Skip to content
2000
image of Promising Role of PKM2 in the Diagnosis and Prognosis of Ovarian Cancer

Abstract

PKM2 has emerged as a critical biomarker with the potential to enhance both diagnostic accuracy and therapeutic strategies in ovarian cancer. Due to its high fatality rate and difficulty identifying early signs, ovarian cancer remains a major global health concern. Biomarkers, particularly PKM2, provide targeted therapeutic methods and early detection. The complex role of PKM2 in cancer metabolism highlights its importance as a diagnostic biomarker, particularly through its involvement in the Warburg effect. Its interaction with key signaling pathways and tissue-specific expression patterns makes it a compelling target for personalized therapeutic strategies. Moreover, the detection of PKM2 in the blood of cancer patients further underscores its clinical utility and therapeutic relevance. Beyond diagnostics, PKM2 is also a promising therapeutic target. Preclinical research has reported that both activators and inhibitors of this protein are effective. For PKM2-based treatments to be successfully incorporated into clinical practice, extensive research and rigorous validation are required. To overcome the difficulties in managing ovarian cancer and accomplish the objective of improved early detection and individualised treatment methods, collaboration among the research, healthcare, and advocacy sectors is crucial. In conclusion, PKM2 represents a promising target in the fight against ovarian cancer, with the potential to improve diagnostic accuracy, therapeutic strategies, and overall patient survival.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206394408250806065235
2025-09-04
2025-12-15
Loading full text...

Full text loading...

References

  1. Mirhalina S. Analysis of the characteristics of ovarian tumors. Int. Sci. Health. J. 2023 1 2 33 40 10.59680/ishel.v1i4.959
    [Google Scholar]
  2. Allahqoli L. Mazidimoradi A. Rezaei F. Pasokh Z. Hakimi S. Momenimovahed Z. Aghamohammadi S.Z. Rahmani A. Fallahi A. Karimzadeh A. Salehiniya H. Alkatout I. Global trend of ovarian cancer among old age women: An analysis by socio-demographic index and geographic regions. Indian J. Gynecol. Oncol. 2024 22 4 145 10.1007/s40944‑024‑00915‑9
    [Google Scholar]
  3. Nasiri F. Farrokhi K. Safarzadeh Kozani P. Mahboubi Kancha M. Dashti Shokoohi S. Safarzadeh Kozani P. CAR-T cell immunotherapy for ovarian cancer: Hushing the silent killer. Front. Immunol. 2023 14 1302307 10.3389/fimmu.2023.1302307 38146364
    [Google Scholar]
  4. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  5. Liu B. Zhou H. Tan L. Siu K.T.H. Guan X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024 9 1 175 10.1038/s41392‑024‑01856‑7 39013849
    [Google Scholar]
  6. Shams M. Abdallah S. Alsadoun L. Hamid Y.H. Gasim R. Hassan A. Oncological horizons: The synergy of medical and surgical innovations in cancer treatment. Cureus 2023 15 11 49249 10.7759/cureus.49249 38143618
    [Google Scholar]
  7. Papież M.A. Krzyściak W. Biological therapies in the treatment of cancer—Update and new directions. Int. J. Mol. Sci. 2021 22 21 11694 10.3390/ijms222111694 34769123
    [Google Scholar]
  8. Hui D. Chemotherapy, hormonal therapy, targeted agents, and immunotherapy. Textbook of Palliative Medicine and Supportive Care. CRC Press 2021 639 648 10.1201/9780429275524‑66
    [Google Scholar]
  9. Kędzierska M. Bańkosz M. Role of proteins in oncology: Advances in cancer diagnosis, prognosis, and targeted therapy—A narrative review. J. Clin. Med. 2024 13 23 7131 10.3390/jcm13237131 39685591
    [Google Scholar]
  10. Mir M.A. Jan A. Shabir A. Toward personalized chemotherapy. Novel Approaches in Metronomic Chemotherapy for Breast Cancer Treatment. 1st ed CRC Press 2024 99 119
    [Google Scholar]
  11. Bhattacharya S. Mahato R.K. Singh S. Bhatti G.K. Mastana S.S. Bhatti J.S. Advances and challenges in thyroid cancer: The interplay of genetic modulators, targeted therapies, and AI-driven approaches. Life Sci. 2023 332 122110 10.1016/j.lfs.2023.122110 37734434
    [Google Scholar]
  12. Sobti R.C. Gosipatala S.B. Reddy P. Advanced therapeutic approaches in cancer therapy. Handbook of Oncobiology: From Basic to Clinical Sciences. Springer 2024 127 152 10.1007/978‑981‑99‑6263‑1_79
    [Google Scholar]
  13. Gulwani D. Upadhyay P. Goel R. Sarangthem V. Singh T.D. Nanomedicine mediated thyroid cancer diagnosis and treatment: An approach from generalized to personalized medicine. Discov Oncol. 2024 15 1 789 10.1007/s12672‑024‑01677‑8 39692930
    [Google Scholar]
  14. Banerjee S. Booth C.M. Bruera E. Büchler M.W. Drilon A. Fry T.J. Ghobrial I.M. Gianni L. Jain R.K. Kroemer G. Llovet J.M. Long G.V. Pantel K. Pritchard-Jones K. Scher H.I. Tabernero J. Weichselbaum R.R. Weller M. Wu Y.L. Two decades of advances in clinical oncology — lessons learned and future directions. Nat. Rev. Clin. Oncol. 2024 21 11 771 780 10.1038/s41571‑024‑00945‑4 39354161
    [Google Scholar]
  15. Joshi D.C. Sharma A. Prasad S. Singh K. Kumar M. Sherawat K. Tuli H.S. Gupta M. Novel therapeutic agents in clinical trials: Emerging approaches in cancer therapy. Discov Oncol. 2024 15 1 342 10.1007/s12672‑024‑01195‑7 39127974
    [Google Scholar]
  16. Sarhadi V.K. Armengol G. Molecular biomarkers in cancer. Biomolecules 2022 12 8 1021 10.3390/biom12081021 35892331
    [Google Scholar]
  17. Tarighati E. Keivan H. Mahani H. A review of prognostic and predictive biomarkers in breast cancer. Clin. Exp. Med. 2023 23 1 1 16 [PMID: 35031885
    [Google Scholar]
  18. Dakal T.C. Dhakar R. Beura A. Emerging methods and techniques for cancer biomarker discovery. Pathol. Res. Pract. 2024 262 155567
    [Google Scholar]
  19. Zakari S. Niels N.K. Olagunju G.V. Nnaji P.C. Ogunniyi O. Tebamifor M. Israel E.N. Atawodi S.E. Ogunlana O.O. Emerging biomarkers for non-invasive diagnosis and treatment of cancer: A systematic review. Front. Oncol. 2024 14 1405267 10.3389/fonc.2024.1405267 39132504
    [Google Scholar]
  20. Ruiz-Iglesias A. Mañes S. The importance of mitochondrial pyruvate carrier in cancer cell metabolism and tumorigenesis. Cancers 2021 13 7 1488 10.3390/cancers13071488 33804985
    [Google Scholar]
  21. Kaushik M. Kumar S. Singh M. Bio-inspired nanomaterials in cancer theranostics. Nanotheranostics for Diagnosis and Therapy. Singapore Springer 2024 95 123
    [Google Scholar]
  22. Kumar P. Sharma H. Singh A. Durgapal S. Kukreti G. Bhowmick M. Bhowmick P. Ashique S. Targeting the interplay of proteins through protacs for management cancer and associated disorders. Curr. Cancer Ther. Rev. 2025 21 4 525 540 10.2174/0115733947304806240417092449
    [Google Scholar]
  23. Pathak R. Kaur V. Sharma S. Pazopanib: Effective monotherapy for precise cancer treatment, targeting specific mutations and tumors. Afr. J. Bio. Sc. 2024 6 9 1311 1330 10.33472/AFJBS.6.9.2024.1311‑1330
    [Google Scholar]
  24. Sharma H. Halagali P. Majumder A. Natural compounds targeting signaling pathways in breast cancer therapy. Afr J. Biol. Sci. 2024 6 10 5430 5479
    [Google Scholar]
  25. Mishra R. Kaur V. Nogai L. Bhandari M. Bajaj M. Pathak R. Lohia R. Saxena A. Sharma H. Emerging insights and novel therapeutics in polycystic ovary syndrome. Biochem. Cell. Arch. 2024 24 2 1613 1626 10.51470/bca.2024.24.2.1613
    [Google Scholar]
  26. Singla P. Jain A. Deciphering the complex landscape of post-translational modifications on PKM2: Implications in head and neck cancer pathogenesis. Life Sci. 2024 349 122719 10.1016/j.lfs.2024.122719 38759866
    [Google Scholar]
  27. Afonso J. Gonçalves C. Costa M. Ferreira D. Santos L. Longatto-Filho A. Baltazar F. Glucose metabolism reprogramming in bladder cancer: Hexokinase 2 (HK2) as prognostic biomarker and target for bladder cancer therapy. Cancers 2023 15 3 982 10.3390/cancers15030982 36765947
    [Google Scholar]
  28. Xue S. Luo Z. Mao Y. Liu S. A comprehensive analysis of the pyruvate kinase M1/2 (PKM) in human cancer. Gene 2025 937 149155 10.1016/j.gene.2024.149155 39653090
    [Google Scholar]
  29. Zheng H. Zhang M. Ke X. Deng X. Li D. Wang Q. Yan S. Xue Y. Wang Q. LncRNA XIST/miR-137 axis strengthens chemo-resistance and glycolysis of colorectal cancer cells by hindering transformation from PKM2 to PKM1. Cancer Biomark. 2021 30 4 395 406 10.3233/CBM‑201740 33386794
    [Google Scholar]
  30. Halagali P. Tippavajhala V.K. Sharma H. Survivorship and supportive care. Colorectal Cancer. Boca Raton CRC Press 2025 151 166 10.1201/9781032704517‑12
    [Google Scholar]
  31. Kumar P. Pandey S. Ahmad F. Carbon nanotubes: A targeted drug delivery against cancer cell. Curr. Nanosci. 2023 9 1 31
    [Google Scholar]
  32. Kumar P. Ashique S. Sharma H. Yasmin S. Islam A. Mandal S. Gowda B.H.J. Khalid M. Ansari M.Y. Singh M. Ehsan I. Taj T. Taghizadeh-Hesary F. A narrative review on the use of Green synthesized metallic nanoparticles for targeted cancer therapy. Bioorg. Chem. 2025 157 108305 10.1016/j.bioorg.2025.108305 40022847
    [Google Scholar]
  33. Ashique S. Bhowmick M. Pal R. Multi drug resistance in colorectal cancer – Approaches to overcome, advancements and future success. Adv. Cancer Biol. -. Metastasis 2024 10 100114
    [Google Scholar]
  34. Kabra S. Sharma N. Kumari A. Khan S. Pathak R. Sharma H. Al Noman A. An overview of unlocking the power of non-coding rnas in revolutionizing cancer therapy. Curr. Drug Discov. Technol. 2025 22 1 19 10.2174/0115701638333005250128075758 40012378
    [Google Scholar]
  35. Pathak R. Halagali P. Tippavajhala V.K. Dodakallanavar J. Ramachandra H.D. Sharma H. Recent advances in targeted nanocomposite-based therapeutics for cancer therapy. Curr. Drug Res. Rev. 2025 17 1 22 10.2174/0125899775367848250226063700 40143398
    [Google Scholar]
  36. Zhang K. Zhang F. Wang J. FTO effects the proliferation, invasion, and glycolytic metabolism of colon cancer by regulating PKM2. J. Cancer Res. Clin. Oncol. 2025 151 1 36 10.1007/s00432‑024‑06073‑x 39820532
    [Google Scholar]
  37. Chen W. Tang D. Lin J. Huang X. Lin S. Shen G. Dai Y. Exosomal circSHKBP1 participates in non-small cell lung cancer progression through PKM2-mediated glycolysis. Mol. Ther. Oncolytics 2022 24 470 485 10.1016/j.omto.2022.01.012 35229026
    [Google Scholar]
  38. Fukushi A. Kim H.D. Chang Y.C. Kim C.H. Revisited metabolic control and reprogramming cancers by means of the warburg effect in tumor cells. Int. J. Mol. Sci. 2022 23 17 10037 10.3390/ijms231710037 36077431
    [Google Scholar]
  39. Wang B. Pu R. Association between glycolysis markers and prognosis of liver cancer: A systematic review and meta-analysis. World J. Surg. Oncol. 2023 21 1 390 10.1186/s12957‑023‑03275‑4 38114977
    [Google Scholar]
  40. Zhang Q. Yang X. Liu H. Extracellular vesicles in cancer metabolism: Implications for cancer diagnosis and treatment. Technol. Cancer Res. Treat. 2021 20 15330338211037821 10.1177/15330338211037821 34427131
    [Google Scholar]
  41. Cha P.H. Hwang J.H. Kwak D.K. Koh E. Kim K.S. Choi K.Y. APC loss induces Warburg effect via increased PKM2 transcription in colorectal cancer. Br. J. Cancer 2021 124 3 634 644 10.1038/s41416‑020‑01118‑7 33071283
    [Google Scholar]
  42. Peng L. Zhao Y. Tan J. Hou J. Jin X. Liu D.X. Huang B. Lu J. PRMT1 promotes Warburg effect by regulating the PKM2/PKM1 ratio in non-small cell lung cancer. Cell Death Dis. 2024 15 7 504 10.1038/s41419‑024‑06898‑x 39009589
    [Google Scholar]
  43. Upadhyay S. Khan S. Hassan M.I. Exploring the diverse role of pyruvate M2 in cancer: Navigating beyond glycolysis and the Warburg effect. Biochim. Biophys. Acta Rev. Cancer 2024 2024 189089
    [Google Scholar]
  44. Chen F. Liao J. Wu P. Cheng L. Ma Y. Zhang L. Leng X. Zhu X. Liu Z. Xie F. Oridonin inhibits the occurrence and development of colorectal cancer by reversing the Warburg effect via reducing PKM2 dimer formation and preventing its entry into the nucleus. Eur. J. Pharmacol. 2023 954 175856 10.1016/j.ejphar.2023.175856 37321470
    [Google Scholar]
  45. Wu Y. Wang Y. Yao H. Li H. Meng F. Li Q. Lin X. Liu L. MNX1-AS1, a c-Myc induced lncRNA, promotes the Warburg effect by regulating PKM2 nuclear translocation. J. Exp. Clin. Cancer Res. 2022 41 1 337 10.1186/s13046‑022‑02547‑3 36476366
    [Google Scholar]
  46. Liu X. Liu H. Zeng L. Lv Y. BRCA1 overexpression attenuates breast cancer cell growth and migration by regulating the pyruvate kinase M2-mediated Warburg effect via the PI3K/AKT signaling pathway. PeerJ 2022 10 14052 10.7717/peerj.14052 36193432
    [Google Scholar]
  47. Pu F. Liu J. Jing D. Chen F. Huang X. Shi D. Wu W. Lin H. Zhao L. Zhang Z. Lv X. Wang B. Zhang Z. Shao Z. LncCCAT1 interaction protein PKM2 upregulates SREBP2 phosphorylation to promote osteosarcoma tumorigenesis by enhancing the Warburg effect and lipogenesis. Int. J. Oncol. 2022 60 4 44 10.3892/ijo.2022.5334 35244192
    [Google Scholar]
  48. Wiese E.K. Hitosugi S. Loa S.T. Sreedhar A. Andres-Beck L.G. Kurmi K. Pang Y.P. Karnitz L.M. Gonsalves W.I. Hitosugi T. Enzymatic activation of pyruvate kinase increases cytosolic oxaloacetate to inhibit the Warburg effect. Nat. Metab. 2021 3 7 954 968 10.1038/s42255‑021‑00424‑5 34226744
    [Google Scholar]
  49. Pak J.N. Lee H.J. Sim D.Y. Park J.E. Ahn C.H. Park S.Y. Khil J.H. Shim B. Kim B. Kim S.H. Anti‐Warburg effect via generation of ROS and inhibition of PKM2 /β‐catenin mediates apoptosis of lambertianic acid in prostate cancer cells. Phytother. Res. 2023 37 9 4224 4235 10.1002/ptr.7903 37235481
    [Google Scholar]
  50. Ji L. Shen W. Zhang F. Qian J. Jiang J. Weng L. Tan J. Li L. Chen Y. Cheng H. Sun D. Worenine reverses the Warburg effect and inhibits colon cancer cell growth by negatively regulating HIF-1α. Cell. Mol. Biol. Lett. 2021 26 1 19 10.1186/s11658‑021‑00263‑y 34006215
    [Google Scholar]
  51. Marín-Hernández A. Gallardo-Pérez J. Ralph S. Rodríguez-Enríquez S. Moreno-Sánchez R. HIF-1α modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev. Med. Chem. 2009 9 9 1084 1101 10.2174/138955709788922610 19689405
    [Google Scholar]
  52. Vander Heiden M.G. Lunt S.Y. Dayton T.L. Metabolic pathway alterations that support cell proliferation. Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press 2011 325 334 10.1101/sqb.2012.76.010900
    [Google Scholar]
  53. Goetzman E.S. Prochownik E.V. The role for Myc in coordinating glycolysis, oxidative phosphorylation, glutaminolysis, and fatty acid metabolism in normal and neoplastic tissues. Front. Endocrinol. 2018 9 129 10.3389/fendo.2018.00129 29706933
    [Google Scholar]
  54. Stincone A. Prigione A. Cramer T. Wamelink M.M.C. Campbell K. Cheung E. Olin-Sandoval V. Grüning N.M. Krüger A. Tauqeer Alam M. Keller M.A. Breitenbach M. Brindle K.M. Rabinowitz J.D. Ralser M. The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. Camb. Philos. Soc. 2015 90 3 927 963 10.1111/brv.12140 25243985
    [Google Scholar]
  55. Maldonado E.N. Lemasters J.J. ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect Mitochondrion 2014 19 (PT A) 78 84 10.1016/j.mito.2014.09.002 25229666
    [Google Scholar]
  56. Torresano L. Nuevo-Tapioles C. Santacatterina F. Cuezva J.M. Metabolic reprogramming and disease progression in cancer patients. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 5 165721 10.1016/j.bbadis.2020.165721 32057942
    [Google Scholar]
  57. Li W. Li F. Zhang X. Lin H.K. Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct. Target. Ther. 2021 6 1 422 10.1038/s41392‑021‑00825‑8 34924561
    [Google Scholar]
  58. Sukjoi W. Ngamkham J. Attwood P.V. Jitrapakdee S. Targeting cancer metabolism and current anti-cancer drugs. Adv. Exp. Med. Biol. 2021 1286 Part II 15 48 10.1007/978‑3‑030‑55035‑6_2 33725343
    [Google Scholar]
  59. Orang A.V. Petersen J. McKinnon R.A. Michael M.Z. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol. Metab. 2019 23 98 126 10.1016/j.molmet.2019.01.014 30837197
    [Google Scholar]
  60. Yu L. Lu M. Jia D. Ma J. Ben-Jacob E. Levine H. Kaipparettu B.A. Onuchic J.N. Modeling the genetic regulation of cancer metabolism: Interplay between glycolysis and oxidative phosphorylation. Cancer Res. 2017 77 7 1564 1574 10.1158/0008‑5472.CAN‑16‑2074 28202516
    [Google Scholar]
  61. Scatena R. Mitochondria and cancer: A growing role in apoptosis, cancer cell metabolism and dedifferentiation. Adv. Mitochondrial Med. 2012 942 287 308 10.1007/978‑94‑007‑2869‑1_13
    [Google Scholar]
  62. Niu N. Ye J. Hu Z. Zhang J. Wang Y. Regulative roles of metabolic plasticity caused by mitochondrial oxidative phosphorylation and glycolysis on the initiation and progression of tumorigenesis. Int. J. Mol. Sci. 2023 24 8 7076 10.3390/ijms24087076 37108242
    [Google Scholar]
  63. Danhier P. Bański P. Payen V.L. Grasso D. Ippolito L. Sonveaux P. Porporato P.E. Cancer metabolism in space and time: Beyond the Warburg effect. Biochim. Biophys. Acta Bioenerg. 2017 1858 8 556 572 10.1016/j.bbabio.2017.02.001 28167100
    [Google Scholar]
  64. Zahra K. Dey T. Ashish; Mishra, S.P.; Pandey, U. Pyruvate kinase M2 and cancer: The role of PKM2 in promoting tumorigenesis. Front. Oncol. 2020 10 159 10.3389/fonc.2020.00159 32195169
    [Google Scholar]
  65. Wu B. Liang Z. Lan H. Teng X. Wang C. The role of PKM2 in cancer progression and its structural and biological basis. J. Physiol. Biochem. 2024 80 2 261 275 10.1007/s13105‑024‑01007‑0 38329688
    [Google Scholar]
  66. Chen L. Shi Y. Liu S. Cao Y. Wang X. Tao Y. PKM2: The thread linking energy metabolism reprogramming with epigenetics in cancer. Int. J. Mol. Sci. 2014 15 7 11435 11445 10.3390/ijms150711435 24972138
    [Google Scholar]
  67. Zhang Z. Deng X. Liu Y. PKM2, function and expression and regulation. Cell Biosci. 2019 9 1 25
    [Google Scholar]
  68. Yu Z. Huang L. Qiao P. Jiang A. Wang L. Yang T. Tang S. Zhang W. Ren C. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells. Biochem. Biophys. Res. Commun. 2016 473 4 953 958 10.1016/j.bbrc.2016.03.160 27045080
    [Google Scholar]
  69. Chen Q. Shao X. He Y. Lu E. Zhu L. Tang W. Norisoboldine attenuates sepsis-induced acute lung injury by modulating macrophage polarization via PKM2/HIF-1α/PGC-1α pathway. Biol. Pharm. Bull. 2021 44 10 1536 1547 10.1248/bpb.b21‑00457 34602563
    [Google Scholar]
  70. He C.L. Bian Y.Y. Xue Y. Liu Z.X. Zhou K.Q. Yao C.F. Lin Y. Zou H.F. Luo F.X. Qu Y.Y. Zhao J.Y. Ye M.L. Zhao S.M. Xu W. Pyruvate kinase M2 activates mTORC1 by phosphorylating AKT1S1. Sci. Rep. 2016 6 1 21524 10.1038/srep21524 26876154
    [Google Scholar]
  71. Amin S. Yang P. Li Z. Pyruvate kinase M2: A multifarious enzyme in non-canonical localization to promote cancer progression. Biochim. Biophys. Acta Rev. Cancer 2019 1871 2 331 341 10.1016/j.bbcan.2019.02.003 30826427
    [Google Scholar]
  72. Chunlian Z. Qi W. Rui Z. The role of pyruvate kinase M2 posttranslational modification in the occurrence and development of hepatocellular carcinoma. Cell Biochem. Funct. 2024 42 7 4125 10.1002/cbf.4125 39327771
    [Google Scholar]
  73. Li Z. Yang P. Li Z. The multifaceted regulation and functions of PKM2 in tumor progression. Biochim. Biophys. Acta 2014 1846 2 285 296 [PMID: 25064846
    [Google Scholar]
  74. Xiao M. Xie J. Wu Y. Wang G. Qi X. Liu Z. Wang Y. Wang X. Hoque A. Oakhill J. Proud C.G. Li J. The eEF2 kinase-induced STAT3 inactivation inhibits lung cancer cell proliferation by phosphorylation of PKM2. Cell Commun. Signal. 2020 18 1 25 10.1186/s12964‑020‑0528‑y 32054489
    [Google Scholar]
  75. Tao T. Wu S. Sun Z. Ma W. Zhou S. Deng J. Su Q. Peng M. Xu G. Yang X. The molecular mechanisms of LncRNA-correlated PKM2 in cancer metabolism. Biosci. Rep. 2019 39 11 BSR20192453 10.1042/BSR20192453 31654067
    [Google Scholar]
  76. Zhang S. Liao Z. Li S. Luo Y. Non-metabolic enzyme function of PKM2 in hepatocellular carcinoma. A review. Medicine 2023 102 42 35571 10.1097/MD.0000000000035571 37861491
    [Google Scholar]
  77. Jaiswal E. Globisch C. Jain A. Knowledge-driven design and optimization of potent symmetric anticancer molecules: A case study on PKM2 activators. Comput. Biol. Med 2022 151 (PT B) 106313 10.1016/j.compbiomed.2022.106313 36450217
    [Google Scholar]
  78. Huang L. Yu Z. Zhang Z. Ma W. Song S. Huang G. Interaction with pyruvate kinase M2 destabilizes tristetraprolin by proteasome degradation and regulates cell proliferation in breast cancer. Sci. Rep. 2016 6 1 22449 10.1038/srep22449 26926077
    [Google Scholar]
  79. Liu F. Ma F. Wang Y. Hao L. Zeng H. Jia C. Wang Y. Liu P. Ong I.M. Li B. Chen G. Jiang J. Gong S. Li L. Xu W. PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nat. Cell Biol. 2017 19 11 1358 1370 10.1038/ncb3630 29058718
    [Google Scholar]
  80. Feng J. Li J. Wu L. Yu Q. Ji J. Wu J. Dai W. Guo C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2020 39 1 126 10.1186/s13046‑020‑01629‑4 32631382
    [Google Scholar]
  81. Iqbal M.A. Gupta V. Gopinath P. Mazurek S. Bamezai R.N.K. Pyruvate kinase M2 and cancer: An updated assessment. FEBS Lett. 2014 588 16 2685 2692 10.1016/j.febslet.2014.04.011 24747424
    [Google Scholar]
  82. Abeywardana T. Oh M. Jiang L. Yang Y. Kong M. Song J. Yang Y. CARM1 suppresses de novo serine synthesis by promoting PKM2 activity. J. Biol. Chem. 2018 293 39 15290 15303 10.1074/jbc.RA118.004512 30131339
    [Google Scholar]
  83. Hou J.Y. Wang X.L. Chang H.J. Wang X.X. Hao S.L. Gao Y. Li G. Gao L.J. Zhang F.P. Wang Z.J. Shi J.Y. Li N. Cao J.M. PTBP1 crotonylation promotes colorectal cancer progression through alternative splicing-mediated upregulation of the PKM2 gene. J. Transl. Med. 2024 22 1 995 10.1186/s12967‑024‑05793‑5 39497094
    [Google Scholar]
  84. Ling Z. Liu D. Zhang G. Liang Q. Xiang P. Xu Y. Han C. Tao T. miR-361-5p modulates metabolism and autophagy via the Sp1-mediated regulation of PKM2 in prostate cancer. Oncol. Rep. 2017 38 3 1621 1628 10.3892/or.2017.5852 29094170
    [Google Scholar]
  85. Liu X. Li T. Wang Y. Gao X. Wang F. Chen Y. Wang K. Luo W. Kong F. Kou Y. You H. Kong D. Zhang Q. Tang R. Delta‐like homolog 2 facilitates malignancy of hepatocellular carcinoma via activating EGFR/PKM2 signaling pathway. Mol. Carcinog. 2025 64 1 176 191 10.1002/mc.23836 39467107
    [Google Scholar]
  86. Ma T. Patel H. Babapoor-Farrokhran S. Franklin R. Semenza G.L. Sodhi A. Montaner S. KSHV induces aerobic glycolysis and angiogenesis through HIF-1-dependent upregulation of pyruvate kinase 2 in Kaposi’s sarcoma. Angiogenesis 2015 18 4 477 488 10.1007/s10456‑015‑9475‑4 26092770
    [Google Scholar]
  87. Almouhanna F. Blagojevic B. Can S. Ghanem A. Wölfl S. Pharmacological activation of pyruvate kinase M2 reprograms glycolysis leading to TXNIP depletion and AMPK activation in breast cancer cells. Cancer Metab. 2021 9 1 5 10.1186/s40170‑021‑00239‑8 33482908
    [Google Scholar]
  88. Tsai Y.P. Chen H.F. Chen S.Y. Cheng W.C. Wang H.W. Shen Z.J. Song C. Teng S.C. He C. Wu K.J. TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator. Genome Biol. 2014 15 12 513 10.1186/s13059‑014‑0513‑0 25517638
    [Google Scholar]
  89. Puckett D.L. Alquraishi M. Chowanadisai W. Bettaieb A. The role of PKM2 in metabolic reprogramming: Insights into the regulatory roles of non-coding RNAs. Int. J. Mol. Sci. 2021 22 3 1171 10.3390/ijms22031171 33503959
    [Google Scholar]
  90. Su Q. Luo S. Tan Q. Deng J. Zhou S. Peng M. Tao T. Yang X. The role of pyruvate M2 in anticancer therapeutic treatments (Review). Oncol. Lett [Review] 2019 18 6 5663 5672 10.3892/ol.2019.10948 31788038
    [Google Scholar]
  91. Lv S. Cao M. Luo J. Fu K. Yuan W. Search progress of pyruvate kinase M2 (PKM2) in organ fibrosis. Mol. Biol. Rep. 2024 51 1 389 10.1007/s11033‑024‑09307‑w 38446272
    [Google Scholar]
  92. Iksen P.S. Pothongsrisit S. Pongrakhananon V. Targeting the PI3K/AKT/mTOR signaling pathway in lung cancer: An update regarding potential drugs and natural products. Molecules 2021 26 13 4100 10.3390/molecules26134100 34279440
    [Google Scholar]
  93. Luo W. Semenza G.L. Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol. Metab. 2012 23 11 560 566 10.1016/j.tem.2012.06.010 22824010
    [Google Scholar]
  94. Patel S. Globisch C. Pulugu P. Kumar P. Jain A. Shard A. Novel imidazopyrimidines-based molecules induce tetramerization of tumor pyruvate kinase M2 and exhibit potent antiproliferative profile. Eur. J. Pharm. Sci. 2022 170 106112 10.1016/j.ejps.2021.106112 34971746
    [Google Scholar]
  95. Li R. Ning X. Zhou S. Lin Z. Wu X. Chen H. Bai X. Wang X. Ge Z. Li R. Yin Y. Discovery and structure-activity relationship of novel 4-hydroxy-thiazolidine-2-thione derivatives as tumor cell specific pyruvate kinase M2 activators. Eur. J. Med. Chem. 2018 143 48 65 10.1016/j.ejmech.2017.11.023 29172082
    [Google Scholar]
  96. Warner S.L. Carpenter K.J. Bearss D.J. Activators of PKM2 in cancer metabolism. Future Med. Chem. 2014 6 10 1167 1178 10.4155/fmc.14.70 25078136
    [Google Scholar]
  97. He X. Du S. Lei T. Li X. Liu Y. Wang H. Tong R. Wang Y. PKM2 in carcinogenesis and oncotherapy. Oncotarget 2017 8 66 110656 110670 10.18632/oncotarget.22529 29299177
    [Google Scholar]
  98. Biswal S. Sahoo S.K. Biswal B.K. Shikonin a potent phytotherapeutic: A comprehensive review on metabolic reprogramming to overcome drug resistance in cancer. Mol. Biol. Rep. 2025 52 1 347 10.1007/s11033‑025‑10459‑6 40156720
    [Google Scholar]
  99. Anastasiou D. Yu Y. Israelsen W.J. Jiang J.K. Boxer M.B. Hong B.S. Tempel W. Dimov S. Shen M. Jha A. Yang H. Mattaini K.R. Metallo C.M. Fiske B.P. Courtney K.D. Malstrom S. Khan T.M. Kung C. Skoumbourdis A.P. Veith H. Southall N. Walsh M.J. Brimacombe K.R. Leister W. Lunt S.Y. Johnson Z.R. Yen K.E. Kunii K. Davidson S.M. Christofk H.R. Austin C.P. Inglese J. Harris M.H. Asara J.M. Stephanopoulos G. Salituro F.G. Jin S. Dang L. Auld D.S. Park H.W. Cantley L.C. Thomas C.J. Vander Heiden M.G. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat. Chem. Biol. 2012 8 10 839 847 10.1038/nchembio.1060 22922757
    [Google Scholar]
  100. Wang Q. Wang J. Wang J. Ju X. Zhang H. Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment. Toxicol. Res. 2021 10 6 1077 1084 10.1093/toxres/tfab107 34956612
    [Google Scholar]
  101. Hirschey M.D. DeBerardinis R.J. Diehl A.M.E. Dysregulated metabolism contributes to oncogenesis. Seminars in cancer biology. Elsevier 2015 S129 S150
    [Google Scholar]
  102. Gupta V. Wellen K. Mazurek S. Bamezai R.N. Pyruvate kinase M2: Regulatory circuits and potential for therapeutic intervention. Curr. Pharm. Des. 2014 20 15 2595 2606 10.2174/13816128113199990484 23859618
    [Google Scholar]
  103. Han C.Y. Patten D.A. Richardson R.B. Harper M.E. Tsang B.K. Tumor metabolism regulating chemosensitivity in ovarian cancer. Genes Cancer 2018 9 5-6 155 175 10.18632/genesandcancer.176 30603053
    [Google Scholar]
  104. Li Z. Sun C. Qin Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics 2021 11 17 8322 8336 10.7150/thno.62378 34373744
    [Google Scholar]
  105. El-Sahli S. Wang L. Cancer stem cell-associated pathways in the metabolic reprogramming of breast cancer. Int. J. Mol. Sci. 2020 21 23 9125 10.3390/ijms21239125 33266219
    [Google Scholar]
  106. Yi M. Ban Y. Tan Y. Xiong W. Li G. Xiang B. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4: A pair of valves for fine-tuning of glucose metabolism in human cancer. Mol. Metab. 2019 20 1 13 10.1016/j.molmet.2018.11.013 30553771
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206394408250806065235
Loading
/content/journals/acamc/10.2174/0118715206394408250806065235
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: pyruvate kinase ; diagnostic biomarker ; drug targets ; PKM2 ; Ovarian cancer ; warburg effect
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test