. Yang N-S. Therapeutic applications of herbal medicines for cancer patients. Evid. Based Complement. Alternat. Med. 2013 2013 302426 10.1155/2013/302426
    [Google Scholar]
  7. Asiimwe J.B. Nagendrappa P.B. Atukunda E.C. Kamatenesi M.M. Nambozi G. Tolo C.U. Ogwang P.E. Sarki A.M. Prevalence of the use of herbal medicines among patients with cancer: A systematic review and meta-analysis. Evid. Based Complement. Alternat. Med. 2021 2021 1 18 10.1155/2021/9963038 34055029
    [Google Scholar]
  8. Cox-Georgian D. Ramadoss N. Dona C. Basu C. Therapeutic and medicinal uses of terpenes. Medicinal Plants 2019 333 359 10.1007/978‑3‑030‑31269‑5_15
    [Google Scholar]
  9. Barreira L.M.F. Ylisirniö A. Pullinen I. Buchholz A. Li Z. Lipp H. Junninen H. Hõrrak U. Noe S.M. Krasnova A. Krasnov D. Kask K. Talts E. Niinemets Ü. Ruiz-Jimenez J. Schobesberger S. The importance of sesquiterpene oxidation products for secondary organic aerosol formation in a springtime hemiboreal forest. Atmos. Chem. Phys. 2021 21 15 11781 11800 10.5194/acp‑21‑11781‑2021
    [Google Scholar]
  10. Forouzanfar F. Pourbagher-Shahri A.M. Ghazavi H. Evaluation of antiarthritic and antinociceptive effects of cedrol in a rat model of arthritis. Oxid. Med. Cell. Longev. 2022 2022 4943965 10.1155/2022/4943965
    [Google Scholar]
  11. Aguilar-Ávila D.S. Flores-Soto M.E. Tapia-Vázquez C. Pastor-Zarandona O.A. López-Roa R.I. Viveros-Paredes J.M. β-Caryophyllene, a natural sesquiterpene, attenuates neuropathic pain and depressive-like behavior in experimental diabetic mice. J. Med. Food 2019 22 5 460 468 10.1089/jmf.2018.0157 30864870
    [Google Scholar]
  12. Vairappan C.S. Suzuki M. Ishii T. Okino T. Abe T. Masuda M. Antibacterial activity of Halogenated sesquiterpenes from Malaysian Laurencia spp. Phytochemistry 2008 69 13 2490 2494 10.1016/j.phytochem.2008.06.015 18718619
    [Google Scholar]
  13. Chen T. Liu Y. Ma B. Sun B. Pan Y. Ou Y. Yu H. She Z. Long Y. Anti-inflammatory sesquiterpenes from fruiting bodies of Schizophyllum commune. J. Agric. Food Chem. 2024 72 10 5416 5427 10.1021/acs.jafc.3c08313 38477043
    [Google Scholar]
  14. Chang H.J. Kim J.M. Lee J.C. Kim W.K. Chun H.S. Protective effect of β-caryophyllene, a natural bicyclic sesquiterpene, against cerebral ischemic injury. J. Med. Food 2013 16 6 471 480 10.1089/jmf.2012.2283 23734999
    [Google Scholar]
  15. Maurya A. Mohan S. Verma S.C. Antidiabetic potential of naturally occurring sesquiterpenes: A review. Curr. Top. Med. Chem. 2021 21 10 851 862 10.2174/1568026621666210305102500 33676391
    [Google Scholar]
  16. Baldissera M.D. Souza C.F. Grando T.H. Doleski P.H. Boligon A.A. Stefani L.M. Monteiro S.G. Hypolipidemic effect of β-caryophyllene to treat hyperlipidemic rats. Naunyn Schmiedebergs Arch. Pharmacol. 2017 390 2 215 223 10.1007/s00210‑016‑1326‑3 27913825
    [Google Scholar]
  17. Chang K.F. Huang X.F. Chang J.T. Huang Y.C. Lo W.S. Hsiao C.Y. Tsai N.M. Cedrol, a sesquiterpene alcohol, enhances the anticancer efficacy of temozolomide in attenuating drug resistance via regulation of the DNA damage response and MGMT expression. J. Nat. Prod. 2020 83 10 3021 3029 10.1021/acs.jnatprod.0c00580 32960603
    [Google Scholar]
  18. Özek G. Schepetkin I.A. Yermagambetova M. Özek T. Kirpotina L.N. Almerekova S.S. Abugalieva S.I. Khlebnikov A.I. Quinn M.T. Innate immunomodulatory activity of cedrol, a component of essential oils isolated from Juniperus species. Molecules 2021 26 24 7644 10.3390/molecules26247644 34946725
    [Google Scholar]
  19. Zhang Y. Han L. Chen S.S. Guan J. Qu F.Z. Zhao Y.Q. Hair growth promoting activity of cedrol isolated from the leaves of Platycladus orientalis. Biomed. Pharmacother. 2016 83 641 647 10.1016/j.biopha.2016.07.022 27459121
    [Google Scholar]
  20. Jin S. Park J. Yun H.J. Oh Y.N. Oh S. Choi Y.H. Kim B.W. Kwon H.J. Cedrol, a sesquiterpene isolated from Juniperus chinensis, inhibits human colorectal tumor growth associated through downregulation of minichromosome maintenance proteins. J. Cancer Prev. 2022 27 4 221 228 10.15430/JCP.2022.27.4.221 36713942
    [Google Scholar]
  21. Chen X. Shen J. Zhao J. Guan J. Li W. Xie Q. Zhao Y. Cedrol attenuates collagen-induced arthritis in mice and modulates the inflammatory response in LPS-mediated fibroblast-like synoviocytes. Food Funct. 2020 11 5 4752 4764 10.1039/D0FO00549E 32420568
    [Google Scholar]
  22. Sakhaee M.H. Sayyadi S.A.H. Sakhaee N. Sadeghnia H.R. Hosseinzadeh H. Nourbakhsh F. Forouzanfar F. Cedrol protects against chronic constriction injury-induced neuropathic pain through inhibiting oxidative stress and inflammation. Metab. Brain Dis. 2020 35 7 1119 1126 10.1007/s11011‑020‑00581‑8 32472224
    [Google Scholar]
  23. Hsiao W.W. Lau K.M. Chien S.C. Chu F.H. Chung W.H. Wang S.Y. Antifungal activity of cedrol from Cunninghamia lanceolate var. konishii against Phellinus noxius and its mechanism. Plants 2024 13 2 321 10.3390/plants13020321 38276778
    [Google Scholar]
  24. Kang M.J. Hwang S.K. Park C.H. Moon J.W. Kim D.W. Bae S.E. Kim J.H. Nam J.M. Kim S.J. Bang J. Lim H.J. Uhm K.O. Kim H.S. Cedrol derivative attenuates muscle atrophy through regulation of myostatin transcription via Ca2+-CaMK-FoxO3a signaling pathways. Exp. Cell Res. 2025 448 2 114577 10.1016/j.yexcr.2025.114577 40286862
    [Google Scholar]
  25. Asgharzade S. Ahmadzadeh A.M. Pourbagher-Shahri A.M. Forouzanfar F. Protective effects of cedrol against transient global cerebral ischemia/reperfusion injury in rat. BMC Complement Med. Ther. 2025 25 1 83 10.1186/s12906‑025‑04827‑9 40012040
    [Google Scholar]
  26. Zheng Z. Fan Y. Zhang J. Wang J. Li Z. Cedrol alleviates postmenopausal osteoporosis in rats through inhibiting the activation of the NF-κB signaling pathway. In Vitro Cell. Dev. Biol. Anim. 2024 60 8 903 915 10.1007/s11626‑024‑00921‑3 38814422
    [Google Scholar]
  27. Forouzanfar F. Hosseini M. Ahmadzadeh A.M. Pourbagher-Shahri A.M. Neuroprotective effect of cedrol in a male rat model of Parkinson’s disease. Physiol. Rep. 2025 13 7 70309 10.14814/phy2.70309 40192183
    [Google Scholar]
  28. Brás T. Neves L.A. Crespo J.G. Duarte M.F. Advances in sesquiterpene lactones extraction. Trends Analyt. Chem. 2023 158 116838 10.1016/j.trac.2022.116838
    [Google Scholar]
  29. Tan A.C. Ashley D.M. López G.Y. Malinzak M. Friedman H.S. Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J. Clin. 2020 70 4 299 312 10.3322/caac.21613 32478924
    [Google Scholar]
  30. Bikfalvi A. da Costa C.A. Avril T. Barnier J.V. Bauchet L. Brisson L. Cartron P.F. Castel H. Chevet E. Chneiweiss H. Clavreul A. Constantin B. Coronas V. Daubon T. Dontenwill M. Ducray F. Entz-Werlé N. Figarella-Branger D. Fournier I. Frenel J.S. Gabut M. Galli T. Gavard J. Huberfeld G. Hugnot J.P. Idbaih A. Junier M.P. Mathivet T. Menei P. Meyronet D. Mirjolet C. Morin F. Mosser J. Moyal E.C.J. Rousseau V. Salzet M. Sanson M. Seano G. Tabouret E. Tchoghandjian A. Turchi L. Vallette F.M. Vats S. Verreault M. Virolle T. Challenges in glioblastoma research: Focus on the tumor microenvironment. Trends Cancer 2023 9 1 9 27 10.1016/j.trecan.2022.09.005 36400694
    [Google Scholar]
  31. Liang X. Wang Z. Dai Z. Liu J. Zhang H. Wen J. Zhang N. Zhang J. Luo P. Liu Z. Liu Z. Cheng Q. Oxidative stress is involved in immunosuppression and macrophage regulation in glioblastoma. Clin. Immunol. 2024 258 109802 10.1016/j.clim.2023.109802 37866784
    [Google Scholar]
  32. Xi G. Hayes E. Lewis R. Ichi S. Mania-Farnell B. Shim K. Takao T. Allender E. Mayanil C.S. Tomita T. CD133 and DNA-PK regulate MDR1 via the PI3K- or Akt-NF-κB pathway in multidrug-resistant glioblastoma cells in vitro. Oncogene 2016 35 2 241 250 10.1038/onc.2015.78 25823028
    [Google Scholar]
  33. Yalamarty S.S.K. Filipczak N. Li X. Subhan M.A. Parveen F. Ataide J.A. Rajmalani B.A. Torchilin V.P. Mechanisms of resistance and current treatment options for glioblastoma multiforme (GBM). Cancers 2023 15 7 2116 10.3390/cancers15072116 37046777
    [Google Scholar]
  34. Chang K.F. Huang X.F. Chang J.T. Huang Y.C. Weng J.C. Tsai N.M. Cedrol suppresses glioblastoma progression by triggering DNA damage and blocking nuclear translocation of the androgen receptor. Cancer Lett. 2020 495 180 190 10.1016/j.canlet.2020.09.007 32987140
    [Google Scholar]
  35. Chang K.F. Liu C.Y. Huang Y.C. Hsiao C.Y. Tsai N.M. Downregulation of VEGFR2 signaling by cedrol abrogates VEGF driven angiogenesis and proliferation of glioblastoma cells through AKT/P70S6K and MAPK/ERK1/2 pathways. Oncol. Lett. 2023 26 2 342 10.3892/ol.2023.13928 37427338
    [Google Scholar]
  36. Guo Y-J. Pan W-W. Liu S-B. Shen Z-F. Xu Y. Hu L-L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020 19 3 1997 2007 32104259
    [Google Scholar]
  37. Siegel R.L. Wagle N.S. Cercek A. Smith R.A. Jemal A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023 73 3 233 254 10.3322/caac.21772 36856579
    [Google Scholar]
  38. Chien J.H. Chang K.F. Lee S.C. Lee C.J. Chen Y.T. Lai H.C. Lu Y.C. Tsai N.M. Cedrol restricts the growth of colorectal cancer in vitro and in vivo by inducing cell cycle arrest and caspase-dependent apoptotic cell death. Int. J. Med. Sci. 2022 19 13 1953 1964 10.7150/ijms.77719 36438926
    [Google Scholar]
  39. Mishra S.K. Bae Y.S. Lee Y.M. Kim J.S. Oh S.H. Kim H.M. Sesquiterpene alcohol cedrol chemosensitizes human cancer cells and suppresses cell proliferation by destabilizing plasma membrane lipid rafts. Front. Cell Dev. Biol. 2021 8 571676 10.3389/fcell.2020.571676 33585438
    [Google Scholar]
  40. Nooreldeen R. Bach H. Current and future development in lung cancer diagnosis. Int. J. Mol. Sci. 2021 22 16 8661 10.3390/ijms22168661 34445366
    [Google Scholar]
  41. Yun H.J. Jeoung D.J. Jin S. Park J. Lee E.W. Lee H.T. Choi Y.H. Kim B.W. Kwon H.J. Induction of cell cycle arrest, apoptosis, and reducing the expression of MCM proteins in human lung carcinoma A549 cells by cedrol, isolated from Juniperus chinensis. J. Microbiol. Biotechnol. 2022 32 7 918 926 10.4014/jmb.2205.05012 35880481
    [Google Scholar]
  42. Tian Y. Zhou Y. Chen F. Qian S. Hu X. Zhang B. Liu Q. Research progress in MCM family: Focus on the tumor treatment resistance. Biomed. Pharmacother. 2024 173 116408 10.1016/j.biopha.2024.116408 38479176
    [Google Scholar]
  43. Zhang S.Y. Li X.B. Hou S.G. Sun Y. Shi Y.R. Lin S.S. Cedrol induces autophagy and apoptotic cell death in A549 non-small cell lung carcinoma cells through the P13K/Akt signaling pathway, the loss of mitochondrial transmembrane potential and the generation of ROS. Int. J. Mol. Med. 2016 38 1 291 299 10.3892/ijmm.2016.2585 27177023
    [Google Scholar]
  44. Carneiro B.A. El-Deiry W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 2020 17 7 395 417 10.1038/s41571‑020‑0341‑y 32203277
    [Google Scholar]
  45. Jan R. Chaudhry G.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull. 2019 9 2 205 218 10.15171/apb.2019.024 31380246
    [Google Scholar]
  46. Valley C.C. Lewis A.K. Mudaliar D.J. Perlmutter J.D. Braun A.R. Karim C.B. Thomas D.D. Brody J.R. Sachs J.N. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death receptor 5 networks that are highly organized. J. Biol. Chem. 2012 287 25 21265 21278 10.1074/jbc.M111.306480 22496450
    [Google Scholar]
  47. Checa J. Aran J.M. Reactive oxygen species: Drivers of physiological and pathological processes. J. Inflamm. Res. 2020 13 1057 1073 10.2147/JIR.S275595 33293849
    [Google Scholar]
  48. Sadiq I.Z. Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. Curr. Mol. Med. 2023 23 1 13 35 10.2174/1566524022666211222161637 34951363
    [Google Scholar]
  49. Zhao W. Zhuang P. Chen Y. Wu Y. Zhong M. Lun Y. “Double-edged sword” effect of reactive oxygen species (ROS) in tumor development and carcinogenesis. Physiol. Res. 2023 72 3 301 307 10.33549/physiolres.935007 37449744
    [Google Scholar]
  50. Robinson J.P. Vanbrocklin M.W. McKinney A.J. Gach H.M. Holmen S.L. Akt signaling is required for glioblastoma maintenance in vivo. Am. J. Cancer Res. 2011 1 2 155 167 21796274
    [Google Scholar]
  51. Gou K. Liu J. Feng X. Li H. Yuan Y. Xing C. Expression of minichromosome maintenance proteins (MCM) and cancer prognosis: A meta-analysis. J. Cancer 2018 9 8 1518 1526 10.7150/jca.22691 29721062
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206389915250911110114
Loading
/content/journals/acamc/10.2174/0118715206389915250911110114
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: medicinal plants ; cedrol ; Sesquiterpene ; apoptosis ; cancer ; pro-death autophagy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test