Skip to content
2000
image of Therapeutic Perspective of Prodrugs of Non-Steroidal Anti-Inflammatory Drugs and Antioxidants: An Approach to Reduce Toxicity and Enhance Efficacy

Abstract

Background

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are one of the most widely prescribed medications in the world, yet their applications as anti-inflammatory, analgesic, and anti-pyretic drugs remain principally restricted by their detrimental effects on the gastrointestinal tract (GIT) systems. The prodrug approaches have substantially combated the drawbacks of currently available marketed NSAIDs and also showed increased activity.

Objective

In the present study, an extensive literature review on mutual prodrugs of NSAIDs with natural antioxidants has been presented.

Methods

Different databases like ScienceDirect, Elsevier, PubMed, Google Scholar, . were used for an extensive search of articles related to NSAIDs, prodrug concepts, as well as research based on all of the NSAIDs-prodrug molecules prepared to date.

Results

Recent developments in prodrug design have been explored that utilize naturally occurring antioxidants, including Thymol, Guaiacol, Menthol, Eugenol, Sesamol, Vanillin, and Umbelliferon, for the synthesis of mutual prodrugs by esterification methods. Many studies have shown that these prodrugs have significant stability in acidic pH while hydrolyzing in neutral and alkaline pH environments. This indicates their potential as advantageous therapeutic agents with enhanced safety profiles.

Conclusion

The mutual prodrug strategy offers a chance in medicinal chemistry to enhance the therapeutic and clinical efficiency of a drug that has certain unfavorable qualities that limit its clinical utility. This review enlightens mutual prodrugs of NSAIDs and antioxidants that are less harmful and beneficial to mankind, respectively.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266360021250625073338
2025-07-08
2025-11-05
Loading full text...

Full text loading...

References

  1. Ansar W. Ghosh S. Inflammation and inflammatory diseases. In: Biology of C Reactive Protein in Health. and Disease. Springer 2016 67 107 10.1007/978‑81‑322‑2680‑2_4
    [Google Scholar]
  2. Libby P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 2006 83 2 456S 460S 10.1093/ajcn/83.2.456S 16470012
    [Google Scholar]
  3. Patil K.R. Mahajan U.B. Unger B.S. Goyal S.N. Belemkar S. Surana S.J. Ojha S. Patil C.R. Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development of phytopharmaceuticals. Int. J. Mol. Sci. 2019 20 18 4367 10.3390/ijms20184367 31491986
    [Google Scholar]
  4. Bindu S. Mazumder S. Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020 180 114147 10.1016/j.bcp.2020.114147 32653589
    [Google Scholar]
  5. Gupta A. Bah M. NSAIDs in the treatment of postoperative pain. Curr. Pain Headache Rep. 2016 20 11 62 10.1007/s11916‑016‑0591‑7 27841015
    [Google Scholar]
  6. Carbone C. Musumeci T. Pignatello R. Non-steroidal anti-inflammatory drugs. Interact. Stud. 2013 281 303 10.1533/9781908818348.281
    [Google Scholar]
  7. Bacchi S. Palumbo P. Sponta A. Coppolino M.F. Clinical pharmacology of non-steroidal anti-inflammatory drugs: A review. Antiinflamm. Antiallergy Agents Med. Chem. 2012 11 1 52 10.2174/187152312803476255
    [Google Scholar]
  8. Cioli V. Putzolu S. Rossi V. Scorza Barcellona P. Corradino C. The role of direct tissue contact in the production of gastrointestinal ulcers by anti-inflammatory drugs in rats. Toxicol. Appl. Pharmacol. 1979 50 2 283 289 10.1016/0041‑008X(79)90153‑4 505458
    [Google Scholar]
  9. Dreischulte T. Morales D.R. Bell S. Guthrie B. Combined use of nonsteroidal anti-inflammatory drugs with diuretics and/or renin–angiotensin system inhibitors in the community increases the risk of acute kidney injury. Kidney Int. 2015 88 2 396 403 10.1038/ki.2015.101 25874600
    [Google Scholar]
  10. Gunaydin C. Bilge S.S. Effects of nonsteroidal anti-inflammatory drugs at the molecular level. Eurasian J. Med. 2018 50 2 116 121 10.5152/eurasianjmed.2018.0010 30002579
    [Google Scholar]
  11. Harirforoosh S. Asghar W. Jamali F. Adverse effects of nonsteroidal antiinflammatory drugs: An update of gastrointestinal, cardiovascular and renal complications. J. Pharm. Pharm. Sci. 2014 16 5 821 847 10.18433/J3VW2F 24393558
    [Google Scholar]
  12. Wolfe M.M. Lichtenstein D.R. Singh G. Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. N. Engl. J. Med. 1999 340 24 1888 1899 10.1056/NEJM199906173402407 10369853
    [Google Scholar]
  13. Allison M.C. Howatson A.G. Torrance C.J. Lee F.D. Russell R.I. Gastrointestinal damage associated with the use of nonsteroidal antiinflammatory drugs. N. Engl. J. Med. 1992 327 11 749 754 10.1056/NEJM199209103271101 1501650
    [Google Scholar]
  14. Wallace J.L. Cirino G. The development of gastrointestinal-sparing nonsteroidal anti-inflammatory drugs. Trends Pharmacol. Sci. 1994 15 11 405 406 10.1016/0165‑6147(94)90083‑3 7855901
    [Google Scholar]
  15. Jo W.S. Yang K.M. Choi Y.J. Jeong C.H. Ahn K.J. Nam B.H. Lee S.W. Seo S.Y. Jeong M.H. In vitro and in vivo anti-inflammatory effects of pegmatite. Mol. Cell. Toxicol. 2010 6 2 195 202 10.1007/s13273‑010‑0027‑0
    [Google Scholar]
  16. Turunen J.H.O. Mäntyselkä P.T. Kumpusalo E.A. Ahonen R.S. Frequent analgesic use at population level: Prevalence and patterns of use. Pain 2005 115 3 374 381 10.1016/j.pain.2005.03.013 15911164
    [Google Scholar]
  17. Dannhardt G. Laufer S. Structural approaches to explain the selectivity of COX-2 inhibitors: Is there a common pharmacophore? Curr. Med. Chem. 2000 7 11 1101 1112 10.2174/0929867003374237 11032960
    [Google Scholar]
  18. Cipolla G. Crema F. Sacco S. Moro E. de Ponti F. Frigo G. Nonsteroidal anti-inflammatory drugs and inflammatory bowel disease: Current perspectives. Pharmacol. Res. 2002 46 1 1 6 10.1016/S1043‑6618(02)00033‑6 12208114
    [Google Scholar]
  19. Agrawal N. Jaiswal M. Lanjhiyana S.K. A review study on screening of non-steroidal anti-inflammatory drug using experimental animal models for inflammatory diseases. Curr. Overview Pharm. Sci. 2023 2 28 34 10.9734/bpi/cops/v2/4851A
    [Google Scholar]
  20. Fries J.F. Miller S.R. Spitz P.W. Williams C.A. Hubert H.B. Bloch D.A. Toward an epidemiology of gastropathy associated with nonsteroidal antiinflammatory drug use. Gastroenterology 1989 96 2 647 655 (Suppl.) 10.1016/S0016‑5085(89)80061‑7 2909442
    [Google Scholar]
  21. Jaiswal M. Lanjhiyana S. A critical review on colon targeted drug delivery systems for management of IBD. Int. J. Pharm. Sci. Res. 2019 10 985 992
    [Google Scholar]
  22. Jaiswal M. Agrawal N. Kumar Y. Lanjhiyana S.K. In vivo models of chemically induced colitis for inflammatory bowel diseases: An overview. Challeng Adv. Pharm. Res. 2022 10 141 149 10.9734/bpi/capr/v10/4802A
    [Google Scholar]
  23. Takeuchi K. Smale S. Premchand P. Maiden L. Sherwood R. Thjodleifsson B. Bjornsson E. Bjarnason I. Prevalence and mechanism of nonsteroidal anti-inflammatory drug-induced clinical relapse in patients with inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 2006 4 2 196 202 10.1016/S1542‑3565(05)00980‑8 16469680
    [Google Scholar]
  24. Klein A. Eliakim R. Non steroidal anti-inflammatory drugs and inflammatory bowel disease. Pharmaceuticals 2010 3 4 1084 1092 10.3390/ph3041084 27713289
    [Google Scholar]
  25. Arfè A. Scotti L. Varas-Lorenzo C. Nicotra F. Zambon A. Kollhorst B. Schink T. Garbe E. Herings R. Straatman H. Schade R. Villa M. Lucchi S. Valkhoff V. Romio S. Thiessard F. Schuemie M. Pariente A. Sturkenboom M. Corrao G. Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: nested case-control study. BMJ 2016 354 i4857 10.1136/bmj.i4857 27682515
    [Google Scholar]
  26. Dogné J.M. Hanson J. Supuran C. Pratico D. Coxibs and cardiovascular side-effects: From light to shadow. Curr. Pharm. Des. 2006 12 8 971 975 10.2174/138161206776055949 16533164
    [Google Scholar]
  27. Sohail R. Mathew M. Patel K.K. Reddy S.A. Haider Z. Naria M. Habib A. Abdin Z.U. Razzaq Chaudhry W. Akbar A. Effects of non-steroidal anti-inflammatory drugs (NSAIDs) and gastroprotective NSAIDs on the gastrointestinal tract: A narrative review. Cureus 2023 15 4 e37080 10.7759/cureus.37080 37153279
    [Google Scholar]
  28. Roumie C.L. Choma N.N. Kaltenbach L. Mitchel E.F. Arbogast P.G. Griffin M.R. Non‐aspirin NSAIDs, cyclooxygenase‐2 inhibitors and risk for cardiovascular events–stroke, acute myocardial infarction, and death from coronary heart disease. Pharmacoepidemiol. Drug Saf. 2009 18 11 1053 1063 10.1002/pds.1820 19637402
    [Google Scholar]
  29. Di Meo S. Venditti P. Evolution of the knowledge of free radicals and other oxidants. Oxid. Med. Cell. Longev. 2020 2020 1 32 10.1155/2020/9829176 32411336
    [Google Scholar]
  30. Ginter E. Simko V. Panakova V. Antioxidants in health and disease. Bratisl. Med. J. 2014 115 10 603 606 10.4149/BLL_2014_116 25573724
    [Google Scholar]
  31. Flora S.J.S. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid. Med. Cell. Longev. 2009 2 4 191 206 10.4161/oxim.2.4.9112 20716905
    [Google Scholar]
  32. Hunyadi A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med. Res. Rev. 2019 39 6 2505 2533 10.1002/med.21592 31074028
    [Google Scholar]
  33. Kurutas E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J. 2015 15 1 71 10.1186/s12937‑016‑0186‑5 27456681
    [Google Scholar]
  34. Babcock G.T. How oxygen is activated and reduced in respiration. Proc. Natl. Acad. Sci. USA 1999 96 23 12971 12973 10.1073/pnas.96.23.12971 10557256
    [Google Scholar]
  35. Davies K.J.A. Oxidative stress: The paradox of aerobic life. Biochem. Soc. Symp. 1995 61 1 31 10.1042/bss0610001 8660387
    [Google Scholar]
  36. Forrester S.J. Kikuchi D.S. Hernandes M.S. Xu Q. Griendling K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 2018 122 6 877 902 10.1161/CIRCRESAHA.117.311401 29700084
    [Google Scholar]
  37. He L. He T. Farrar S. Ji L. Liu T. Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem. 2017 44 2 532 553 10.1159/000485089 29145191
    [Google Scholar]
  38. Panieri E. Santoro M.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis. 2016 7 6 e2253 10.1038/cddis.2016.105 27277675
    [Google Scholar]
  39. Phaniendra A. Jestadi D.B. Periyasamy L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015 30 1 11 26 10.1007/s12291‑014‑0446‑0 25646037
    [Google Scholar]
  40. Albano G.D. Gagliardo R.P. Montalbano A.M. Profita M. Overview of the mechanisms of oxidative stress: Impact in inflammation of the airway diseases. Antioxidants 2022 11 11 2237 10.3390/antiox11112237 36421423
    [Google Scholar]
  41. Yahfoufi N. Alsadi N. Jambi M. Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018 10 11 1618 10.3390/nu10111618 30400131
    [Google Scholar]
  42. Lobo V. Patil A. Phatak A. Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010 4 8 118 126 10.4103/0973‑7847.70902 22228951
    [Google Scholar]
  43. Takashima M. Horie M. Shichiri M. Hagihara Y. Yoshida Y. Niki E. Assessment of antioxidant capacity for scavenging free radicals in vitro: A rational basis and practical application. Free Radic. Biol. Med. 2012 52 7 1242 1252 10.1016/j.freeradbiomed.2012.01.010 22306582
    [Google Scholar]
  44. Tripathy B.C. Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 2012 7 12 1621 1633 10.4161/psb.22455 23072988
    [Google Scholar]
  45. Collin F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci. 2019 20 10 2407 10.3390/ijms20102407 31096608
    [Google Scholar]
  46. Huang H. Ullah F. Zhou D.X. Yi M. Zhao Y. Mechanisms of ROS regulation of plant development and stress responses. Front Plant. Sci. 2019 10 800 10.3389/fpls.2019.00800 31293607
    [Google Scholar]
  47. Liou G.Y. Storz P. Reactive oxygen species in cancer. Free Radic. Res. 2010 44 5 479 496 10.3109/10715761003667554 20370557
    [Google Scholar]
  48. Mittal M. Siddiqui M.R. Tran K. Reddy S.P. Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014 20 7 1126 1167 10.1089/ars.2012.5149 23991888
    [Google Scholar]
  49. C Petersen R. Free-radicals and advanced chemistries involved in cell membrane organization influence oxygen diffusion and pathology treatment. AIMS Biophys. 2017 4 2 240 283 10.3934/biophy.2017.2.240 29202036
    [Google Scholar]
  50. Hajam Y.A. Rani R. Ganie S.Y. Sheikh T.A. Javaid D. Qadri S.S. Pramodh S. Alsulimani A. Alkhanani M.F. Harakeh S. Hussain A. Haque S. Reshi M.S. Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells 2022 11 3 552 10.3390/cells11030552 35159361
    [Google Scholar]
  51. Flieger J. Flieger W. Baj J. Maciejewski R. Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials 2021 14 15 4135 10.3390/ma14154135 34361329
    [Google Scholar]
  52. Mandal M. Sarkar M. Khan A. Biswas M. Masi A. Rakwal R. Agrawal G.K. Srivastava A. Sarkar A. Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) in plants– maintenance of structural individuality and functional blend. Adv. Redox Res. 2022 5 100039 10.1016/j.arres.2022.100039
    [Google Scholar]
  53. Pietta P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000 63 7 1035 1042 10.1021/np9904509 10924197
    [Google Scholar]
  54. Zhang C. Wang X. Du J. Gu Z. Zhao Y. Reactive oxygen species‐regulating strategies based on nanomaterials for disease treatment. Adv. Sci. (Weinh.) 2021 8 3 2002797 10.1002/advs.202002797 33552863
    [Google Scholar]
  55. Neha K. Haider M.R. Pathak A. Yar M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem. 2019 178 687 704 10.1016/j.ejmech.2019.06.010 31228811
    [Google Scholar]
  56. Vieira C.P. Lelis C.A. Ochioni A.C. Rosário D.K.A. Rosario I.L.S. Vieira I.R.S. Carvalho A.P.A. Janeiro J.M. da Costa M.P. Lima F.R.S. Mariante R.M. Alves L.A. Foguel D. Junior C.A.C. Estimating the therapeutic potential of NSAIDs and linoleic acid-isomers supplementation against neuroinflammation. Biomed. Pharmacother. 2024 177 116884 10.1016/j.biopha.2024.116884 38889635
    [Google Scholar]
  57. Panche A.N. Diwan A.D. Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016 5 e47 10.1017/jns.2016.41 28620474
    [Google Scholar]
  58. Sharifi-Rad M. Anil N.V.K. Zucca P. Varoni E.M. Dini L. Panzarini E. Rajkovic J. Tsouh Fokou P.V. Azzini E. Peluso I. Mishra P.A. Nigam M. El Rayess Y. El Beyrouthy M. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020 11 10.3389/fphys.2020.0069
    [Google Scholar]
  59. Martemucci G. Costagliola C. Mariano M. D’andrea L. Napolitano P. D’Alessandro A.G. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2022 2 2 48 78 10.3390/oxygen2020006
    [Google Scholar]
  60. Peesa J.P. Yalavarthi P.R. Rasheed A. Mandava V.B.R. A perspective review on role of novel NSAID prodrugs in the management of acute inflammation. J. Acute Dis. 2016 5 5 364 381 10.1016/j.joad.2016.08.002
    [Google Scholar]
  61. Stella V.J. Nti-Addae K.W. Prodrug strategies to overcome poor water solubility. Adv. Drug Deliv. Rev. 2007 59 7 677 694 10.1016/j.addr.2007.05.013 17628203
    [Google Scholar]
  62. Agrawal N. Jaiswal M. Bioavailability enhancement of curcumin via esterification processes: A review. Eur J. Med. Chem. Rep 2022 6 100081 10.1016/j.ejmcr.2022.100081
    [Google Scholar]
  63. Rautio J. Kumpulainen H. Heimbach T. Oliyai R. Oh D. Järvinen T. Savolainen J. Prodrugs: Design and clinical applications. Nat. Rev. Drug Discov. 2008 7 3 255 270 10.1038/nrd2468 18219308
    [Google Scholar]
  64. Shah K. Gupta J.K. Chauhan N.S. Upmanyu N. Shrivastava S.K. Mishra P. Prodrugs of NSAIDs: A review. Open Med. Chem. J. 2017 11 1 146 195 10.2174/1874104501711010146 29387273
    [Google Scholar]
  65. Markovic M. Ben-Shabat S. Dahan A. Prodrugs for improved drug delivery: lessons learned from recently developed and marketed products. Pharmaceutics 2020 12 11 1031 10.3390/pharmaceutics12111031 33137942
    [Google Scholar]
  66. Stella V.J. Prodrugs as therapeutics. Expert Opin. Ther. Pat. 2004 14 3 277 280 10.1517/13543776.14.3.277
    [Google Scholar]
  67. Abu Zanat F.Z. Qandil A.M. Tashtoush B.M. A promising codrug of nicotinic acid and ibuprofen for managing dyslipidemia. I: Synthesis and in vitro evaluation. Drug Dev. Ind. Pharm. 2011 37 9 1090 1099 10.3109/03639045.2011.560155 21401343
    [Google Scholar]
  68. Das N. Dhanawat M. Dash B. Nagarwal R.C. Shrivastava S.K. Codrug: An efficient approach for drug optimization. Eur. J. Pharm. Sci. 2010 41 5 571 588 10.1016/j.ejps.2010.09.014 20888411
    [Google Scholar]
  69. Mamidi R.N.V.S. Mullangi R. Kota J. Bhamidipati R. Khan A.A. Katneni K. Datla S. Singh S.K. Rao K.Y. Seshagiri Rao C. Srinivas N.R. Rajagopalan R. Pharmacological and pharmacokinetic evaluation of celecoxib prodrugs in rats. Biopharm. Drug Dispos. 2002 23 7 273 282 10.1002/bdd.319 12355578
    [Google Scholar]
  70. Qandil A. Prodrugs of nonsteroidal anti-inflammatory drugs (NSAIDs), more than meets the eye: a critical review. Int. J. Mol. Sci. 2012 13 12 17244 17274 10.3390/ijms131217244 23247285
    [Google Scholar]
  71. Mahato R. Tai W. Cheng K. Prodrugs for improving tumor targetability and efficiency. Adv. Drug Deliv. Rev. 2011 63 8 659 670 10.1016/j.addr.2011.02.002 21333700
    [Google Scholar]
  72. Wiemer A.J. Metabolic efficacy of phosphate prodrugs and the remdesivir paradigm. ACS Pharmacol. Transl. Sci. 2020 3 4 613 626 10.1021/acsptsci.0c00076 32821882
    [Google Scholar]
  73. Kouznetsov V.V. Exploring acetaminophen prodrugs and hybrids: A review. RSC Advances 2024 14 14 9691 9715 10.1039/D4RA00365A 38525062
    [Google Scholar]
  74. Al-Hilal T.A. Hossain M.A. Alobaida A. Alam F. Keshavarz A. Nozik-Grayck E. Stenmark K.R. German N.A. Ahsan F. Design, synthesis and biological evaluations of a long-acting, hypoxia-activated prodrug of fasudil, a ROCK inhibitor, to reduce its systemic side-effects. J. Control. Release 2021 334 237 247 10.1016/j.jconrel.2021.04.030 33915222
    [Google Scholar]
  75. Gupta K. Chawla P.A. Sharma D. Synthetic strategies towards safer NSAIDs through prodrug approach: A review. Mini Rev. Med. Chem. 2021 21 15 2065 2102 10.2174/1389557521666201231140554 33390114
    [Google Scholar]
  76. Sehajpal S. Prasad D.N. Singh R.K. Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs): A long march towards synthesis of safer NSAIDs. Mini Rev. Med. Chem. 2018 18 14 1199 1219 10.2174/1389557518666180330112416 29600762
    [Google Scholar]
  77. Goyal R. Gupta S. Sharma P. Sharma M. Insights into prospects of Novel NSAID prodrugs in the Management of gastrointestinal toxicity: A perspective review. Recent Adv. Inflamm. Allergy Drug Discov 2024 18 1 2 10 10.2174/0127722708278736231205055035 38275026
    [Google Scholar]
  78. Kuczyńska J. Nieradko-Iwanicka B. Future prospects of ketoprofen in improving the safety of the gastric mucosa. Biomed. Pharmacother. 2021 139 111608 10.1016/j.biopha.2021.111608 33932737
    [Google Scholar]
  79. Suthar S.K. Sharma M. Recent developments in chimeric NSAIDs as safer anti-inflammatory agents. Med. Res. Rev. 2015 35 2 341 407 10.1002/med.21331 25319808
    [Google Scholar]
  80. Neises B. Steglich W. Simple method for the esterification of carboxylic acids. Angew. Chem. Int. Ed. Engl. 1978 17 7 522 524 10.1002/anie.197805221
    [Google Scholar]
  81. Kim S.J. Alamgeer K.M. Kanwal M. Hassan M. Abdullah S. Waheed M. Ahsan H. Ashraf Z. Flurbiprofen–antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, pharmacological investigation, and computational molecular modeling. Drug Des. Devel. Ther. 2016 10 2401 2419 10.2147/DDDT.S109318 27555750
    [Google Scholar]
  82. Sehajpal S. Prasad D.N. Singh R.K. Synthesis and evaluation of prodrugs of ketoprofen with antioxidants as gastroprotective NSAIDs. Asian J. Chem. 2018 30 9 2145 2150 10.14233/ajchem.2018.21495
    [Google Scholar]
  83. Chandiran S. Vyas S. Sharma N. Sharma M. Synthesis and evaluation of antioxidant-s-(+)-Ibuprofen hybrids as gastro sparing NSAIDs. Med. Chem. 2013 9 7 1006 1016 10.2174/1573406411309070015 23061566
    [Google Scholar]
  84. Redasani V.K. Bari S.B. Synthesis and evaluation of mutual prodrugs of ibuprofen with menthol, thymol and eugenol. Eur. J. Med. Chem. 2012 56 134 138 10.1016/j.ejmech.2012.08.030 22982120
    [Google Scholar]
  85. Dhokchawle B. Tauro S. Bhandari A. Ester prodrugs of ketoprofen: Synthesis, hydrolysis kinetics and pharmacological evaluation. Drug Res. (Stuttg.) 2015 66 1 46 50 10.1055/s‑0035‑1548908 25894087
    [Google Scholar]
  86. Sehajpal S. Prasad D.N. Singh R.K. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation. Arch. Pharm. (Weinheim) 2019 352 7 1800339 10.1002/ardp.201800339 31231875
    [Google Scholar]
  87. Dhokchawle B.V. Bhandari A.B. Synthesis, hydrolysis kinetics and pharmacological evaluation of aceclofenac prodrugs. Antiinflamm. Antiallergy Agents Med. Chem. 2014 13 3 188 10.2174/1871523013666141114203105
    [Google Scholar]
  88. Rasheed A. Lathika G. Raju Y.P. Mansoor K.P. Azeem A.K. Balan N. Synthesis and pharmacological evaluation of mutual prodrugs of aceclofenac with quercetin, vanillin and l-tryptophan as gastrosparing NSAIDS. Med. Chem. Res. 2016 25 1 70 82 10.1007/s00044‑015‑1469‑7
    [Google Scholar]
  89. Talib A.B. Mahdi M.F. Mohammed M.H. Design, synthesis, and hydrolysis study of mutual prodrugs of NSAIDS with different antioxidants via glycolic acid spacer. Pharm. Glob. 2010 12 07 9 [IJCP
    [Google Scholar]
  90. Liang D. Yang X. Sun W. Wang W. Yang J. Liu Y. Wang G. Synthesis, crystal structure and biological activities of naproxen-eugenol ester prodrug. Chem. Res. Chin. Univ. 2013 29 2 245 248 10.1007/s40242‑013‑2266‑9
    [Google Scholar]
  91. Dhokchawle B.V. Asirvatham S. Tauro S.J. Bhandari B.A. Babu S.S. Shetty R.R. Synthesis and evaluation of naproxen ester prodrugs. INDIAN DRUGS 2019 56 1 25 31 10.53879/id.56.01.11614
    [Google Scholar]
  92. Shah K. Shrivastava S.K. Mishra P. Evaluation of mefenamic acid mutual prodrugs. Med. Chem. Res. 2013 22 1 70 77 10.1007/s00044‑012‑0016‑z
    [Google Scholar]
  93. Dhokchawle B.V. Kamble M.D. Tauro S.J. Bhandari A.B. Synthesis, spectral studies, hydrolysis kinetics and pharmacodynamic profile of mefenamic acid prodrugs. Pharma Chem. 2014 6 3
    [Google Scholar]
  94. Tantishaiyakul V. Wiwattanawongsa K. Pinsuwan S. Kasiwong S. Phadoongsombut N. Kaewnopparat S. Kaewnopparat N. Rojanasakul Y. Characterization of mefenamic acid-guaiacol ester: stability and transport across Caco-2 cell monolayers. Pharm. Res. 2002 19 7 1013 1018 10.1023/A:1016470523923 12180533
    [Google Scholar]
  95. B, N.; Rasheed, A.; Kottaimuthu, A. Development, characterization and pharmacological investigation of umbelliferone conjugates of NSAIDs. Iraqi J. Pharm Sci. 2021 30 1 240 248 10.31351/vol30iss1pp240‑248
    [Google Scholar]
  96. Manon B. Sharma P.D. Design, synthesis and evaluation of diclofenac-antioxidant mutual prodrugs as safer NSAIDs. Indian J. Chem. 2009 48B 1279 1287
    [Google Scholar]
  97. Wang W. Wang S.K. Zhang Z. Li B. Zhou Z.D. Zhang J.F. Tang Y.Z. Discovery of Diclofenac and Eugenol hybrid with enhanced anti-inflammatory activity through activating HO-1 and inhibiting NF-κB pathway in vitro and in vivo. 2023 10.2139/ssrn.4283669
    [Google Scholar]
  98. Ashraf Z. Alamgeer R.R. Rasool R. Hassan M. Ahsan H. Afzal S. Afzal K. Cho H. Kim S. Synthesis, bioevaluation and molecular dynamic simulation studies of dexibuprofen–antioxidant mutual prodrugs. Int. J. Mol. Sci. 2016 17 12 2151 10.3390/ijms17122151 28009827
    [Google Scholar]
  99. Patil D. Dhaneshwar S. Kadam P. Diacerein-thymol prodrug: In vivo release and pharmacological screening in experimental models of osteoarthritis in Wistar rats. Inflamm. Allergy Drug Targets 2015 13 6 393 405 10.2174/1871528114666150212125600 25675406
    [Google Scholar]
  100. Dhaneshwar S. Patel V. Patil D. Meena G. Studies on synthesis, stability, release and pharmacodynamic profile of a novel diacerein-thymol prodrug. Bioorg. Med. Chem. Lett. 2013 23 1 55 61 10.1016/j.bmcl.2012.11.016 23218603
    [Google Scholar]
  101. Madhukar M. Sawraj S. Sharma P.D. Design, synthesis and evaluation of mutual prodrug of 4-biphenylacetic acid and quercetin tetramethyl ether (BPA–QTME) as gastrosparing NSAID. Eur. J. Med. Chem. 2010 45 6 2591 2596 10.1016/j.ejmech.2010.02.047 20227799
    [Google Scholar]
  102. Hassib S.T. Hassan G.S. El-Zaher A.A. Fouad M.A. Abd El-Ghafar O.A. Taha E.A. Synthesis and biological evaluation of new prodrugs of etodolac and tolfenamic acid with reduced ulcerogenic potential. Eur. J. Pharm. Sci. 2019 140 105101 10.1016/j.ejps.2019.105101 31639436
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266360021250625073338
Loading
/content/journals/ctmc/10.2174/0115680266360021250625073338
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test